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Cys-Loop Receptor Channel Blockers Also Block GLIC
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ABSTRACT The Gloeobacter ligand-gated ion channel (GLIC) is a bacterial homolog of vertebrate Cys-loop ligand-gated ion
channels. Its pore-lining region in particular has a high sequence homology to these related proteins. Here we use electrophys-
iology to examine a range of compounds that block the channels of Cys-loop receptors to probe their pharmacological similarity
with GLIC. The data reveal that a number of these compounds also block GLIC, although the pharmacological profile is distinct
from these other proteins. The most potent compound was lindane, a GABAA receptor antagonist, with an IC50 of 0.2 mM. Dock-
ing studies indicated two potential binding sites for this ligand in the pore, at the 90 or between the 00 and 20 residues. Similar
experiments with picrotoxinin (IC50 ¼ 2.6 mM) and rimantadine (IC50 ¼ 2.6 mM) reveal interactions with 20Thr residues in the
GLIC pore. These locations are strongly supported by mutagenesis data for picrotoxinin and lindane, which are less potent in
a T20S version of GLIC. Overall, our data show that the inhibitory profile of the GLIC pore has considerable overlap with those
of Cys-loop receptors, but the GLIC pore has a unique pharmacology.
INTRODUCTION
The Gloeobacter ligand-gated ion channel (GLIC) is a
bacterial homolog of vertebrate Cys-loop ligand-gated
ion channels found in Gloeobacter violaceus, a unicel-
lular cyanobacterium (1). The presence of GLIC in
G. violaceus may contribute to the pH adaptation of this
cyanobacterium that does not contain thylakoids; photosyn-
thesis and Hþ transport occur in its cell membrane. GLIC
does not have a Cys-loop, and is therefore a member of
the pentameric family of ligand-gated ion channels but not
a Cys-loop receptor. GLIC is activated by protons and has
a single channel conductance of 8 pS (2,3). GLIC has
been crystallized at high (up to 2.9 Å) resolution (3,4).
The crystal structures reveal an extracellular and a trans-
membrane domain with similar structures to Cys-loop
receptors, but, unlike these proteins, GLIC lacks an intracel-
lular domain. The structure of GLIC, determined at low pH,
was originally proposed to reveal the channel in an open
state, but more recent data show the receptor does slowly
desensitize (5,6), and thus the structure may in fact show
a desensitized, closed state.

GLIC has low overall sequence similarity to Cys-loop
receptors, but many functionally important residues and
structural features are conserved between these proteins.
Of particular interest is the pore region of GLIC, which
has high sequence similarity to that of the nicotinic acetyl-
choline (nACh) receptor pore. In particular GLIC has a Glu
at the intracellular end, and similar or identical residues at
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the pore lining 20, 60, and 90 positions (Fig. 1). GLIC, like
the nACh receptor, is cation-selective, and, as it has been
resolved to considerably higher resolution than the nACh
receptor, the GLIC pore may be an appropriate model to
examine the molecular details of nACh receptor pores,
and interactions with pore-blocking compounds. Recently
the structure of an invertebrate anion-selective Cys-loop
receptor, the glutamate-gated chloride channel (GluCl),
was determined, the first Cys-loop receptor whose pore
region has been resolved at <4 Å (7). Nevertheless, the
sequence similarity between GluCl and the nACh receptor
is lower than that between GLIC and the nACh receptor,
and GluCl selects for anions and not cations; thus, GLIC
may be a more appropriate structural template for studying
cation-selective Cys-loop receptor pores. However, it is not
clear if the characteristics of the GLIC pore are similar to
those of Cys-loop receptors, and so here we report the
effects of a range of Cys-loop receptor ligands on GLIC
responses. The aim was to probe the pharmacology of the
GLIC pore to determine its functional similarity with the
pores of Cys-loop receptors.

