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In soft collinear effective theory (SCET) the interaction between high energy quarks moving in opposite 
directions involving momentum transfer much smaller than the center-of-mass energy is described by 
the Glauber interaction operator which has two-dimensional Coulomb-like behavior. Here, we determine 
this n–n̄ collinear Glauber interaction operator and consider its renormalization properties at one loop. At 
this order a rapidity divergence appears which gives rise to an infrared divergent (IR) rapidity anomalous 
dimension commonly called the gluon Regge trajectory. We then go on to consider the forward quark 
scattering cross section in SCET. The emission of real soft gluons from the Glauber interaction gives rise 
to the Lipatov vertex. Squaring and adding the real and virtual amplitudes results in a cancelation of IR 
divergences, however the rapidity divergence remains. We introduce a rapidity counter-term to cancel the 
rapidity divergence, and derive a rapidity renormalization group equation which is the Balitsky–Fadin–
Kuraev–Lipatov Equation. This connects Glauber interactions with the emergence of Regge behavior in 
SCET.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
Factorization of high-energy interactions in QCD is the sys-
tematic separation of different momentum regions into universal 
factors to all orders in the strong coupling constant αs . All-order 
proofs of factorization, which were first carried out by Collins, 
Soper and Sterman [1–4] rely on a set of powerful theoretical tools. 
Among these are: power counting, pinch analysis via the Landau 
equations [5], and the Coleman–Norton Theorem [6]. The Landau 
equations allow for the isolation of pinch singularities which, via 
the Coleman–Norton Theorem can be identified with long-distance 
(infrared) physics. Generically pinch singularities can be identified 
with one of three momentum regions: collinear, soft, or Glauber. 
In the collinear region internal propagators become collinear with 
external particles, and in the soft region they become soft relative 
to external particles. In either of these limits particles can approx-
imately stay on their mass shell. The Glauber region, however, is 
special as it corresponds to off-shell modes (Glauber modes) with 
k⊥ � k+, k− , which leads to a two-dimensional Coulomb-like in-
teraction between and amongst collinear and soft particles [1,7]. 
The presence of Glauber interactions is problematic because they 
can destroy factorization [7,8]. Fortunately, it has been shown that 
for sufficiently inclusive quantities the sum over final-state cuts 
cancels unwanted pinches, and thereby eliminates Glauber contri-
butions [9–11].
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An alternative approach in deriving factorization is to use effec-
tive field theory (EFT). The EFT that describes the soft and collinear 
degrees of freedom which arise in factorization is soft collinear ef-
fective theory (SCET) [12–15], and in Ref. [16] it was shown how 
the perturbative factorization theorems of QCD are reproduced in 
SCET. However, SCET as it was originally formulated did not include 
Glauber type interactions. An attempt to include Glauber interac-
tions between collinear quarks moving in opposite directions in 
SCET was made in Ref. [17] where factorization of the Drell–Yan 
cross section was reconsidered. Unfortunately, this attempt did not 
account for the overlap between different moment regions and 
failed as a result. The analysis was taken up in Ref. [18] where 
it was concluded that “for the exclusive Drell–Yan amplitude the 
correct effective theory would require Glauber modes.” Though the 
authors did not consider under which circumstances the contri-
bution from Glauber interactions cancels. In addition, a number 
of groups have considered the role of Glauber interactions be-
tween collinear and soft degrees of freedom in dense QCD matter 
[19–21]. More recently, an attempt to include a Glauber interac-
tion between two collinear particles moving in opposite directions 
has been presented [22,23].

A second, seemingly unrelated issue concerning the formula-
tion of SCET was raised in Refs. [24,25], where it was pointed 
out that Regge behavior appears to fall outside of the usual or-
ganizing scheme of SCET. Specifically, Regge behavior refers to 
the emergence of power-law behavior for scattering amplitudes. 
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Fig. 1. Leading order contribution to forward quark–quark scattering at high energy: 
(a) QCD diagram, (b) SCET diagram (dashed lines indicate collinear quarks, and dot-
ted lines Glauber gluons).

