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An oncogenic mutation uncouples the v-Jun oncoprotein from
positive regulation by the SAPK/JNK pathway in vivo
G.H.W. May*, M. Funk†‡, E.J. Black*, W. Clark*, S. Hussain*, J.R. Woodgett§
and D.A.F. Gillespie*

Stimulation of c-Jun transcriptional activity via
phosphorylation mediated by the stress-activated or
c-Jun amino-terminal (SAPK/JNK) subgroup of
mitogen-activated protein kinases (MAP kinases) is
thought to depend on a kinase-docking site (the delta
region) within the amino-terminal activation domain,
which is deleted from the oncogenic derivative, v-Jun
[1–3]. This mutation markedly enhances v-Jun
oncogenicity [4,5]; however, its transcriptional
consequences have not been resolved. In part, this
reflects uncertainty as to whether binding of
SAPK/JNK inhibits c-Jun function directly [6,7] or,
alternatively, serves to facilitate and maintain the
specificity of positive regulatory phosphorylation [8].
Using a two-hybrid approach, we show that
SAPK/JNK stimulates c-Jun transactivation in yeast
and that this depends on both catalytic activity and
physical interaction between the kinase and its
substrate. Furthermore, c-Jun is active when tethered
to DNA via SAPK/JNK, demonstrating that kinase
binding does not preclude transactivation. Taken
together, these results suggest that SAPK/JNK acts
primarily as a positive regulator of c-Jun
transactivation in situ, and that loss of the docking
site physically uncouples v-Jun from this control. This
loss-of-function model accounts for the deficit of v-
Jun regulatory phosphorylation and repression of TPA
response element (TRE)-dependent transcription
observed in v-Jun-transformed cells and predicts that
an important property of the oncoprotein is to
antagonise SAPK/JNK-dependent gene expression.
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Results and discussion
We fused the 54 kDa isoform of rat SAPKβ (correspond-
ing to human JNK3 [7,9]) to the Gal4 DNA-binding
domain (BD–SAPK), and the Gal4 activation domain
(AD) to either c-Jun (AD–c-Jun) or a mutant derivative
lacking the delta region (AD–v-Jun). Coexpression of
AD–c-Jun with BD–SAPK in a yeast strain harbouring a
Gal1–lacZ reporter resulted in β-galactosidase activity,
indicating that protein–protein interactions were occur-
ring (Figure 1a). Several observations indicated that the
interaction between AD–c-Jun and BD–SAPK was highly
specific. First, no interaction was observed with analogous
BD fusion proteins containing the catalytic subunit of
protein kinase A (PKA) or ERK2 (data not shown).
Second, the delta region was essential for the interaction,
as no activity was observed with AD–v-Jun, even though
both activators interacted equally well with a BD fusion
protein containing the Fra-2 leucine zipper, demonstrat-
ing that AD–v-Jun was expressed and capable of activat-
ing reporter gene transcription (data not shown).

Because the delta docking site is located within the c-
Jun activation domain, a number of studies have specu-
lated that binding of SAPK might mask or inhibit c-Jun
transactivation directly [6,7]. To test this, we compared
the level of activation mediated by AD–c-Jun with a
derivative lacking the Gal4 AD tag. Although weaker
than AD–c-Jun, c-Jun alone was able to activate tran-
scription when tethered to DNA via BD–SAPK
(Figure 1b), thus ruling out complete masking or inhibi-
tion of the activation domain by SAPK. We also fused c-
Jun and v-Jun to the Gal4 DNA-binding domain
(BD–c/v-Jun), and coexpressed these hybrid activators
with wild type or a catalytically inactive mutant of SAPK
containing the substitution Lys55→Ala (SAPK K→A
[10]). As shown in Figure 1c, SAPK stimulated the tran-
scriptional activity of BD–c-Jun. Although the magni-
tude of this increase was modest (two- to three-fold in
different experiments), it was highly reproducible and
dependent on SAPK catalytic activity, as SAPK K→A
had no effect. Stimulation also required phosphorylation
of c-Jun, as SAPK did not affect the activity of a mutant
(BD–c-Jun4ala) in which all of the potential SAPK phos-
phorylation sites are replaced by alanines. We saw no
evidence that the catalytically inactive SAPK K→A
mutant inhibited c-Jun transcriptional activity, even
though control experiments indicate that it interacts
physically with c-Jun as well as does wild-type SAPK
(data not shown).
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In marked contrast, SAPK had no effect on the activity of
BD–v-Jun (Figure 1d), even though all of the SAPK/JNK
phosphoacceptor sites are conserved in the oncoprotein.
We believe that the most likely explanation for this obser-
vation is that phosphorylation and thus stimulation of c-Jun
transactivation activity by SAPK in vivo requires physical
association of the kinase with its substrate. As noted by
others [11], however, BD–v-Jun is a more potent activator
than BD–c-Jun in yeast. Although the reason for this is not
known, we do not think that this feature can necessarily be
extrapolated to vertebrate cells. First, it is evident only
with Gal4–Jun fusion proteins, as native v-Jun does not
activate transcription of TRE–lacZ reporters more strongly
than does c-Jun in yeast (data not shown). Second, the
basal activity of BD–c-Jun (and BD–v-Jun) in yeast in the
absence of SAPK is largely independent of the modifica-
tion state of the SAPK/JNK regulatory sites as judged by
the effect of multiple alanine substitutions (Figure 1c and
data not shown). This contrasts with the situation in verte-
brate cells where phosphorylation of these residues is a
major determinant of c-Jun transcriptional activity
(reviewed in [12]). Taken together, these results indicate
that binding of SAPK/JNK does not preclude c-Jun trans-
activation, but that potentiation of this function by phos-
phorylation in vivo is likely to require physical association
of the kinase with its substrate. Because v-Jun does not
interact with SAPK, this model predicts that the oncopro-
tein will exhibit a deficit of regulatory phosphorylation and
thus of transcriptional activity in vertebrate cells.