MATERIALS AND METHODS

Cell culture and oocyte maintenance

Xenopus laevis oocyte-positive females were purchased from NASCO (Fort

Atkinson, WI) and maintained according to standard methods. Harvested

stage V-VI Xenopus oocytes were washed in four changes of ND96

(96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, pH 7.5), defolli-

culated in 1.5 mg ml�1 collagenase Type 1A for ~2 h, washed again in four

changes of ND96, and stored in ND96 containing 2.5 mM sodium pyruvate,

0.7 mM theophylline, and 50 mM gentamicin.

Receptor expression

A codon-optimized version of GLIC, fused to the signal sequence of the

a7 nACh receptor subunit and kindly gifted from C. Ulens (Katholieke
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FIGURE 1 Alignment of the pore lining regions of GLIC and a selection

of related proteins. The residues that line the pore are highlighted. Compar-

ison of the sequences of GLIC and nACh a1 from 00 to 180 reveals 28%
identity and 61% similarity. A/M2 ¼ Influenza A M2 Channel.
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Universiteit Leuven, Leuven, Belgium), was cloned into pGEMHE for

oocyte expression. Mutant receptors were created using QuikChange muta-

genesis (Agilent, Santa Clara, CA). cRNA was transcribed in vitro from

linearized cDNA using the mMessage mMachine T7 kit (Ambion, Austin,

TX). Stage V and VI oocytes were injected with 50 nL of ~400 ng mL�1

cRNA, and currents were recorded 1–4 days postinjection.
Electrophysiology

Using two-electrode voltage-clamp, Xenopus oocytes were clamped at

�60 mV using an OC-725 amplifier (Warner Instruments, Hamden, CT),

Digidata 1322A (Axon Instruments, Union City, CA), and the Strathclyde

Electrophysiology Software Package (Department of Physiology and

Pharmacology, University of Strathclyde, UK; http://www.strath.ac.uk/

Departments/PhysPharm/). Currents were filtered at a frequency of 1

kHz. Microelectrodes were fabricated from borosilicate glass (GC120TF-

10; Harvard Apparatus, Kent, UK) using a one-stage horizontal pull

(P-87; Sutter Instrument, Novato, CA) and filled with 3M KCl. Pipette

resistances ranged from 1.0 to 2.0 MU. Oocytes were perfused with saline

containing 96 mM NaCl, 2 mM KCl, 1 mM MgCl2, and 10 mM MES

(adjusted to the desired pH) at a constant rate of 12–15 ml min�1. Drug

application was via a simple gravity-fed system calibrated to run at the

same rate as the saline perfusion.

Analysis and curve fitting were performed using Prism v4.03 (GraphPad

Software, La Jolla, CA). Concentration-response data for each oocyte

were normalized to the maximum current for that oocyte. The mean and

mean 5 SE for a series of oocytes were plotted against agonist or antago-

nist concentration and iteratively fitted to

IA ¼ Imin þ Imax � Imin

1þ 10nH ðlog A50�log AÞ; (1)

where A is the concentration of ligand present; IA is the current in the

presence of ligand concentration A; Imin is the current when A ¼ 0; Imax

is the current when A ¼ N; A50 is the concentration of A that evokes a

current equal to (Imax þ Imin)/2; and nH is the Hill coefficient.
FIGURE 2 Activation of GLIC. (A) pH dependence of GLIC activation

(typical of seven similar experiments) with concentration response curve

shown in panel B. (Data ¼ mean 5 SE, n ¼ 7.)
Docking

Docking was performed using the GLIC crystal structure (PDB ID: 3EAM).

Three-dimensional structures of each ligand were extracted from the

Cambridge Structural Database (Ref. codes: lindane ¼ HCCYHG02,

tetracaine ¼ XISVOK01, and picrotoxinin ¼ CIBCUL10), and protonated

forms were constructed using Chem3D Ultra 7.0 (CambridgeSoft,
PerkinElmer, Waltham, MA) and energy-minimized using the MM2 force

field. Rimantadine was created and minimized de novo using the same

software.