In perturbative QCD this arises out of a summation of ladder 
graphs which gives rise to the Balitsky–Fadin–Kuraev–Lipatov 
(BFKL) evolution equation [26,27] (see Ref. [28] for a very read-
able treatment). The solution of the leading logarithmic (LL) BFKL 
equation gives the total cross section for high energy scattering 
with just such a power law form. Clearly, as an EFT of QCD at high 
energy SCET needs to be able to reproduce the BFKL results.

In this work we will show that Glauber interactions between 
two collinear quarks moving in opposite directions and Regge be-
havior are intimately connected. One cannot have one without the 
other. We consider the simplest possible process: two high energy 
quarks undergoing forward scattering. This interaction is mediated 
by the exchange of a gluon with momentum that has Glauber 
scaling (in other words a Glauber gluon): k2⊥ � k+k− . We first de-
termine the SCET operator responsible for the Glauber interaction, 
and then renormalize it. At one-loop a rapidity divergence appears 
which we treat in the formalism of Ref. [29,30]. The coefficient 
of the rapidity divergent term is called the gluon Regge trajectory 
which is infrared (IR) divergent. We then go on to consider the 
real emission of a soft gluon from the Glauber interaction and de-
rive the Lipatov vertex. With these results in hand we calculate 
the total cross section for the forward scattering of high energy 
quarks. We find that at next-to-leading order in αs this expression 
also has a rapidity divergence. Absorbing this rapidity divergence 
into a rapidity counter-term allows us to derive a rapidity RGE 
which is the famous BFKL equation. This then demonstrates the 
emergence of Regge behavior in SCET from Glauber interactions 
between collinear particles.

We use SCET to study the scattering of two high energy quarks 
moving in opposite directions q(p1) + q(p2) → q(p′

1) + q(p′
2) with 

large invariant mass s = (p1 + p2)
2 and small momentum trans-

fer t = (p1 − p′
1)

2 � s. We also restrict ourselves to perturbative 
values of t , where t � Λ ∼ 1 GeV. At leading order in the SCET 
power counting such an interaction can be described by the ex-
change of an off-shell gluon between the quarks, resulting in a 
two-dimensional Coulomb like potential in transverse momentum. 
To see how such an operator arises in SCET we start with QCD and 
match onto SCET degrees of freedom. The QCD diagram is given in 
Fig. 1(a). For the sake of matching we can take all the quarks to be 
massless and on-shell. In addition, the momentum �p1 defines the 
z-axis. Then, the incoming momentum can be expressed in terms 
of two light-like vectors nμ = (1, 0, 0, 1) and n̄μ = (1, 0, 0, −1):

pμ
1 =

√
s

2
nμ pμ

2 =
√

s

2
n̄μ. (1)

The outgoing momentum can be expressed in a Sudakov decom-
posed form as well:

p′ μ
1 = 1

2
(
√

s − n̄ · k)nμ − 1

2
n · kn̄μ − kμ

⊥

p′ μ
2 = 1

2
n̄ · knμ + 1

2
(
√

s + n · k)n̄μ + kμ
⊥. (2)

The outgoing quarks are taken to be on-shell so they must have
n · k =
�k2⊥√

s − n̄ · k
n̄ · k =

�k2⊥√
s + n · k

. (3)

In the forward region we have k2 = n · kn̄ · k + �k2⊥ = t so that kμ
⊥ ∼√

t and the above equation implies n ·k ∼ n̄ ·k ∼ t/
√

s � kμ
⊥ . In this 

region the out-going momenta reduce to

p′ μ
1 ≈

√
s

2
nμ +

�k2⊥
2

n̄μ − kμ
⊥

p′ μ
2 ≈ +

�k2⊥
2

nμ +
√

s

2
n̄μ + kμ

⊥, (4)

where k2 ≈ −�k2⊥ . We carry out the matching depicted in Fig. 1 by 
expanding the QCD amplitude in the forward region

AQCD = − g2

�k2⊥
ū
(

p′
1

)
T aγ μu(p1)ū

(
p′

2

)
T aγμu(p2)

