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Abstract

Many studies, mostly empirical, have been devoted to finding an optimal shape parameter for radial basis functions (RBF).
When exploring the underlying factors that determine what is a good such choice, we are led to consider the Runge phenomenon
(RP; best known in cases of high order polynomial interpolation) as a key error mechanism. This observation suggests that it can
be advantageous to let the shape parameter vary spatially, rather than assigning a single value to it. Benefits typically include
improvements in both accuracy and numerical conditioning. Still another benefit arises if one wishes to improve local accuracy by
clustering nodes in selected areas. This idea is routinely used when working with splines or finite element methods. However, local
refinement with RBFs may cause RP-type errors unless we use a spatially variable shape paremeter. With this enhancement, RBF
approximations combine freedom from meshes with spectral accuracy on irregular domains, and furthermore permit local node
clustering to improve the resolution wherever this might be needed.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the key issues when applying RBF to interpolation or to the numerical solution of PDEs is the choice
of a suitable value for the basis function’s ‘shape parameter’, commonly denoted by ε (with ε → 0 corresponding
to increasing flatness). We observe here that the Runge phenomenon (RP), best known in the case of polynomial
interpolation, also plays a major role in determining the error for RBF interpolation. From the insights this offers, it
becomes natural not to search for a single ‘optimal’ ε but to consider the use of different values εk at different node
points xk , k = 1, 2, . . . , n.

Another issue we will address relates to node clustering as an approach for improving local accuracy. In many
numerical methods, such as spline interpolations or finite element discretizations of PDEs, local mesh refinement in
select areas can be used to great advantage. In contrast, spectrally accurate methods are typically derived from global
(rather than from local) 1-D polynomial interpolants, and the grids that can be used are largely imposed by the method.
The need for tensor-type grid layouts in traditional spectral methods severely limits the ability to work in irregular

∗ Corresponding author.
E-mail addresses: fornberg@colorado.edu (B. Fornberg), Julia.Zuev@colorado.edu (J. Zuev).

0898-1221/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.01.028

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82085237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
mailto:fornberg@colorado.edu
mailto:Julia.Zuev@colorado.edu
http://dx.doi.org/10.1016/j.camwa.2007.01.028


380 B. Fornberg, J. Zuev / Computers and Mathematics with Applications 54 (2007) 379–398

Table 2.1
Definitions of some radial functions

Type of radial function

Piecewise smooth
MN Monomial |r |

2m+1

TPS Thin plate spline |r |
2m ln |r |

Infinitely smooth
MQ Multiquadric

√
1 + (εr)2

IQ Inverse quadratic 1
1+(εr)2

IMQ Inverse MQ 1√
1+(εr)2

GA Gaussian e−(εr)2

The shape parameter ε controls the flatness of the infinitely smooth radial functions.

multi-dimensional geometries, and this also makes it complicated to selectively refine grids, as might be desired for
the best resolution of local solution features. An RBF method with spatially variable ε is able to overcome many of
these difficulties.

We first briefly introduce, in Section 2, the concepts of RBF and of RP (for polynomials), and then overview
some relevant features of RBF interpolants. In Section 3, we show how these two concepts of RBF and RP are
connected. This opens up new opportunities for exploring how RBF performance can be enhanced by means of
using spatially variable shape parameters. Different aspects of this theme are further explored in Sections 4–7. The
discussion in Sections 4 and 5 suggests that even minor spatial variations in ε will improve the RBF conditioning in a
fundamental way. We note in Section 6 how optimization can be used to devise good strategies for spatially variable
shape parameters, which are then tested, as described in Section 7. This is followed by some concluding remarks in
Section 8. On most issues discussed in this paper, additional materials can be found in [1].

2. Introduction to RBF approximations and to the Runge phenomenon

The initial theme of this present study is to see how RBF approximations are related to the RP. Following a very
brief introduction to these two topics (RBF in Section 2.1, and the RP in Section 2.2), it becomes clear why it is
important to use RBF in such a parameter regime that the RP becomes an issue.

2.1. The form of RBF interpolants

The basic RBF interpolant for data values fk at scattered locations xk , k = 1, 2, . . . n in d dimensions takes the
form

s(x) =

n∑
k=1

λk φ(‖x − xk‖), (2.1)

where ‖ · ‖ denotes the standard Euclidean norm. The expansion coefficients λk are determined by the interpolation
conditions s(xk) = fk , i.e. they can be obtained by solving a linear system A λ = f . Written out in more detail, this
system takes the form

φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xn‖)

φ(‖x2 − x1‖) φ(‖x2 − x2‖) φ(‖x2 − xn‖)
...

...

φ(‖xn − x1‖) φ(‖xn − x2‖) · · · φ(‖xn − xn‖)



λ1
λ2
...

λn

 =


f1
f2
...

fn

 . (2.2)

The numerous possibilities for the radial function φ(r) include the cases listed in Table 2.1. For the infinitely smooth
cases that are quoted, it can be shown that the system (2.2) will never be singular, no matter how the data locations
are scattered in any number of dimensions [2]. In the piecewise smooth cases, a slight variation of the form of (2.1)
will again ensure nonsingularity.
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(a) n = 21. (b) n = 41.

Fig. 2.1. Equispaced polynomial interpolation of f (x) =
1

1+16x2 over [−1, 1]. As n increases, there is spectral convergence for |x | < 0.7942, and
exponential divergence otherwise. These transition points are marked by solid dots.

2.2. The Runge phenomenon

The best-known case of the RP occurs for an increasing order polynomial interpolation on equispaced grids, and
is illustrated in Fig. 2.1. Convergence/divergence rates as the number of node points increases will depend on their
x-position and the node distribution, but only to a limited extent on properties of the interpolated function (the only
relevant quantity being how far away from [−1, 1] the function can be analytically continued in a complex x-plane
without encountering any singularity; for details, see for example [3] or [4]). In the case shown in Fig. 2.1, this theory
will tell us that the envelope of the oscillatory error varies proportionally to

E(z, n) = en(ψ(z0)−ψ(z)) (2.3)

(both for real z = x , and for complex z), where the logarithmic potential function

ψ(z) = −
1
2

Re[(1 − z) ln(1 − z)− (−1 − z) ln(−1 − z)] (2.4)

holds for all equispaced polynomial interpolation over [−1, 1]. The function f (x) that is interpolated enters only by
setting z0 = 0.25i in (2.3); a singularity in the complex plane of f (z) = 1/(1 + 16z2).