Docking of the protonated ligands into GLIC was carried out using

GOLD 3.0 (The Cambridge Crystallographic Data Centre, Cambridge,

UK). The binding site was constrained as a docking sphere with a 20 Å

radius surrounding the Ca of 60 residues in chains A and C. These amino

acids were chosen based on the binding locations of the ligands in other

Cys-loop receptor pores, but the docking sphere covers the full length of

the receptor pore (i.e., the region bounded by the M2 helices from �20 to
200). Ten genetic algorithm runs were performed on each docking exercise

using default parameters. The structures were visualized using the soft-

wares PyMOL v 1.3 (DeLano Scientific, Palo Alto, CA) and ViewerLite

v 5.0 (Accelrys, San Diego, CA).
RESULTS

GLIC activation

Current amplitude was measured at a range of external Hþ

concentrations, yielding a pH50 of 5.5 5 0.1 (Fig. 2), that
is comparable to previous reports (3,4).
GLIC antagonists/modulators

We examined 20 compounds that act at a range of Cys-loop
receptors (Table 1); some have similar effects on several
different Cys-loop receptors (e.g., picrotoxin is an inhibitor
of g-aminobutyric acid (GABAA), glycine, 5-HT3, and
nACh receptors) but others have different effects on
different receptors and may act at multiple and/or distinct
sites in the different proteins. Many (in this case, 13) of
Biophysical Journal 101(12) 2912–2918
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TABLE 1 Potential GLIC antagonists/modulators

Ligand Known Cys-loop receptor targets pIC50 (mean 5 SE) IC50 (mM) Hill slope n

5-Hydroxyindolem 5-HT3 NI — — 3

Amantadine nACh 4.83 5 0.04 14.8 1.4 5 0.2 4

Bilobalide GABAA, Gly, 5-HT3 3.94 5 0.04 114 1.2 5 0.1 4

Chlorpromazine nACh, 5-HT3 4.74 5 0.06 18.4 2.2 5 0.5 4

Dexamethasonem 5-HT3 NI — — 4

Dieldrin GABAA NI — — 4

Diltiazem 5-HT3 4.31 5 0.04 48.8 2.2 5 0.4 4

Estrone GABAA, 5-HT3 3.65 5 0.20 224 0.5 5 0.2 5

Fipronil GluCl, GABAA 4.70 5 0.03 20.0 1.1 5 0.07 4

Imidaclopride nACh NI — — 4

Ivermectin GluCl, Gly, GABAA NI — — 4

Lindane GABAA, Gly 6.64 5 0.04 0.23 1.1 5 0.1 4

Mefloquine 5-HT3, nACh 4.66 5 0.02 21.8 2.7 5 0.3 5

Pancuronium nACh NI — — 5

Picrotoxinin GABAA, Gly, 5-HT3, GABAC 5.59 5 0.04 2.57 1.8 5 0.3 4

Quinacrine nACh NI — — 5

QX-222 nACh, 5-HT3 NI — — 5

Rimantadine nACh 5.59 5 0.05 2.58 1.1 5 0.2 5

Tetracaine nACh 5.65 5 0.06 2.25 0.8 5 0.1 5

a-Endosulfan GABAA 4.77 5 0.15 17.0 0.7 5 0.2 5

Most of these compounds inhibit the function of at least one Cys-loop receptor, although their sites of action are not all known and may be multiple. Iver-

mectin acts as an allosteric agonist at some receptors. See text for more details. Key: m, positive modulator at its known receptor; NI, no inhibition at 100 mM.
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the compounds inhibited GLIC function. Lindane, a
GABAA receptor inhibitor, was the most potent and the
only compound tested that had an IC50 <1 mM. Three
compounds (picrotoxinin, rimantadine, and tetracaine)
had IC50s <10 mM; seven had IC50s between 10 and 100
mM, and two had IC50s >100 mM. Example concentration
inhibition curves are shown in Fig. 3. The remaining
compounds showed <5% block at 100 mM. We also exam-
ined a selection of compounds that modulate the function
of various Cys-loop receptors. Dexamethasone and 5-
hydroxyindole enhance 5-HT3 receptor function, whereas
Biophysical Journal 101(12) 2912–2918
ivermectin is an agonist at glycine and GluCl receptors,
acting at a site remote from the orthosteric binding site.
None of these modulatory compounds had an effect on
GLIC function.
Ligand docking