≈ −n · n̄g2

�k2⊥
ξ̄n T a /̄n

2
ξnξ̄n̄ T a /n

2
ξn̄, (5)

where ξn and ξn̄ are the high-energy limit of the QCD spinors for 
quarks moving in the nμ and n̄μ direction respectively. This ampli-
tude is reproduced by the SCET operator first derived in Ref. [22]

Onn̄
G = −2g2

�k2⊥
ξ̄p′

1,n T a /̄n

2
ξp1,nξ̄p′

2,n̄ T a /n

2
ξp2,n̄, (6)

where ξp1,n and ξp2,n̄ are SCET quark fields. This operator is not 
gauge invariant under separate gauge transformations in the n and 
n̄ sectors, but can be made so by adding the appropriate SCET 
collinear Wilson lines [14]

Wn =
∑

perms

exp

(
− g

n̄ ·P n̄ · Aq,n

)
and

Wn̄ =
∑

perms

exp

(
− g

n ·P n · Aq,n̄

)
. (7)

In addition, soft gluons with momentum that scales as kμ
s ∼ √

t
can be radiated from the collinear quarks. While such an interac-
tion puts the collinear quark off-shell, it is order one in the power 
counting and must be summed into a soft Wilson line [15]

Sn =
∑

perms

exp

( −g

n ·P n · As,q

)

Sn̄ =
∑

perms

exp

( −g

n̄ ·P n̄ · As,q

)
. (8)

Including both collinear and soft Wilson lines we arrive at the n–n̄
collinear Glauber operator

Onn̄
G = −8παs(μ)ξ̄p′

2,n̄ Wn̄Y †
n̄ T a /n

2
Yn̄ W †

n̄ξp2,n̄

× 1
�P2⊥

ξ̄p′
1,n WnY †

n T a /̄n

2
Yn W †

nξp1,n. (9)

There are also collinear-soft Glauber operators which were consid-
ered in detail in Refs. [19–21]. These operators have leading order 
Feynman diagrams depicted in Fig. 2 (not shown is the coupling to 
a soft ghost), however, they are not needed here.

Next, we renormalize the operator in Eq. (9). The diagrams that 
contribute are shown in Fig. 3. The double lines in the diagrams in 
(a) indicate that a soft gluon is emitted from one of the soft Wilson 
lines. The diagrams in (a) are ultraviolet (UV) finite, but contain a 
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Fig. 2. Leading order Feynman diagrams corresponding to operators that couple 
collinear and soft degrees of freedom via Glauber exchange: (a) collinear quark cou-
pling to a soft gluon, (b) collinear quark coupling to a soft quark (solid line). Not 
shown is the collinear quark coupling to a soft ghost.

rapidity divergence. The first two diagrams in (b) (plus a ghost-
loop that is not shown) are time-ordered products of two of the 
operators that give the tree-level diagrams in Fig. 2. They are UV 
divergent but do not have a rapidity divergence, and are needed to 
give the correct RG for the Glauber gluon coupling constant. An ex-
plicit calculation of these diagrams has not been carried out so far, 
and clearly would be an important check on the formalism. The 
third diagram in (b) comes from a time ordered product of the 
collinear Glauber operator with terms from the SCET Lagrangian 
that couple collinear gluons to collinear quarks. This diagram also 
has a UV divergence, which is canceled by the collinear Lagrangian 
vertex counter-term. As this diagram involves only collinear de-
grees of freedom moving in the same direction it is the same as 
the renormalization of the QCD quark–gluon vertex [31].