To evaluate this model, we took advantage of the finding
that whereas complexes containing the 39 kDa c-Jun
protein account for essentially all of the TRE-specific

binding activity in normal avian fibroblasts, these are
replaced by complexes containing the 65 kDa gag–v-Jun
protein after transformation by a retrovirus encoding v-Jun,
owing to extinction of endogenous c-jun mRNA and
protein expression (Figure 2a; [13–15]). Surprisingly,
although the overall level of TRE-specific DNA-binding
activity is similar, transcription of a transfected reporter
plasmid driven by a consensus TRE motif (minimum colla-
genase gene promoter (mincol)–CAT [16]) is greatly
depressed in v-Jun-transformed cells (Figure 2b). This is
not due to differences in transfection efficiency, as gene
promoters devoid of TRE motifs support similar levels of
transcription in both cell backgrounds (Figure 2b). Nor is it
attributable to variations in heterodimeric partners, as it has
previously been shown that c-Jun and v-Jun are associated
with identical Fos-related proteins (Fras) in normal and
transformed cells [13].

To determine whether defective phosphorylation of the
mutant oncoprotein might underlie the reduction in tran-
scriptional activity, we evaluated the modification state of
the principal SAPK/JNK regulatory sites (serines 63 and 73;
S63/73) in c-Jun and gag–v-Jun. Western blotting analysis
(Figure 2c,d) using a non-discriminating anti-Jun antiserum
indicated that gag–v-Jun was approximately 20-fold more
abundant than c-Jun, but that the mutant protein was
detected only very weakly by an antiserum specific for Jun
molecules phosphorylated on S63, S73, or both. Quantita-
tion of these data revealed that these sites in gag–v-Jun
were underphosphorylated by a factor of approximately 10
compared to the corresponding residues in c-Jun, thus
closely approximating the reduction in transcriptional activ-
ity (Figure 2e). Differential S63/73 phosphorylation was
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Figure 1

(a) Differential interaction of c-Jun and v-Jun
with SAPK in vivo. BD–SAPK was expressed
(from pGBT9 [25]) together with AD–c-Jun or
AD–v-Jun (from pGAD424 [25]) in a yeast
strain (SFY526 [25]) harbouring a Gal1–lacZ
reporter gene. The average and standard
deviations of β-galactosidase activity from five
independent transformants for each
combination are shown. (b) c-Jun activates
transcription when tethered to DNA via SAPK.
BD–SAPK was expressed (from pGBT9)
together with AD–c-Jun or c-Jun lacking the
Gal4 activation domain tag (from pMET415
[26]) in SFY526. β-Galactosidase
determinations as in (a). (c,d) Interaction with
catalytically active SAPK stimulates c-Jun
transcriptional activity. BD–c-Jun, a mutant
derivative in which all potential SAPK/JNK
phosphoacceptor sites (serines 63, 73;
threonines 91, 93) are replaced by alanine
residues (BD–c-Jun4ala), and BD–v-Jun were
expressed (from pGBT9) with SAPK or a
catalytically inactive mutant, SAPK K→A (from

p415MET25) in SFY526. β-Galactosidase
determinations as in (a). DNA segments
encoding rat SAPKβ, SAPK K→A, c-Jun,

c-Jun4ala and v-Jun were generated by PCR
and the authenticity of the resulting constructs
verified by sequencing.
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also evident when c-Jun and gag–v-Jun were captured by
microscale affinity purification using a biotinylated collage-
nase promoter TRE (colTRE) oligonucleotide [17], ruling
out the possibility that the small amount of phosphorylated
v-Jun was selectively bound to DNA (data not shown).