To examine the possible location of the most potent
inhibitors, we docked the ligands with highest potency
(lindane, picrotoxinin, rimantadine, and tetracaine) into
the GLIC channel. Ten ligand poses were generated for
FIGURE 3 GLIC antagonists. (A) Example

traces showing inhibition by picrotoxinin (PXN)

and concentration-inhibition curves for PXN (B),

rimantadine (C), and lindane (D). Inhibition was

measured at the pH50. (Data ¼ mean 5 SE,

n ¼ 3–5.)



FIGURE 4 An overlay of the 10 most energetically favorable docked

poses for lindane, picrotoxinin, tetracaine, and rimantadine. For lindane,

the poses are almost equally distributed between two quite distinct binding

locations, whereas the locations of the docked poses of the other

compounds are broadly similar. The channel volume occupied is calculated

from the van der Waals radii and shown in wireframe. (Inset) Structures of

the docked ligands; scale bar ¼ 2.5 Å.

FIGURE 5 Examples of orientations of lindane, picrotoxinin, and riman-

tadine docked into the GLIC channel near the 20 residue, the location sup-

ported by our mutagenesis data. There are no predicted H-bonds with

lindane, but several with 20Thr residues for both picrotoxinin and rimanta-

dine (dashed lines).
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each compound. In Fig. 4, these poses are superimposed
to show the range of positions of the docked ligands.
Lindane, which is incapable of making H-bonds, showed
the most varied localization. The docking data suggest it
has the ability to bind at two distinct locations in the
channel: at the intracellular end of the channel between
the 00 and 20 residues (Fig. 5), and in the middle of the
channel close to the 90 Leu. Tetracaine is a relatively
long molecule and the docking procedure located it
between the 20 and 90 residues, either vertically or horizon-
tally with respect to the channel axis; there were potential
H-bond interactions with the 60 Ser. Picrotoxinin and
rimantadine were located in overlapping positions toward
the intracellular side of the channel, and both were stabi-
lized by a series of H-bonds with the 20 Thr residues
(Figs. 4 and 5).
TABLE 2 Potencies of ligands at GLIC T20S mutant receptors

Ligand pIC50 (mean5 SE) IC50 (mM) Hill slope

Fold change

in IC50

Picrotoxinin 3.776 5 0.103* 167 1.0 5 0.2 65

Rimantadine 5.454 5 0.088 3.5 1.1 5 0.2 1.4

Lindane 4.862 5 0.136* 13.7 1.3 5 0.4 59

*Significantly different to wild-type; n ¼ 3–5.
Characterization of mutant receptors

To probe the accuracy of the docking, a GLIC receptor
containing a T20S mutation was created. This receptor
had a similar pH50 to wild-type receptors: 5.2 5 0.1
(n ¼ 4). However, inhibition of pH50 responses in this
mutant receptor revealed large changes in IC50s for picro-
toxinin and lindane, although there was no significant
change for rimantadine (Table 2).
DISCUSSION