The standard remedy against the RP is Chebyshev-type clustering of nodes towards the end of the interval,
e.g. xk = − cos(π(k−1)

n−1 ), k = 1, 2, . . . , n. In that case, one obtains, in place of (2.4)ψ(z) = − ln |z+
√

z2 − 1|, which
for real z = x , −1 ≤ x ≤ 1, evaluates to zero. Because of (2.3), this corresponds to a uniform accuracy across [−1, 1]

for all functions f (x). While this particular node distribution resolves one difficulty (the RP), it introduces others.
In the context of time stepping PDEs, the CFL condition can become very severe. In multiple dimensions, domains
essentially have to be rectangular, and the enforced node distributions leave no room for local mesh refinements
(unless domain decomposition approaches are used).

In contrast to the situation with high order polynomials, 1-D cubic spline interpolation is entirely RP free. In
fact, the natural cubic spline (s′′(x) = 0 at both ends) minimizes

∫
(s′′(x))2dx over all possible interpolants [5],

thereby entirely ruling out any form of excessive spurious oscillations. Cubic splines arise as a special case of RBF
interpolation if one chooses φ(r) = |r |

3. For scattered data interpolation in 2-D, a corresponding total curvature
minimization is achieved by RBF interpolation using φ(r) = r2 ln |r |, as observed in [2,6]. As was just noted,
attractive features in one respect often come with a price to be paid in other respects. The orders of approximation
when using φ(r) = |r |

3 and φ(r) = r2 ln |r | are low, due to the limited smoothness of these functions.

2.3. Advantages of using infinitely smooth RBF

Cubic splines in 1-D are well known to converge (when approximating a smooth function) at a rate of O(h4),
where h is a typical node spacing. The power of four comes from the fact that φ(r) = |r |

3 has a jump in the third
derivative at the origin. If we had used φ(r) = |r |

5, the accuracy would have become O(h6), etc. This obviously
raises the question: why use radial functions φ(r) that have jumps in any derivative? It transpires that the convergence
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Fig. 2.2. Three different node distributions, all with 16 nodes on the boundary and 48 nodes in the interior, used by the FD2, PS, and RBF methods,
respectively, in the Poisson equation test case.

rate for the infinitely smooth radial functions in general will be spectral (better than any algebraic order), as long as no
Runge-type oscillations arise. Precise statements and proofs in this regard (however, without describing in-between
node point oscillations as a manifestation of a RP) have been given in [7,8].

Large values of the shape parameter ε correspond to highly peaked basis functions (in the cases of GA, IQ, and
IMQ) whereas small values make them flat. Both extremes carry disadvantages, but the case of small ε also presents
some remarkable opportunities.

2.4. Advantages of using near-flat basis functions

It was demonstrated in [9] that, in the limit of ε → 0, RBF interpolants in 1-D in general converge to the Lagrange
interpolating polynomial. Since these (lowest degree) interpolating polynomials in turn form the basis for all classical
pseudospectral (PS) methods, this implies that PS methods alternatively can be viewed as special cases of RBF
methods [10]. Already in 1-D, this viewpoint can be advantageous in that the use of ε > 0 can be both more accurate
and more stable than the polynomial ε = 0 limit. However, the most striking advantages come in 2-D (and higher) with
the possibility of then using scattered node layouts. This allows PS methods to be generalized from very restrictive
domain shapes and tensor-type grids over to fully irregular domains with scattered nodes.

In the ε → 0 limit, the conditioning of the linear system (2.2) degrades rapidly. For example, with 41 scattered
nodes in 2-D, det(A) is proportional to ε416 as ε → 0 for all the infinitely smooth radial functions listed in
Table 2.1 [11]. The expansion coefficients λk become oscillatory and grow rapidly in magnitude with decreasing
ε (proportionally to 1/ε16 in this example). The subsequent evaluation of the interpolant by means of (2.1) will then
involve large amounts of numerical cancellation. Utilizing contour integration in a complex ε-plane, the Contour–Padé
algorithm [11] is able to bypass this ill-conditioning, and it permits stable computations of RBF interpolants all the
way down to ε = 0. By means of the RBF-QR algorithm [12,13], the Contour–Padé limitation on the number of nodes
n (to be no more than around 200–300 nodes in 2-D) has essentially been eliminated.

The benefits of computing in a very low ε-range were strikingly illustrated in [14]. One of the test cases considered
there was to solve Poisson’s equation ∂2u

∂x2 +
∂2u
∂x2 = f (x, y) over the unit circle using straightforward RBF collocation,

with a right-hand-side f (x, y) and Dirichlet boundary conditions chosen so that u(x, y) = 65/(65 + (x − 0.2)2 +

(y + 0.1)2) becomes the solution. With nodes for a second order finite difference scheme, a Fourier–Chebyshev PS
scheme and RBF laid out as illustrated in parts a–c respectively of Fig. 2.2, the max norm errors become as seen in
Fig. 2.3a when calculated with the Contour–Padé algorithm, whereas the direct solution of the collocation equations
by Gaussian elimination gives the results shown in Fig. 2.3b. Large values of ε clearly give large RBF errors, so a
decrease in ε is initially beneficial. At some point, the improvements cease. As the comparison between Fig. 2.3a and b
indicates, there are two entirely different factors behind this reversal in trend. The first such factor is usually numerical
ill-conditioning (prominent for small ε in Fig. 2.3b). This factor tends to dominate, unless it has been eliminated (for
ex. by the Contour–Padé algorithm or by the RBF-QR algorithm; certain pre-conditioning-type methods [15,16] can
alleviate but will not eliminate ill-conditioning). We will find that the second factor (seen for small ε in Fig. 2.3a as a
near-constant error level) is closely related to the polynomial RP.

The RBF methods feature much more flexibility than the alternatives (FD2 and PS) in that the results depend very
little on how the nodes are scattered over domains that need not be circular, but can be arbitrarily shaped. Furthermore,
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Fig. 2.3. The max norm errors in the Poisson equation test case, as functions of ε when using MQ, IQ, and GA. The errors (not ε-dependent)
for standard second-order finite differences (FD2) and the Fourier–Chebyshev pseudospectral (PS) method are also included for comparison: (a)
Computation using Contour–Padé method, (b) Direct implementation via Gaussian elimination.