The physics of interest is associated with the rapidity diver-
gence, so we will focus on the diagrams in Fig. 3(a). The sum of 
these four diagrams gives

A = −8παs(μ)ξ̄n T a /̄n

2
ξnξ̄n̄ T a /n

2
ξn̄

[
iNcαs(μ)I(�k⊥)

]
, (10)

where
I(�k⊥) =
∫

dq−

q−

∫
d2q⊥
(2π)2

1

�q2⊥

1

(�q + �k)2⊥
. (11)

In obtaining the expression in Eq. (10) a symmetry factor of one-
half needs to be included as the first two diagrams in Fig. 3(a) 
are identical to the second two diagrams. The integral over q− re-
sults in a rapidity divergence, while the integral over q⊥ , which 
in the literature is called the gluon Regge trajectory, contains IR 
divergences. To evaluate this integral we will need to introduce 
regulators for both types of divergences. Here we will regulate the 
rapidity divergence using the methods developed in Ref. [29,30], 
and use a gluon mass (or dimensional regularization) to regulate IR 
divergences. With these modifications the integral above becomes

I(�k⊥) = ν2η w(ν)2
∫

d4q

(2π)4

1

q−
1

q+
(q3)−2η

q2 − m2
g

1

(�q + �k)2⊥ + m2
g

= −i
ν2η w(ν)2

η

Γ ( 1
2 − η)Γ (1 + η)

(4π)2
√

π

1

(k2⊥)1+η

×
1∫

0

dx
xη

[x(1 − x) + m2
g/k2⊥]1+η

≈ −2i

(4π)2

w(ν)2

�k2⊥

[
1

η
ln

( �k2⊥
m2

g

)
+ ln

(�k2⊥
4ν

)
ln

( �k2⊥
m2

g

)

− 1

4
ln2

( �k2⊥
m2

g

)
+ iπ ln

( �k2⊥
m2

g

)]
, (12)

where w(ν) is a bookkeeping parameter that has been introduced 
for convenience in deriving the rapidity RGE, and will eventually 
be set to one [29,30]. For completeness we also give an expression 
Fig. 3. One loop Feynman diagrams contributing to the renormalization of Onn̄
G . The double line in the diagrams in (a) indicates soft gluon emission from a Wilson line. These 

diagrams have a rapidity divergence which gives the gluon Regge trajectory. The diagrams in (b) have no rapidity divergence, but have UV divergences. The first two diagrams 
involve soft gluons and soft quarks (the soft-ghost loop diagram is not shown), and the UV divergence in these diagrams is canceled by a soft Lagrangian counter-term. The 
last diagram involves the exchange of a collinear gluon (spring with a line) and the UV divergence is canceled by a collinear Lagrangian counter-term.
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Fig. 4. Real emission of soft gluons from the n–n̄ Glauber interaction: (a) emission 
from the soft Wilson lines, (b) emission from the Glauber gluon.

for I(�k⊥) regulating the IR divergences with dimensional regular-
ization:

I(�k⊥) = −i
(
4πμ2)ε ν2η w(ν)2

η

Γ ( 1
2 − η)Γ (1 + η + ε)

(4π)2
√

π

× 1

(k2⊥)1+η+ε

Γ (−ε)Γ (−η − ε)

Γ (−η − 2ε)

≈ −2i

(4π)2

w(ν)2

�k2⊥

{
Γ (−ε)

η

(
μ̄2eγE

�k2⊥

)ε
Γ (1 + ε)Γ (1 − ε)

Γ (1 − 2ε)

+ 1

2ε2
+ 1

2ε

[
ln

(
μ̄2

4ν2

)
+ ln

( �k2⊥
4ν2

)]

+ 1

4
ln2

( �k2⊥
μ̄2

)
− ln

( �k2⊥
4ν2

)
ln

( �k2⊥
μ̄2

)
− π2

24

}
, (13)

where μ̄2 = 4πμ2e−γ . The rapidity divergence corresponds to the 
term that diverges as η → 0. This rapidity pole must be subtracted 
by a rapidity counter-term. However, as the rapidity divergent term 
contains IR divergences a sensible rapidity RGE cannot be derived. 
This issue is fixed if we consider forward scattering and include 
real emission diagrams.