Ultraviolet (UV) light is a potent agonist of SAPK/JNK
[9,18], and exposure of normal fibroblasts to increasing
doses of UV leads to the appearance of isoforms of c-Jun
that migrate more slowly on polyacrylamide gels and are
diagnostic of increased amino-terminal phosphorylation
([13]; Figure 3a,b). In contrast, UV exposure does not induce

any corresponding modification of gag–v-Jun in transformed
fibroblasts, indicating that the low level of v-Jun phosphory-
lation cannot be augmented by agents that activate the
SAPK/JNK pathway in vivo. Importantly, these effects are
not attributable to fusion with retroviral gag sequences, as an
identical deficit in both basal and induced phosphorylation
is observed in cells transformed by v-Jun alone (data not
shown). As phosphorylation of c-Jun is thought to be an
important mechanism through which the SAPK/JNK
pathway stimulates TRE-dependent transcription [12], it
was of interest to determine whether this signal transduction
process was disturbed in v-Jun-transformed cells.
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Figure 2

(a) Gel retardation analysis of colTRE-specific DNA-binding activity in
normal and v-Jun-transformed fibroblasts. Whole cell extracts (15µg)
were analysed by gel retardation using an oligonucleotide containing the
consensus TRE from the collagenase gene promoter [16], as described
in [13]. Previously characterised c-Jun–Fra and v-Jun–Fra complexes
[13] are indicated. (b) TRE-dependent transcription is repressed in v-
Jun-transformed cells. Reporter plasmids containing the
chloramphenicol acetyl transferase (CAT) gene under the control of
either the minimum collagenase gene promoter (mincol–CAT) or the
human β-actin gene promoter (β-actin–CAT) were transfected into
cultures of normal fibroblasts (CEF) or v-Jun-transformed fibroblasts (v-
Jun CEF), and CAT assays performed as described previously [13].
Values represent the average and standard deviations of five
independently transfected dishes. (c–e) Differential phosphorylation of
the S63/73 SAPK/JNK regulatory phosphorylation sites in c-Jun and v-
Jun in vivo. (c,d) Western blotting analysis of c-Jun and gag–v-Jun in
100 µg whole cell extracts using either a non-discriminating anti-Jun
antiserum (anti-Jun total [13]), or a polyclonal antiserum that recognises
only Jun molecules phosphorylated on serines 63, 73, or both (anti-
phospho S63/73-Jun). (e) The relative staining intensity of c-Jun and
gag-v-Jun using the non-discriminating anti-Jun total and anti-phospho
S63/73-Jun antisera was quantitated by densitometry (the ratio for c-Jun
was arbitrarily set at one).
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Figure 3

(a,b) Amino-terminal phosphorylation of v-Jun is non-inducible in vivo.
(a) Normal or (b) v-Jun-transformed fibroblasts were exposed to the
indicated dose of UV irradiation and extracts prepared after 15 min.
After western blotting, the Jun proteins were visualised using the non-
discriminating anti-Jun antiserum [13]. Increased amino-terminal
phosphorylation of c-Jun results in electrophoretic retardation (asterisk).
A fivefold shorter exposure (of the same blot) is presented for the v-Jun-
transformed cell samples to compensate for the higher expression of
gag–v-Jun. (c) Modulation of TRE-dependent transcription in normal
and v-Jun-transformed cells by catalytic activators or inhibitors of
SAPK/JNK. The indicated cell cultures were transfected with 3µg of
the mincol–CAT reporter [16] together with increasing amounts (3, 6,
and 12 µg) of expression vectors encoding either MEKK (from pCMV5
[27]) or SEK-1 A/L (from pRcCMV [20]). Control experiments have
shown that the effects of MEKK and SEK-1 A/L on transcription are
dependent on the presence of a TRE motif in the reporter plasmid (S.H.,
A.K. and D.A.F.G, unpublished observations).
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To manipulate SAPK/JNK activity in vivo, we transfected
increasing amounts of plasmids encoding MEKK, a potent
activator of the SAPK/JNK pathway [19], or, alternatively,
a catalytically inactive mutant of the SAPK/ JNK upstream
activator SEK-1 (SEK-1 A/L [20]), together with the
mincol–CAT reporter into normal or v-Jun-transformed
cells. As predicted, cotransfection of MEKK led to a sub-
stantial dose-dependent stimulation of TRE-dependent
transcription in normal cells, while the inhibitory
SEK-1 A/L mutant led instead to a progressive reduction
in activity (Figure 3c). In contrast, MEKK induced only a
very small increase in reporter transcription in the v-Jun-
transformed cell background, whereas SEK-1 A/L had no
significant effect on basal activity (Figure 3c). Thus,
TRE-dependent transcription is not only reduced overall
in v-Jun-transformed cells, but is also rendered markedly
less sensitive to induced fluctuations in the activity of the
SAPK/JNK pathway.