(a) ε = 1.5. (b) ε = 0.6. (c) ε = 0.1.

Fig. 3.1. Growth of RP in MQ RBF interpolation as ε → 0. The three subplots show n = 21 equispaced point interpolants of f (x) =
1

1+16x2 in
the cases of (a) ε = 1.5, (b) ε = 0.6, and (c) ε = 0.1.

the RBF errors are seen to be many orders of magnitude smaller than those of FD2 and PS as soon as a sufficiently
small ε is chosen.

2.5. Some literature on choosing a good shape parameter value

The literature on selecting a good (single) value for ε is extensive, e.g. [15,17–22]. Many of these works
focus on finding the minimal error in computations that are conceptually similar to what was shown in Fig. 2.3b,
i.e. recommending computing to be carried out near the range of potentially severe ill-conditioning.

3. The RP for RBF approximations

3.1. Error trends for low ε

Fig. 3.1 illustrates that a RP in RBF interpolation can arise simply as a consequence of RBF interpolants
approaching the polynomial interpolant in the ε → 0 limit (compare Fig. 3.1c with Fig. 2.1a). Fig. 3.2, using GA
instead of MQ interpolants, illustrates more clearly the additional aspect of how the error at first decreases and then,
when the RP ‘kicks in’, again increases.

The six subplots in Fig. 3.3 illustrate how the smoothness of the interpolant influences the point at which the trend
reversal occurs, and how strong this reversal will be. The third case (α = 16) uses the same test function as is shown
in Figs. 2.1, 3.1 and 3.2. The RP enters in all cases once ε is sufficiently small, and its level at ε = 0, as obtained from
the polynomial RP theory quoted in Section 2.2, agrees completely with the lowest ε-results in Fig. 3.3. Although a
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(a) ε = 30. (b) ε = 3.5. (c) ε = 0.5.

Fig. 3.2. GA interpolants of f (x) =
1

1+16x2 for a wide range of ε-values: ε = 30, 3.5, and 0.5 respectively.

Fig. 3.3. Top row: The function fα(x) =
1

1+αx2 for three values of α. Next two rows of subplots show how the error varies with ε in the case of
GA and MQ RBFs respectively.

higher accuracy can be reached if the data are smoother, the RP still in all cases breaks a very favorable improvement
trend for when ε is decreased.

We use in this study the concept of RP in a sense which may be somewhat broader than what is customary, i.e. not
only to describe massively large edge errors (such as seen in parts c of Figs. 3.1 and 3.2, leading to divergence as
n → ∞) but also the elevated errors at low ε for all the cases illustrated in the subplots of Fig. 3.3. The concept is the
same, even if the effect in some cases may amount to slower convergence rather than to outright divergence at edges,
when n → ∞.

The discussion above provides an understanding of the trend reversal that was illustrated earlier in Fig. 2.3a.
Although this trend reversal was addressed theoretically in [23], the present RP interpretation of it may be more
intuitive.
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(a) 14 nodes. (b) 16 nodes. (c) 18 nodes.

Fig. 3.4. MQ RBF ε = 2 interpolants (dashed curves) of f (x) = arctan(20x) (dotted curves) over [−1, 1] (a) 14 equispaced points, (b) two extra
points inserted near the center, and (c) still two more points inserted near the center.

Fig. 3.5. 10-point interpolation of the same function as in Fig. 3.4, when both node locations and spatially variable ε were chosen to minimize the
interpolation error. (a) Node locations and interpolant, (b) Error across [−1, 1], (c) The optimized ε-values.

3.2. RP caused by variable node spacings

A second mechanism by which a RP can arise is illustrated in Fig. 3.4. In part a, there is no RP visible, but
the equispaced RBF approximation lacks sufficient resolution near the center, where the data features a very sharp
gradient. In part b, we have inserted two extra nodes in the critical area and, in part c, still two more nodes are inserted.
The most striking result of this local refinement is a disastrous RP. In contrast to this, Fig. 3.5 shows that one can obtain
excellent accuracy if one uses good choices for node point locations and for εk-values (now taking different values at
the different nodes xk ∈ [−1, 1]). Although the multivariate optimizer used in obtaining Fig. 3.5 (discussed later in
Section 6.2) appears to have found only a local optimum (in contrast to the global one, for which the oscillations in
the error most likely would all be of the same amplitude), the error level that is reached is nevertheless spectacular in
comparison with what can be achieved with, say, polynomial interpolation at the Chebyshev nodes (corresponding to
a typical non-periodic PS method). As Fig. 3.6 shows, n = 170 nodes are needed to match the max norm accuracy
of 2.5 × 10−5 that RBF achieved using only n = 10 interpolation nodes. Returning to Fig. 3.5: the rightmost subplot
displays the node coordinates xk together with the associated shape parameter values εk . The pattern for the latter
is a striking illustration of a principle that we will again arrive at (and discuss further) in Section 7.1: εk should be
increased in areas of higher node density.

So far, there exists no fast algorithm for finding optimal node locations and optimal (spatially variable) εk-values
for RBF interpolants. However, the example suggests that the topic deserves further study.

3.3. Means to control the RP

With only discrete data utilized for forming RBF interpolants, it is unreasonable to hope for infinite accuracy. A
complete elimination of all error barriers for small ε is therefore not conceivable. A few approaches that might succeed
in somewhat reducing the RP-type errors have already been suggested in the literature:
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Fig. 3.6. 10-point, 50-point, and 170-point Chebyshev interpolants for arctan(20x) over [−1, 1]; display of the interpolants and their errors.

1. Node clustering at edges (or wherever needed) to improve accuracy,
2. Super Not-a-Knot (SNaK) generalization of cubic spline end conditions,
3. Spatially variable shape parameter; use εk at node location xk .

The discussion in [24] suggested that SNaK may be preferable to node clustering at edges. The third possibility –
spatially variable εk – will be studied further below. While some potential benefits of this approach have been noted
before, as summarized next in Section 3.4, we will here consider this issue from the perspective offered by the RP.