GLIC is a proton-activated prokaryotic ligand-gated ion
channel whose structure has been extensively investigated,
but whose pharmacology has been less well explored. To
date, only protons are known to activate GLIC, although
a range of inhibitors have been identified: these include
quaternary ammonium compounds, anesthetics, and diva-
lent cations (2,8,9). These compounds are of low potency,
with IC50s in the high mM or mM range, and structural
and other data have revealed specific binding sites in or
Biophysical Journal 101(12) 2912–2918
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close to the pore, although some compounds, e.g., halothane
and thiopental, also act in the extracellular domain (9–11).
A range of alcohols have also been shown to inhibit or
enhance GLIC function, and data have shown these again
act in or close to the pore, with the short-chain (potentiatory)
alcohols occupying a pocket facing the pore in the intersu-
bunit interface (12). Quaternary ammonium compounds,
anesthetics, cations, and alcohols also act at a range of
Cys-loop receptors, and here we show that many other
ligands that antagonize the function of these related recep-
tors can also block GLIC responses; thus, although the
pore-lining residues in this receptor show some differences
to its relatives, GLIC appears to share considerable pharma-
cological overlap with them. Docking of the most potent of
these antagonists into the pore of GLIC indicates that they
interact with residues that have been established as impor-
tant for interacting with channel blockers in Cys-loop recep-
tors. It also places them at positions similar to those of other
channel binding ligands that have been previously identified
by cocrystallization with GLIC (9). Inhibition of GLIC
responses in a T20S mutant receptor supports an interaction
at the 20 location with picrotoxinin and lindane.

These data show that the pharmacology of the GLIC
channel is distinct from that of related proteins, but the over-
lap in activity of compounds that block Cys-loop receptors
suggests the structure of the GLICM2 region provides a suit-
able template for understanding interactions with a range of
channel blocking compounds in a range of receptors.

Lindane was the most potent of the compounds that we
tested. Lindane is a neurotoxic organochlorine pesticide
that inhibits GABAA receptor function; its binding site over-
laps with the picrotoxin recognition site in the pore, and
blocks Cl� flux (13,14). It also inhibits Cl� flux through
glycine receptors and voltage-dependent chloride channels
(15). Docking studies in GABAA receptors indicate that
lindane interacts with 20Ala and 60Thr residues (16). We
observed two possible docking locations in the GLIC
pore: between the 00 and 20 residues or close to the 90

residue. Data from the T20S mutant receptor, which revealed
a 50-fold change in potency, support an interaction at the
lower position. Nevertheless, lindane could potentially
bind at both these positions; the 90 location is similar to
that identified for binding bromo-lidocaine, which has
been cocrystallized with GLIC (9), whereas the 0-20 location
is equivalent to the picrotoxin binding site in GluCl (7) and
other Cys-loop receptors (16–22). It is also possible that the
90 binding site may be a position at which lindane interacts
as it descends into the channel on its way to the 00-20 binding
site. Some support for multiple binding sites comes from
another GLIC docking study that showed that the thiopental
docked at three possible positions within the GLIC channel:
close to the 20, between the 20 and 90 residues, and between
the 90 and 160 residues, in addition to sites within the extra-
cellular domain and at the extracellular-transmembrane
domain interface (11).
Biophysical Journal 101(12) 2912–2918
Other compounds that were relatively potent (IC50s ¼ 1–
10 mM) at inhibiting GLIC responses were picrotoxinin,
tetracaine, and rimantadine. Picrotoxinin, the most active
component of picrotoxin, is a classic GABAA receptor
channel blocker, and also inhibits a range of other Cys-
loop receptors (23–26); thus, an inhibitory effect on GLIC
was not unexpected. In GABAA, glycine, and 5-HT3 recep-
tors, mutagenesis and docking data suggest picrotoxinin
interacts with the 20 and 60 channel residues, whereas in
the GluCl receptor, structural data show the 20 and -20 resi-
dues are the most critical (16–22). In GLIC, our docking
data show picrotoxinin is located between the 00 and 60 resi-
dues, with important interactions with the 20Thr residues
from several subunits; this location was supported by data
from the T20S GLIC receptor, whose picrotoxinin IC50

was reduced 65-fold (Table 2). Thus, we suggest that picro-
toxin binds similarly in GluCl and GLIC receptors at the
intracellular end of the pore.