The emission of a real soft gluon can occur from any of the soft 
Wilson lines as shown in Fig. 4(a) or from the exchanged Glauber 
gluon as shown in Fig. 4(b). The amplitude for the sum of the four 
diagrams in Fig. 4(a) is

4∑
i=1

Ai
real = −2g2 1

�k2⊥

1
�k′ 2⊥

ξ̄n T a /̄n

2
ξnξ̄n̄ T b /n

2
ξn̄

(−ig f abc)

×
(

nα

n · k′ �k2⊥ + n̄α

n̄ · k
�k′ 2⊥

)
(14)

and the amplitude for the diagram in Fig. 4(b) is

A5
real = −2g2 1

�k2

1
�k′ 2

ξ̄n T a /̄n

2
ξnξ̄n̄ T b /n

2
ξn̄

(
ig f abc)
⊥ ⊥
×
(

kα⊥ + k′ α⊥ − 1

2
n̄αn · k′ − 1

2
nαn̄ · k

)
, (15)

where the soft gluon momentum is qμ = kμ −k′ μ ≈ 1
2 n̄ ·knμ − 1

2 n ·
k′n̄μ + (k⊥ −k′⊥)μ . Adding these up we arrive at the Lipatov vertex

AL = −2g2 1
�k2⊥

1
�k′ 2⊥

ξ̄n T a /̄n

2
ξnξ̄n̄ T b /n

2
ξn̄

(
ig f abc)

×
(

kα⊥ + k′ α⊥ − 1

2
n̄αn · k′ − 1

2
nαn̄ · k

− nα

n · k′ �k2⊥ − n̄α

n̄ · k
�k′ 2⊥

)
. (16)

This vertex is gauge invariant, as can be explicitly verified by con-
tracting with the external gluon momentum.

Now we have all the pieces needed to calculate the quark scat-
tering cross section in the forward region. Squaring the amplitude 
in Eq. (5) we obtain the tree level cross section

σ LO = 2α2
s C F

Nc

∫
d2�k2⊥
�k2⊥

∫
d2�k′ 2⊥
�k′ 2⊥

δ(2)
(�k⊥ − �k′⊥

)
. (17)

The NLO virtual corrections give

σ NLO
V = 2α2

s C F

Nc

∫
d2�k⊥
�k2⊥

∫
d2�k′⊥
�k′ 2⊥

δ(2)
(�k⊥ − �k′⊥

)

×
(

−αs Nc

2π2

)
ν2η w(ν)2 Γ (η)Γ ( 1

2 − η)√
π

×
∫

d2q⊥
�k2⊥
�q2⊥

1

[(�q⊥ − �k⊥)2]1+η
. (18)

The NLO real corrections can be obtained by the standard method 
of squaring the amplitude and summing over final states, or by tak-
ing the cut of the forward scattering graph in the Glauber regime. 
In order to incorporate the rapidity regulator we use the latter 
method to obtain

σ NLO
R = 2α2

s C F

Nc

∫
d2�k⊥
�k2⊥

∫
d2�k′⊥
�k′ 2⊥

×
(

αs Nc

π2

)
ν2η w(ν)2 Γ (η)Γ ( 1

2 − η)√
π

×
∫

d2q⊥
δ(2)(�q⊥ − �k′⊥)

[(�q⊥ − �k⊥)2]1+η
. (19)

In order to ensure that there is no double counting in SCET the 
soft-Glauber overlap region needs to be subtracted from the above 
results, however in this case the overlap region vanishes. Adding 
these up we arrive at an expression for the forward scattering 
cross section accurate to NLO

σ = 2α2
s C F

Nc

∫
d2�k⊥
�k2⊥

∫
d2�k⊥
�k′′ 2⊥

{
δ(2)

(�k⊥ − �k′⊥
)

+
(

αs Nc

π2

)
Γ (η)Γ ( 1

2 − η)√
π

ν2η w(ν)2

×
∫

d2q⊥
[(�q⊥ − �k⊥)2]1+η

[
δ(2)

(�q⊥ − �k′⊥
)

−
�k2⊥

2�q2⊥
δ(2)

(�k⊥ − �k′⊥
)]}

. (20)

Expanding around η = 0 we can isolate the rapidity divergent term
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σ = 2α2
s C F

Nc

∫
d2�k⊥
�k2⊥

∫
d2�k⊥
�k′′ 2⊥

{
δ(2)

(�k⊥ − �k′⊥
)

+
(

αs Nc

π2

)
w(ν)2

η

∫
d2q⊥

(�q⊥ − �k⊥)2

[
δ(2)

(�q⊥ − �k′⊥
)

−
�k2⊥

2�q2⊥
δ(2)

(�k⊥ − �k′⊥
)] + . . .