3.4. Previous literature on spatially variable shape parameters

The idea of using a spatially variable shape parameter in the RBF expansion (2.1) has been proposed numerous
times. A limited version of the concept was proposed by Kansa already in 1990 [25]. The idea was generalized shortly
afterwards by him and Carlson [21], using the least squares optimization to find good εk distributions for certain test
functions. More recently, spatially variable εk MQ interpolants in 1-D have been related to 1-D splines [26]. In [27],
an adaptive algorithm is proposed in which node densities are varied according to a local error criterion, and variable
εk-values are increased wherever the node layout has become denser. Numerical experiments reported in [28] led to a
number of observations, several of which agree well with the results in this study (such as the benefit of reducing εk
at boundaries and that introducing oscillations in εk might improve both conditioning and accuracy).

4. Flat basis function limit in the case of spatially variable εk

4.1. Closed-form expression for interpolant

As originally noted in [10], one can readily write down RBF interpolants in closed form. The formula generalizes
immediately to the case of spatially variable εk as follows: If the data at location xk is f1 = 1, with fk = 0 otherwise
(cardinal data), then the interpolant s(x) becomes

s(x) = N/D,
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where

N =

∣∣∣∣∣∣∣∣∣
φ(ε1‖x − x1‖) φ(ε2‖x − x2‖) · · · φ(εn‖x − xn‖)

φ(ε1‖x2 − x1‖) φ(ε2‖x2 − x2‖) · · · φ(εn‖x2 − xn‖)
...

...
...

φ(ε1‖xn − x1‖) φ(ε2‖xn − x2‖) · · · φ(εn‖xn − xn‖)

∣∣∣∣∣∣∣∣∣
and

D =

∣∣∣∣∣∣∣∣∣
φ(ε1‖x1 − x1‖) φ(ε2‖x1 − x2‖) · · · φ(εn‖x1 − xn‖)

φ(ε1‖x2 − x1‖) φ(ε2‖x2 − x2‖) · · · φ(εn‖x2 − xn‖)
...

...
...

φ(ε1‖xn − x1‖) φ(ε2‖xn − x2‖) · · · φ(εn‖xn − xn‖)

∣∣∣∣∣∣∣∣∣ .
To keep the algebra simple, we focus the following discussion on 1-D, believing that conclusions will be similar in
higher-D.

Example 1. With xk = {−1,− 1
2 , 0, 1

2 , 1}, letting the shape parameter ε be the same at all nodes, and using MQ, one
finds by Taylor expanding N and D in powers of ε

N =
189

8192
x(1 − x − 4x2

+ 4x3)ε20
+ O(ε22)

D =
567
4096

ε20
+ O(ε22),

i.e. s(x) →
1
6 x(1 − x − 4x2

+ 4x3) when ε → 0. This limit agrees with Lagrange’s interpolation polynomial,
as is required by the theory in [9]. Given that all the entries in N and D are of size O(1) (since φ(ε‖ · ‖) =

1 + c1ε
2

+ c2ε
4

+ . . . and ε is assumed to be small), it is clear that vast numbers of cancellations have occurred
when evaluating these determinants in order to obtain both N and D of size O(ε20). These high powers of ε reflect
the ill-conditioning of direct implementation through (2.2), noting that D = det(A). �

Example 2. With the same xk , but choosing εk = ε · δk (where δk are arbitrary constants), we get instead

N =
3

8192
x(1 − x − 4x2

+ 4x3)p(δ1, δ2, . . . , δ5)ε
12

+ O(ε14)

D =
9

4096
p(δ1, δ2, . . . , δ5)ε

12
+ O(ε14),

(4.1)

where the expression for p(δ1, δ2, . . . , δ5) is quite complex:

p = δ4
1δ

4
2δ

2
3δ

2
4 − 4δ4

1δ
2
2δ

4
3δ

2
4 + 3δ2

1δ
4
2δ

4
3δ

2
4 + 3δ4

1δ
2
2δ

2
3δ

4
4 − 4δ2

1δ
4
2δ

2
3δ

4
4 + δ2

1δ
2
2δ

4
3δ

4
4

− 2δ4
1δ

4
2δ

2
3δ

2
5 + 6δ4

1δ
2
2δ

4
3δ

2
5 − 4δ2

1δ
4
2δ

4
3δ

2
5 + δ4

1δ
4
2δ

2
4δ

2
5 − 2δ4

1δ
4
3δ

2
4δ

2
5 + δ4

2δ
4
3δ

2
4δ

2
5

− 9δ4
1δ

2
2δ

4
4δ

2
5 + 8δ2

1δ
4
2δ

4
4δ

2
5 + 6δ4

1δ
2
3δ

4
4δ

2
5 − 4δ4

2δ
2
3δ

4
4δ

2
5 − 4δ2

1δ
4
3δ

4
4δ

2
5 + 3δ2

2δ
4
3δ

4
4δ

2
5

− 4δ4
1δ

2
2δ

2
3δ

4
5 + 6δ2

1δ
4
2δ

2
3δ

4
5 − 2δ2

1δ
2
2δ

4
3δ

4
5 + 8δ4

1δ
2
2δ

2
4δ

4
5 − 9δ2

1δ
4
2δ

2
4δ

4
5 − 4δ4

1δ
2
3δ

2
4δ

4
5

+ 3δ4
2δ

2
3δ

2
4δ

4
5 + 6δ2

1δ
4
3δ

2
4δ

4
5 − 4δ2

2δ
4
3δ

2
4δ

4
5 + δ2

1δ
2
2δ

4
4δ

4
5 − 2δ2

1δ
2
3δ

4
4δ

4
5 + δ2

2δ
2
3δ

4
4δ

4
5 .

If this quantity does not evaluate to exactly zero, we again obtain the limit s(x) →
1
6 x(1 − x − 4x2

+ 4x3) as ε → 0.
It is easy to verify that p(1, 1, 1, 1, 1) = 0. In this case, not only do the O(ε12) terms in (4.1) vanish, so do also the
terms of size O(ε14), O(ε16), and O(ε18). As Example 1 showed, the limit for s(x) nevertheless turned out the same.
Since D is the determinant of the coefficient matrix A in (2.2) (if generalized to spatially variable εk), the size of D in
terms of ε reflects the severity of the conditioning if the RBF interpolant is evaluated via (2.2) and (2.1). �

The Examples 1 and 2 can readily (using Mathematica) be repeated for other similar situations. In all cases we
have attempted, the main observations remain the same:

1. The conditioning of the A-matrix is likely to be greatly improved when using spatially variable εk ,
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2. If we use εk = ε · δk , then limε→0 s(x) is independent of the choices of δk , i.e. varying these constants δk does not
appear to be a practical approach for improving accuracy at ε = 0,

3. Although a spatially variable εk does not appear to help the accuracy in the flat RBF limit (being the same in either
case), it might nevertheless be beneficial for intermediate ε-values (recalling again our choice of εk = ε · δk , where
δk are arbitrary constants).