Tetracaine has a number of potential binding sites in both
Cys-loop receptors and other proteins, but one site is the
pore of nACh receptors (27,28). Our data show it is almost
equipotent with picrotoxinin at inhibiting GLIC function,
and the docking data suggest it binds to a site in the channel
that overlaps with that of picrotoxinin, but is located slightly
higher in the pore. This is a similar location to that identified
for bromo-lidocaine: the crystal structure data reveal density
thought to correspond to the bromine atom near 90Ile, which
places the positively charged portion of the molecule near
60Ser (9). This location of the positively charged portion
of lidocaine is similar to the location of the charged quater-
nary ammonium analogs tetrabutylantimony and tetraethy-
larsonium shown by anomalous difference densities (9),
and is consistent with the placement of the quaternary
ammonium of tetracaine in our docking study.

The primary pharmacological target of rimantadine is the
proton channel of the influenza A virus (A/M2), but it also
blocks nACh receptor function (29,30). Structures have re-
vealed the pore residues involved in binding rimantadine
in the A/M2 pore are Val27, Ala30, Ser31, and Gly34 (31).
The most critical of these may be Ser31, as 99.9% of the ad-
mantane-resistant viruses collected worldwide have an
S31N mutation (32). The pore structures of Cys-loop recep-
tors and A/M2 are quite distinct, but both are a-helical, and
it may be that the role of Ser31 in A/M2 is performed by the
20Thr residues in GLIC and Cys-loop receptor pores. Some
support for this hypothesis comes from data from the T20S
GLIC receptor, which showed no change in rimantadine
potency. This could indicate that the conserved residues
Ser and Thr are able to interact equally efficiently with ri-
mantadine. Alternatively, the docking data may not indicate
the correct location of rimantadine. Further experiments are
required to distinguish between these possibilities.

Compounds that blocked GLIC responses less potently
(IC50s 100–1000 mM) were chlorpromazine, dieldrin, fibro-
nil, a-endosulfan, mefloquine, diltiazem, estrone, bilobalide,
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and amantadine. These are compounds that block a range of
Cys-loop receptors: nACh (chlorpromazine and admantane);
5-HT3 (mefloquine, dlitiazem, bilobalide, and estrone);
GABAA (dieldrin, fibronil, and a-endosulfan) and glycine
receptors (bilobalide) (13,16,18,20,30,33–41). Thus, the
blocking actions of these compounds in GLIC show that
the GLIC channel has pharmacological similarity to those
of vertebrate Cys-loop receptors.

The pore-lining M2 region of GLIC has considerable
sequence similarity with some nACh receptor subunits (e.g.,
>60% for a1, Fig. 1), consistent with GLIC being a cation-
selective channel, although the intracellular Glu is in the
�20 rather than the�10 position (Fig. 1). The 20, 60, and 90 resi-
dues of GLIC are conserved with those of the nACh receptor,
and also many other Cys-loop receptor subunits. As it is these
residues that are involved in the binding of many channel
blocking ligands, it explains why a number of Cys-loop
channel blockers alsoblock theGLICpore.Our data therefore
suggest that GLIC is a good template for modeling not only
the nACh receptor pore, but also those of other Cys-loop
receptors. There is some controversy as to whether the struc-
ture of GLIC, which was obtained at acidic pH, represents an
open or a closed, desensitized state. Early studies (2–4) sug-
gested that the channel did not desensitize at low pH, but
more-recent data indicate that it does (5,6). Nevertheless,
a Brownian dynamics simulation study has indicated that
the GLIC crystal structure we used for docking (3EAM) is
conductive (42). Interestingly, the 3EAM structure reveals
a bundle of detergent molecules in the pore. It is unlikely
that these significantly distort the structure, as bulkier deter-
gent analogs appear to leave the pore structure unchanged,
and molecular dynamics simulations in the absence of deter-
gent show the structure to be stable (4). It is possible, however,
that these molecules help stabilize the pore in a more open-
like conformation.