}
, (21)

where the dots represent NLO terms that are finite in the η → 0
limit. This result raises the important question of how the rapidity 
divergence is subtracted. In SCET without Glauber gluons collinear 
and soft degrees of freedom factor and observables can often be 
expressed as convolutions of matrix elements of operators involv-
ing only collinear or soft degrees of freedom. If the factorization 
of soft and collinear holds in the presence of Glauber gluons then 
it may be that the above cross section can also be expressed as a 
convolution of the matrix element of a soft operator with the ma-
trix element of an n-collinear operator and the matrix element of 
an n̄-collinear operator. In this case the counter-term for the soft 
operator would cancel the rapidity divergence. Such a factorization 
is suggested by the standard treatment in the literature [28], where 
the two-dimensional Dirac delta function in transverse-momentum 
space is interpreted as the BFKL Green function. The rapidity diver-
gence is then canceled by a counter-term for this Green function. 
However, factorization of the Glauber interaction in SCET requires 
an all orders summation of soft gluons, which has not yet been ac-
complished. A first step in this direction has recently been made in 
Ref. [32] where it is shown that in a scalar theory with n-collinear 
modes, n̄-collinear modes, and Glauber modes an all orders sum-
mation of ladder graphs gives the leading Regge behavior. We will 
leave the summation of soft gluons for a future work, and mo-
tivated by the BFKL approach will for the time being conjecture 
that the cross section factors. We renormalize the rapidity diver-
gence by identifying the two-dimensional Dirac delta function in 
transverse-momentum space as the leading order vacuum matrix 
element of a (currently unknown) operator, O soft

G , involving soft 
fields: G(�k⊥ − �k′⊥) ≡ 〈O G,soft〉. Then

G
(�k⊥ − �k′⊥, ν

) =
∫

d2
⊥Z−1(�k⊥ − �
⊥;η,ν)G
(�
⊥ − �k′⊥;ν)(0)

=
∫

d2
⊥Z−1(�k⊥ − �
⊥;η,ν)δ(2)
(�
⊥ − �k′⊥

)
= δ(2)

(�k⊥ − �k′⊥
) + counter-terms, (22)

where the superscript (0) indicates the matrix element of the bare 
operator. Inverting the above equation leads to

δ(2)
(�k⊥ − �k′⊥

) =
∫

d2
⊥Z(�k⊥ − �
⊥;η,ν)G
(�
⊥ − �k′⊥;ν)

. (23)

The rapidity divergence term in Eq. (21) is canceled by setting

Z(�k⊥ − �
⊥;η,ν) = δ(2)(�k⊥ − �
⊥)

−
(

αs Nc

π2

)
w(ν)2

η

[
1

(�k⊥ − �
⊥)2

− 1

2
δ(2)(�k⊥ − �
⊥)

∫
d2q⊥

(�q⊥ − �k⊥)2

�k2⊥
�q2⊥

]
. (24)

Inserting this expression into Eq. (23) we find

δ(2)
(�k⊥ − �k′⊥

) = G
(�k⊥ − �k′⊥;ν)

−
(

αs Nc

π2

)
w(ν)2

η

[∫
d2q⊥

G(�q⊥ − �k′⊥;ν)

� 2
(�q⊥ − k⊥)
− 1

2
G
(�k⊥ − �k′⊥;ν) ∫

d2q⊥
(�q⊥ − �k⊥)2

�k2⊥
�q2⊥

]
, (25)

which when used in Eq. (21) gives

σ = 2α2
s C F

Nc

∫
d2�k⊥
�k2⊥

∫
d2�k′⊥
�k′ 2⊥

G
(�k⊥ − �k′⊥;ν) + . . . (26)

where the singular terms in η cancel and the dots indicate NLO 
terms that do not vanish in the η → 0 limit. The dependence of 
G(�k⊥ − �k′⊥; ν) on ν is given by the rapidity RGE

d

d lnν
G
(�k⊥ − �k′⊥;ν) =

∫
d2
⊥γν

(�k′⊥ − �
⊥
)
G
(�
⊥ − �k′⊥;ν)