4.2. Possibility of singularity in the case of a spatially variable εk

With a spatially variable εk , the standard proofs for non-singularity of the RBF interpolation matrix A no longer
apply. It is in fact easy to construct examples showing that singularities indeed can arise. Consider, for example, GA
interpolants and three nodes in 1-D, located at xk = {−1, 0, 1}. The function f (x) = e−( 1

2 (x+1))2
+ e−( 1

2 (x−1))2

satisfies f (0) ≈ 1.5576 and f (±1) ≈ 1.3679. It clearly is possible to choose α and β so that g(x) = αe−(βx)2

matches these three values. For the interpolation problem with xk = {−1, 0, 1} and εk = {
1
2 , β,

1
2 }, the A-matrix will

then have [1,−α, 1]
T as eigenvector with eigenvalue zero, implying that it is singular.

4.2.1. Non-singularity when variable εk are large
We first consider for ex. GA, IQ or IMQ interpolation, with all εk → ∞. The A-matrices will tend to the identity

matrix, and non-singularity is obviously assured. In the case of MQ, we would likewise have convergence to the
non-singular φ(r) = r case. By relating MQ interpolants with B-splines, non-singularity for sufficiently large εk is
demonstrated for 1-D in [26].

4.2.2. Non-singularity when variable εk are small
The singularity example in the introduction to Section 4.2 generalizes immediately to the case of arbitrarily small

εk . For example, when using IQ, the A-matrix in case of xk = {−1, 0, 1} and εi = {ε, ε

√
1−2ε2

√
1+ε2

√
1+2ε2

, ε} is singular

whenever ε < 1/
√

2. Nevertheless, the observations we make below with regard to the eigenvalues of the A-matrices
when ε → 0 (spatially non-varying) and εk → 0 (spatially varying) not only indicate that singularities are unlikely to
occur, but also (again) that spatially variable εk will significantly improve the conditioning of the A-matrix.

5. Eigenvalues of the A-matrix

5.1. Case of spatially constant ε

Results in [29] (page 308) can be shown to imply that the eigenvalues of the A-matrix will scale with different
powers of ε. Numerical calculations provide a much more detailed picture. For example, with n = 51 scattered nodes
in 2-D, as shown in Fig. 5.1, the eigenvalues vary with ε as seen in Fig. 5.2 (computed using Matlab’s VPA — variable
precision arithmetic). Irrespective of the choice of RBF type (IQ, MQ, or GA), the magnitudes of the eigenvalues form
very clear groups, following the pattern

{O(1)}, {O(ε2), O(ε2)}, {O(ε4), O(ε4), O(ε4)}, {O(ε6), O(ε6), O(ε6), O(ε6)}, . . .

until the last eigenvalue is reached (causing the last group to possibly contain fewer eigenvalues than the general
pattern would suggest). Different choices of scattered node locations xk make no difference in this regard. More
concisely, we can write this eigenvalue pattern as

1, 2, 3, 4, 5, 6, . . . (5.1)

indicating how many eigenvalues there are of orders ε0, ε2, ε4, ε6, ε8, ε10, etc. Given such a pattern, one can
immediately calculate the orders of both cond(A) and of det(A) =

∏n
k=1 λk . Doing so confirms the special case

noted in Section 2.4 of det(A) being of size O(ε416) when n = 41 (obtained in [11] by an entirely different approach
involving contour integration) and also shows that in this same case, cond(A) = O(ε−16). Corresponding results for
different dimensions and geometry types are shown in Table 5.1 on the lines labeled “ε constant”.
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Table 5.1
Numbers of eigenvalues of different sizes (powers of ε) for different geometries and types of shape parameter

Geometry Shape param. Power of ε
0 2 4 6 8 10 12 14 . . .

1-D non-periodic ε constant 1 1 1 1 1 1 1 1 . . .

εk variable 1 2 2 2 2 2 2 2 . . .

1-D on circle periph. ε constant 1 2 2 2 2 2 2 2 . . .

(embedded in 2-D) εk variable 1 2 2 2 2 2 2 2 . . .

2-D non-periodic ε constant 1 2 3 4 5 6 7 8 . . .

εk variable 1 3 5 7 9 11 13 15 . . .

On spherical surface ε constant 1 3 5 7 9 11 13 15 . . .

(embedded in 3-D) εk variable 1 3 5 7 9 11 13 15 . . .

3-D non-periodic ε constant 1 3 6 10 15 21 28 36 . . .

εk variable 1 4 9 16 25 36 49 64 . . .

Fig. 5.1. Random distribution of n = 51 nodes used in the eigenvalue calculations in Sections 5.1 and 5.2.

5.2. Case of spatially variable εk

Fig. 5.3 shows that choosing εk = ε · {random numbers on [0, 1]} and letting ε → 0 (for the figure using the same
random nodes in 2-D as seen in Fig. 5.1) creates a different (but equally distinct and clear) eigenvalue pattern

1, 3, 5, 7, 9, 11, . . . . (5.2)

In the n = 41-case discussed above, we get for the spatially variable εk det(A) = O(ε310) and cond(A) = O(ε−12)

(i.e. a clear improvement). These same types of numerical studies can easily be extended to all the cases shown in
Table 5.1 as “εk variable”. In all cases that are shown, the results are verified for IQ, MQ, and GA in calculations
extending to still higher values of n, and also for numerous cases of different scattered node sets and random εk
distributions.

The patterns seen in Table 5.1 show that “εk variable” in all the non-periodic cases is more favorable than “ε
constant”. Because cond(A) = O(1/{smallest eigenvalue}) = O(1/εα(n)), we can readily convert the information in
Table 5.1 to obtain cond(A) as a function of n. For example in the case of “2-D non-periodic”, we get

cond(A)“ε constant” = O(1/ε2[(
√

8n−7−1)/2])
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Fig. 5.2. Eigenvalues of the MQ RBF A-matrix in the 2-D n = 51 scattered node case, as functions of ε (spatially constant). The number of
eigenvalues in each of the different groups are also shown (easiest counted when printed numerically rather than when displayed graphically as
here).