In conclusion, we have identified a range of compounds
that inhibit the function of GLIC. Many of these compounds
also inhibit the function of Cys-loop receptors, and have
been shown by mutagenesis to bind in the pore. Thus,
although the pharmacological profile of GLIC is quite
distinct from any of these receptors, we consider that the
pore of GLIC has many similarities to its vertebrate counter-
parts, and therefore provides a useful model for examining
structural interactions.

We thank David Weston for preliminary experiments and Lu Zhou for

expert technical assistance.

S.C.R.L. is a Wellcome Trust Senior Research Fellow in Basic Biomedical

Studies. A.J.T., K.L.P., and S.C.R.L. are funded by the Wellcome Trust.

M.A. is funded by a Yousef Jameel Scholarship. H.G.B. is supported by

the Deutsche Forschungsgemeinschaft (grant BR 1507/4).
REFERENCES

1. Tasneem, A., L. M. Iyer, ., L. Aravind. 2005. Identification of the
prokaryotic ligand-gated ion channels and their implications for the
mechanisms and origins of animal Cys-loop ion channels. Genome
Biol. 6:R4.

2. Bocquet, N., L. Prado de Carvalho, ., P. J. Corringer. 2007. A
prokaryotic proton-gated ion channel from the nicotinic acetylcholine
receptor family. Nature. 445:116–119.

3. Hilf, R. J., and R. Dutzler. 2009. Structure of a potentially open state of
a proton-activated pentameric ligand-gated ion channel. Nature.
457:115–118.

4. Bocquet, N., H. Nury,., P. J. Corringer. 2009. X-ray structure of a pen-
tameric ligand-gated ion channel in an apparently open conformation.
Nature. 457:111–114.

5. Parikh, R. B., M. Bali, and M. H. Akabas. 2011. Structure of the M2
transmembrane segment of GLIC, a prokaryotic Cys loop receptor
homologue fromGloeobacter violaceus, probed by substituted cysteine
accessibility. J. Biol. Chem. 286:14098–14109.

6. Gonzalez-Gutierrez, G., and C. Grosman. 2010. Bridging the gap
between structural models of nicotinic receptor superfamily ion
channels and their corresponding functional states. J. Mol. Biol.
403:693–705.

7. Hibbs, R. E., and E. Gouaux. 2011. Principles of activation and perme-
ation in an anion-selective Cys-loop receptor. Nature. 474:54–60.

8. Weng, Y., L. Yang,., J. M. Sonner. 2010. Anesthetic sensitivity of the
Gloeobacter violaceus proton-gated ion channel. Anesth. Analg.
110:59–63.

9. Hilf, R. J., C. Bertozzi, ., R. Dutzler. 2010. Structural basis of open
channel block in a prokaryotic pentameric ligand-gated ion channel.
Nat. Struct. Mol. Biol. 17:1330–1336.

10. Nury, H., C. Van Renterghem, ., P. J. Corringer. 2011. X-ray struc-
tures of general anesthetics bound to a pentameric ligand-gated ion
channel. Nature. 469:428–431.

11. Chen, Q., M. H. Cheng,., P. Tang. 2010. Anesthetic binding in a pen-
tameric ligand-gated ion channel: GLIC. Biophys. J. 99:1801–1809.

12. Howard, R. J., S. Murail, ., R. A. Harris. 2011. Structural basis for
alcohol modulation of a pentameric ligand-gated ion channel. Proc.
Natl. Acad. Sci. USA. 108:12149–12154.

13. Maskell, P. D., K. A. Wafford, and I. Bermudez. 2001. Effects of
g-HCH and d-HCH on human recombinant GABAA receptors: depen-
dence on GABAA receptor subunit combination. Br. J. Pharmacol.
132:205–212.

14. Vale, C., I. Damgaard, ., A. Schousboe. 1998. Cytotoxic action of
lindane in neocortical GABAergic neurons is primarily mediated
by interaction with flunitrazepam-sensitive GABAA receptors.
J. Neurosci. Res. 52:276–285.
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