, (27)

where the rapidity anomalous dimension is determined from

γν

(�k⊥ − �k′⊥
)

=
∫

d2
⊥Z
(�
⊥,−�k′⊥;η,ν

)−1 d

d lnν
Z(�k⊥ − �
⊥;η,ν). (28)

Using

d

d lnν
= ∂

∂ lnν
− w(ν)2η

∂

∂ w2
(29)

we find the leading-log (LL) rapidity anomalous dimension

γν

(�k⊥ − �k′⊥
) =

(
αs Nc

π2

)[
1

(�k⊥ − �k′⊥)2

− 1

2
δ(2)

(�k⊥ − �k′⊥
)∫

d2q⊥
(�q⊥ − �k⊥)2

�k2⊥
�q2⊥

]
, (30)

where we set w(ν) = 1. Using this LL expression in Eq. (27) gives

d

d lnν
G
(�k⊥ − �k′⊥;ν) =

(
αs Nc

π2

)∫
d2q⊥

(�q⊥ − �k⊥)2

[
G
(�q⊥ − �k′⊥;ν)

−
�k2⊥

2�q2⊥
G
(�k⊥ − �k′⊥;ν)]

. (31)

This is the BFKL equation [compare to Eq. (3.58) in Ref. [28]]. It 
can be solved by expanding G(�k⊥ − �k′⊥; ν) in eigenfunctions

G
(�k⊥ − �k′⊥;ν)

=
∞∑

n=−∞

a+i∞∫
a−i∞

dγ

2π i
Cn,γ (ν)|�k⊥|2(γ −1)

∣∣�k′⊥
∣∣2(γ ∗−1)

ein(φ−φ′), (32)

running in rapidity from lnνi ∼ 0 to lnν f ∼ ln s, and then taking 
the inverse transform [28]. The last step can only be done approx-
imately. For large lnν f one finds

G
(�k⊥ − �k′⊥; s

) = 1

2π2|�k⊥||�k′⊥|

√
π2

14ζ(3)αs(μ)Ncs

× Exp

[
4αs(μ)Nc

π
ln 2 ln s − π ln2(|�k⊥|/|�k′⊥|)

14ζ(3)αs(μ)Ncs

]
,

(33)

with the leading piece being the first term in the exponent. Using 
this result in Eq. (26) gives a cross section that has Regge behavior 
since it grows as a power of s

σ ∼ sαp−1 αp = 1 + 4αs(μ)Nc

π
ln 2, (34)

where αp is the pomeron intercept.



S. Fleming / Physics Letters B 735 (2014) 266–271 271
Two important issues confront SCET: the role of Glauber in-
teractions in factorization and the emergence of Regge behavior. 
Here, we have shown that at the perturbative level these two is-
sues are actually the same. Glauber interactions between n and n̄
collinear quarks exhibit large rapidity logarithms at NLO in per-
turbation theory, and the rapidity RGE that resumes these large 
rapidity logarithms is the LL BFKL equation which gives rise to 
Regge behavior. While this is not the first attempt at incorporating 
Glauber interactions into SCET, it is the first time Glauber inter-
actions in SCET have been connected to the emergence of Regge 
behavior in the theory. Clearly, the analysis presented here is based 
on a perturbative approach, and can only be considered a first 
(small) step towards a comprehensive treatment of Glauber inter-
actions and hence Regge behavior in SCET. The ultimate goal is to 
include Glauber interactions to all orders so that conclusions about 
the role of Glauber interactions in factorization can be made to all 
orders, and that Regge behavior can be understood at the non-
perturbative level. Both of these goals remain open questions in 
strong interactions, though a considerable effort has been devoted 
to them (especially the question of non-perturbative Regge behav-
ior [28,33]). The hope is that reformulating these questions in an 
effective field theory language will allow us to bring new tools to 
bear and arrive at a solution.
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