Table 5.2
Condition number cond(A) = 1/εα(n) with α(n) displayed for various values of n in all the cases of Table 5.1

Geometry Shape param. Number of nodes n
1 10 100 1000 10000 100000 . . .

1-D non-periodic ε constant 0 18 198 1998 19 998 199 998 . . .

εk variable 0 10 100 1000 10 000 100 000 . . .

1-D on circle periph. ε constant 0 10 100 1000 10 000 100 000 . . .

(embedded in 2-D) εk variable 0 10 100 1000 10 000 100 000 . . .

2-D non-periodic ε constant 0 6 26 88 280 892 . . .

εk variable 0 6 18 62 198 632 . . .

On spherical surface ε constant 0 6 18 62 198 632 . . .

(embedded in 3-D) εk variable 0 6 18 62 198 632 . . .

3-D non-periodic ε constant 0 4 14 34 76 166 . . .

εk variable 0 4 12 26 60 132 . . .

and

cond(A)“εk variable” = O(1/ε2[
√

n−1]).

Here, sharp brackets [·] denote the integer part; for derivations, see [1]. These and corresponding expressions for the
other cases are evaluated for some different values of n in Table 5.2. For fixed n, conditioning is also seen to improve
rapidly with increasing number of dimensions.

The data in Table 5.1 show that, even with randomly scattered εk-values (or when the εk-values are chosen
according to the ‘inversely proportional to nearest neighbor’ strategy arrived at in Section 7.1; found to give exactly
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Fig. 5.3. Same as Fig. 5.2, but with the shape parameters chosen as εi = ε · {random numbers on [0, 1]}.

Table 5.3
Eigenvalue patterns (for IQ, MQ, and GA) in two additional cases of scattered points in 2-D

Geometry Shape param. Power of ε
0 2 4 6 8 10 12 14 16 18 . . .

2-D non-per. one εk different 1 3 2 5 4 7 6 9 8 11 . . .

εk alternating 1 3 4 5 7 8 9 11 12 13 . . .

the same eigenvalue results), extremely distinct eigenvalue patterns hold. One might have expected that completely
irregular variations in the shape parameters εk might have led to irregular variations in the eigenvalues of the A-
matrix (compared to the constant ε situation), and that therefore some of the extremely small eigenvalues might have
been perturbed enough to change sign (with the possibility of becoming zero). The fact that even the very smallest
eigenvalues show no tendency whatsoever towards any irregularities suggests that singular systems are not likely to
arise (despite the counterexamples in Section 4.2).

Still other eigenvalue patterns appear in ‘intermediate’ cases, such as all εk but one taking the same value, or the
εk alternating between two values. For example, in the case “2-D non-periodic” (cf. Table 5.1), the patterns become as
seen in Table 5.3. These two cases are seen to feature conditionings that fall between the most favorable “εk variable”
and least favorable “ε constant” cases shown in Table 5.1.

5.3. Significance of eigenvalue patterns

The very distinct eigenvalue patterns seen in Figs. 5.2 and 5.3 and summarized in Tables 5.1–5.3 give surprisingly
precise information in situations that are so irregular in terms of both node locations xk and shape parameter values
εk that intuition might have suggested that no exact patterns could exist. These patterns tell us precisely the degree
by which conditioning is improved when utilizing the different freedoms that become available by means of locally
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variable εk (or when just making one single εk different from the other). Even slight deviations from the case of
all εk being the same lead to significant improvements in the condition number (and resulting accuracy) in all non-
periodic cases. Although it is still not well understood where these very distinct eigenvalue patterns ‘come from’, it is
nevertheless clear that they are completely well defined, and that they likely hold a key to the future understanding of
many variable εk issues, in particular with regard to the conditioning of the RBF equations.

6. Search for variable εk strategies by means of optimization

We illustrated above that RP can be triggered by boundaries (e.g. Figs. 2.1 and 3.1 in cases of polynomials and
RBF, respectively) and also by refinement at interior locations (Fig. 3.4). The standard way to suppress polynomial
RP is to increase the node density wherever the phenomenon occurs, e.g. to use Chebyshev-type node clustering at
boundaries. Here, we will explore whether the use of spatially varying RBF shape parameters εk can also achieve some
form of RP control. As an alternative to proposing and then testing some intuitively motivated variable εk strategies on
a collection of test functions, we will use numerical optimization to try to arrive at good εk distributions, independently
of any specific test function choices. Following a discussion of what might be suitable functionals to minimize, and
of local vs. global minimization, we apply in Section 7 the obtained ideas to 1-D RBF interpolation.

6.1. Functionals for measuring the RP

6.1.1. The Lebesgue constant
In case of polynomial interpolation, the level of the RP is very well measured by the Lebesgue constant. If we write

the Lagrange interpolation polynomial as

Pn−1(x) =

n∑
k=1

f (xk)Fk(x)

where

Fk(x) =

n∏
j=1; j 6=k

(x − x j )

/
n∏

j=1; j 6=k

(xk − x j ), k = 1, 2, . . . , n,

are the n − 1 degree polynomials satisfying

Fk(x j ) =

{
1 if j = k
0 if j 6= k, (6.1)

then the Lebesgue constant is defined as

Λn = max
x∈[−1,1]

n∑
k=1

|Fk(x)|. (6.2)

For any type of node distribution, Λn expresses how the RP can grow as n is increased. For example, with
n nodes equispaced on [−1, 1], one finds Λeq

n = O
(

2n

n ln n

)
(i.e. disastrous growth) vs. for a Chebyshev-type node

distributionΛCheb
n = O(ln n) comes very close to the optimal situation for any distribution type (which can be shown

to only improve ΛCheb
n =

2
π
(ln n + γ + ln 8

π
) + o(1) to ΛOptimal

n =
2
π
(ln n + γ + ln 4

π
) + o(1), cf. [30]). One of

the strengths of the Lebesgue constant as a measure of the quality of polynomial interpolation with different node
distributions is the relation (in max norm)∥∥∥ f − P interp

n

∥∥∥
∞

≤ (1 + Λn)

∥∥∥ f − Poptimal
n

∥∥∥
∞

. (6.3)

This single quantity Λn thus expresses how well interpolation with a certain node distribution works compared
to the optimal polynomial approximant Poptimal

n (which need not be related to any interpolation method), entirely
independently of which function f we interpolate. It makes no difference for the validity of (6.3) whether f is infinitely
or finitely many times differentiable, or even if it is discontinuous. Exploring node distributions that make this single
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Fig. 6.1. Comparison of the cardinal functions Fk (x) for polynomial interpolation and for MQ RBF interpolation (with ε = 0.4 and ε = 1) in the
case of n = 9 equispaced and Chebyshev distributed node points over [−1, 1].

quantity Λn small can therefore achieve a similar goal as can direct testing with a large and diverse set of trial
functions f .

In the case of equispaced interpolation with GA RBF, it was noted in [31] that it is possible to change variables so
that the RBF problem becomes one of polynomial interpolation, thereby making both logarithmic potential theory
(e.g. [3], Section 3.4) and a version of Lebesgue constants available. In a more direct approach to generalizing
Lebesgue constants to non-polynomials, one might consider applying the definition (6.2) to cardinal RBF interpolants
(not only in the case of GA, but for any type of radial functions). Fig. 6.1 compares the cardinal functions Fk(x),
obeying (6.1), in the cases of polynomial and MQ RBF interpolation. While a Chebyshev-type node distribution
is necessary in the polynomial case (top row in Fig. 6.1) to hold down the RP, the RBF interpolant is seen to be
increasingly robust in this regard when ε increases from the polynomial ε = 0 case (thus reducing the need for node
clustering at boundaries). Even with the counterpart of (6.3) not remaining strictly valid when using RBF as opposed
to polynomials, choosing any fixed value of ε and then moving the nodes to minimize Λn offers a plausible approach
for designing effective node layouts for RBF methods. We will next explain why this no longer is the case if also the
shape parameter is spatially variable, and thus be motivated to introduce a different approach in Section 6.1.2.

Two key reasons why the Lebesgue constant Λn is successful as a quality metric for polynomial interpolation are
(i) the inequality (6.3), and (ii) the fact that smoothness of the interpolant is guaranteed (since all sufficiently high
derivatives of polynomials are zero). Thus, the quantity Λn measures very well the presence of any type of RP in
polynomials.

If we use RBF and let ε be freely variable (0 < ε < ∞), smoothness is no longer guaranteed and Λn , as defined by
(6.2), will approach its theoretical minimum value of one whenever ε → ∞. This corresponds to terrible interpolants;
free from the RP but fitting the data by means of sharp kinks or spikes at each data location (cf. Fig. 3.2a). For
the present purpose of finding good spatially variable εk , suitable for all functions f (x), we therefore need another
functional than Λn to minimize.

6.1.2. Spline-related functionals
We have already noted that RBF interpolants in 1-D, when ε → 0, will approach the PS interpolant. A second type

of function which also approaches this PS limit is the spline interpolants when their approximation order is increased.
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This connection will suggest functionals that are suitable for measuring the RP and also for exploring variable εk
strategies, avoiding the drawback just noted for the Lebesgue constant.

A well-known feature of natural cubic splines (as noted earlier in Section 2.2) is that they, of all interpolants s(x)
to a data set {xk, fk}, k = 1, 2, . . . , n, minimize

A =

∫ xn

x1

(s′′(x))2dx . (6.4)

In analogy to (6.2), this would suggest considering (when working on [−1, 1]) the functional

An =
1
n

n∑
k=1

∫ 1

−1

(
F ′′

k (x)
)2 dx, (6.5)

where Fk(x) are the RBF cardinal functions (as displayed in Fig. 6.1). This quantity An will be large if any of the
cardinal RBF interpolants Fk(x) feature any ‘unnecessary’ oscillations (like the case for Λn), but it will also grow
large if the interpolants loose their smoothness. The result Eq. (6.4) generalizes to natural splines of higher order in
that the natural spline of order 4k − 1 minimizes

B =

∫ xn

x1

(s(2k)(x))2dx, (6.6)

k = 1, 2, . . .. ([5], Chapter 23). While the functional (6.5), associated with cubic splines, might over-emphasize
the suppression of oscillations over smoothness (featuring very effective damping of oscillations, but accepting a
discontinuity in the third derivative), higher order functionals will balance the two aspects better. In consequence of
this, we will in addition to (6.5) also use

Bn =
1
n

n∑
k=1

∫ 1

−1

(
F (4)k (x)

)2
dx . (6.7)

6.2. Strategies for minimization

In the minimization examples in this study, we will let the shape parameter εk-values be freely variable (0 < εk <

∞), and then seek to make a quantity, such as An or Bn as small as possible. Although steepest descent is not very
effective in its simplest form, variations of this concept are implemented effectively in Matlab’s fminsearch routine (in
Matlab’s Optimization Toolbox), allowing us to find a local minimum when a close approximation to it is provided.
The main challenge in global minimization is for the search not to get attracted to local minima (of which there can
be millions or trillions) but to somehow scan a vast multivariate space and then identify the likely candidates for the
global minimum. In the first test case in Section 7.1, we have 50 free parameters (εk , k = 1, . . . , n with n = 50).
Already, a sampling with 10 point resolution in each direction throughout a 50 dimensional space would require 1050

points to be checked. To appreciate the size of such a task, one can note that the fastest computer system in the world
does not yet reach 1015 operations per second, and that the estimated age of the universe is around 1017 seconds.
In spite of the impossibility of finding global minima of functions of many variables by a direct search throughout
the parameter space, some algorithms can perform surprisingly well. Simulated annealing [32,33] was recognized
in [34] as one of the top ten algorithms of the 20th century. Its idea is to mimic numerically how nature finds a global
minimum in a sea of local ones in the process of crystal formation during slow cooling.

Instead of following one single search path throughout a high-dimensional space, a genetic algorithm pursues a
large number of simultaneous paths, and frequently re-starts these populations of search trails by ‘mutations’ and by
combining characteristics of successful ones.

For the minimization tasks described in the present paper, we have used a combination of the routine ga from
Matlab’s Genetic Algorithm Toolbox and the routine fminsearch mentioned earlier. Although it is uncertain whether
we reached the global minimum in any of the cases that are shown, the results are nevertheless clear enough to reveal
some features of variable εk RBF methods.
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Fig. 7.1. (a) The generation of variable nodes tk → xk according to (7.1), with n = 50 and β = 1, (b) Optimized εk , obtained by minimizing An ,
(c) Inverse distance from a node xk to its nearest neighbor.

7. Some optimization tests in the case of 1-D interpolation

As we noted in the introduction, RP can arise from internal node refinements or from boundary effects. These two
cases will be considered further in the next two subsections (using MQ RBF in all test cases).

7.1. RP due to internal node refinement

The easiest way to eliminate boundary effects when analyzing a numerical method is to consider a periodic
problem. RBF in a 1-D periodic setting are typically implemented by placing the nodes around the periphery of a
circle rather than along a 1-D interval. For a 2π -periodic node set xk , k = 1, 2, . . . , n, we instead locate the nodes at
ξk = cos xk , ηk = sin xk in a (ξ, η)-plane, and then find the RBF interpolant in the standard way for a 2-D node set
(i.e. computing distances between nodes as straight line distances through the circle).

The purpose of the first minimization experiment is to explore how the εk ought to be selected in order to get the best
RBF interpolant (in the sense of minimizing An and Bn) for a given non-uniform node distribution xk, k = 1, 2, . . . , n.
Choosing, for example

xk = tk + β(−0.4 + 0.3 sin tk + 0.2 cos 2tk + 0.2 cos 3tk), ti =
2πk

n
, k = 0, 1, . . . , n (7.1)

with n = 50 and β = 1, we get for An the result shown in Fig. 7.1 (which is typical for a number of similar tests).
Subplot (b) shows that the optimal εk go up in value wherever the nodes cluster more densely. A comparison with
subplot (c) shows that simply choosing

εk =
ε

dk
(7.2)

where ε is a single free shape parameter and dk is the distance to the nearest neighbor of xk , would appear to be a good
strategy, which furthermore would be very easy to implement. This result is highly natural: if the x-axis is stretched
to make the nodes equispaced, all the basis functions would become similar in shape to one another.

For small β, the functional Bn also gives optimized ε-results that vary like the distance to the nearest neighbor, as
seen in Fig. 7.2a, b, but for larger β, the optimized εk typically also feature a superimposed oscillatory or spiky pattern
(cf. Fig. 7.2c, indicating a transition around β = 0.29).

The significance of this is still unclear, but it could indicate that there is a genuine advantage to εk-patterns that
have a strongly irregular character.

7.2. 1-D interpolation with boundaries

Fig. 7.3 shows the result of optimizing An in the case of n = 21 equispaced nodes over [−1, 1] (with symmetry
imposed). The primary end correction that appears to be called for is a lowering of εk at some end points, with
oscillations again appearing beneficial (all in good agreement with observations in [28]). When using Bn , the
optimization algorithm had difficulties in finding the global minimum. Local minima typically were qualitatively
similar in character to those for An , but more prone to asymmetries in cases where symmetry was not imposed.
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Fig. 7.2. (a) Inverse distance to nearest neighbor in case of β = 0.28. (b) Optimized εk when using Bn . (c) Same as part (b), but with β = 0.29.

Fig. 7.3. Optimized εk using the functional An in the case of n = 21 equispaced nodes over [−1, 1].

To test if these results are at all meaningful, we have re-run the α = 1 test case shown as the bottom center subplot
in Fig. 3.3, comparing the errors in the case of spatially constant εk = ε against those for

εk = ε · {0.3, 0.3, 0.3, 1, 1, 1, . . . , 1, 1, 1, 0.3, 0.3, 0.3}, (7.3)

with the result shown in Fig. 7.4. As was expected, the lowering of εk at the edges

1. Significantly improves the accuracy in case of relatively large ε-values (recalling how εk are defined in (7.3)),
2. Improves the best accuracy that can be reached,
3. Leads to the same interpolant in the ε → 0 limit,
4. Features slightly better conditioning when ε → 0 (in spite of some εk having been lowered).

The particular numbers used in (7.3) were suggested by the ε ≈ 5 — results seen in Fig. 7.3, so the good accuracy
in that ε-regime is not surprising. Although the benefits of using (7.3) (rather than the same ε at all nodes) extend for
quite a wide range, the precise form of (7.3) is probably far from optimal as ε → 0. However, we will not here pursue
the task of searching for improved variations of (7.3).

8. Conclusions

In the example shown in Fig. 7.4a, using (a spatially varying) ε around the value one gave over four orders of
magnitude higher accuracy than letting ε → 0, whereas in other cases (as seen for example in Fig. 2.3a), any value
for ε below some transition point is equally good. Such examples motivated the present work, which is an attempt to
gain a better understanding of the accuracy levels that can be reached by different strategies for RBF interpolation.
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Fig. 7.4. Comparison of results when interpolating f (x) =
1

1+x2 on an equispaced grid with n = 21 points over [−1, 1], using spatially constant
ε (solid lines) and spatially variable εk (as described in the text; dashed lines) for (a) max norm error and (b) condition number for linear system.

The key observation in this study is that the error in RBF interpolation, as ε → 0, is dominated by two factors.
The first one, ill-conditioning, has been well recognized in the past, and it can be eliminated by algorithms such as
Contour–Padé and RBF-QR. We identify here the RP as another limiting factor where, by the RP, we not only mean
outright divergence as n → ∞ (as seen in Fig. 2.1), but also the accuracy degradation for small ε as clearly visible
in all cases in Fig. 3.3, whether causing divergence or merely slowed-up convergence in this n → ∞ limit. It is not
clear to what extent the RP can be reduced and, if so, how this can be best achieved. Not decreasing ε all the way to
zero is sometimes beneficial. Of the three possible approaches mentioned in Section 3.3, we have here presented some
exploratory results only for the third one: the use of a spatially variable shape parameter εk . Instead of just having one
shape parameter ε to optimize, we now have as many as there are data points. Our exploration of the opportunities all
these freedoms can offer is very preliminary. To some extent, this work re-discovers earlier observations (although by
a different approach: global optimization of certain functionals). Novel observations include properties in the flat basis
function limit, such as how eigenvalues form different patterns according to the number of dimensions and whether
the shape parameter is fixed or spatially variable. This study confirms that the latter case can be of significant practical
utility — for example in decreasing the RBF condition number (as seen in Table 5.2) and in improving numerical
accuracy (as seen in Figs. 3.5 and 7.4).
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