Taken together, our results indicate that SAPK acts as a
positive regulator of c-Jun transcriptional activity in situ,
and that deletion of the delta docking region confers a loss-
of-function phenotype by uncoupling v-Jun from this regu-
lation. This conclusion challenges the long-standing
assumption that v-Jun represents a ‘super-activated’ form
of c-Jun [21,22], as it predicts that v-Jun acts as a ‘dominant
negative’ mutant that will block or antagonise SAPK/JNK-
regulated gene expression [23], much as the thyroid
hormone receptor derived v-ErbA oncoprotein retains the
capacity to bind to DNA but can no longer act as an effec-
tor of hormone-regulated transcription [24]. Interestingly,
the SAPK/JNK pathway is activated strongly by chemical
and radiant stresses likely to induce growth arrest, cell
death or both, but is activated only weakly by mitogens
[9,18]. We therefore suggest that repression of growth-
inhibitory or pro-apoptotic genes may be more closely
linked to v-Jun-mediated oncogenesis than is activation of
growth-stimulatory genes, as previously supposed.

Acknowledgements
We thank Chris Marshall and Susan Taylor for providing murine ERK2 and
PKA, respectively, Iain Morgan, Chris Bartholomew, John Wyke and Brad
Ozanne for helpful comments on the manuscript and Brad Ozanne and Lynn
McGarry for advice on the oligonucleotide capture technique. This work
was supported by the Cancer Research Campaign (CRC) and the Medical
Research Council (MRC) of the UK.

References
1. Hibi M, Lin A, Smeal T, Minden A, Karin M: Identification of an

oncoprotein- and UV-responsive protein kinase that binds and
potentiates the c-Jun activation domain. Genes Dev 1993, 7:2135-
2148. 

2. Derijard B, Hibi M, Wu I, Barrett T, Su B, Deng T, et al.: JNK1: a
protein kinase stimulated by UV light and Ha-Ras that binds and
phosphorylates the c-Jun activation domain. Cell 1994, 76:1025-
1037. 

3. Kallunki T, Deng, T, Hibi, M, Karin, M: c-Jun can recruit JNK to
phosphorylate dimerisation partners via specific docking
interactions. Cell 1996, 87:929-939. 

4. Bos TJ, Monteclaro FS, Mitsunobu F, Ball AR, Chang CHW,
Nishimura T, Vogt PK: Efficient transformation of chicken embryo

fibroblasts by c-Jun requires structural modification in coding and
non-coding sequences. Genes Dev 1990, 4:1677-1687. 

5. Morgan IM, Havarstein LS, Wong W, Luu P, Vogt PK: Efficient
induction of fibrosarcomas by v-Jun requires mutations in the
DNA binding region and the transactivation domain. Oncogene
1994, 9:2793-2797. 

6. Dai T, Rubie E, Franklin CC, Kraft A, Gillespie DAF, Avruch J, et al.:
Stress-activated protein kinases bind directly to the delta domain
of c-Jun in resting cells: implications for repression of c-Jun
function. Oncogene 1995, 10:849-855. 

7. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B,
Davis RJ: Selective interaction of JNK protein kinase isoforms with
transcription factors. EMBO J 1996, 15:2760-2770. 

8. Smeal T, Hibi M, Karin M: Altering the specificity of signal
transduction cascades: positive regulation of c-Jun transcriptional
activity by protein kinase A. EMBO J 1995, 13:6006-6010. 

9. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, et
al.: The stress-activated protein kinase subfamily of c-Jun
kinases. Nature 1994, 369:156-160. 

10. Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR, Templeton
DJ: Activation of stress-activated protein kinase by MEKK1
phosphorylation of its activator SEK1. Nature 1994, 372:798-800.

11. Claret FX, Hibi M, Dhut S, Toda T, Karin M: A new group of
conserved coactivators that increase the specificity of AP-1
transcription factors. Nature 1996, 383:453-457.

12. Karin M, Li Z, Zandi E: AP-1 function and regulation. Curr Opin Cell
Biol 1997, 9:240-246.

13. Kilbey A, Black EJ, Unlu M, Gillespie DAF: The v-Jun oncoprotein
replaces p39 c-Jun as the predominant AP-1 constituent in
ASV17-transformed fibroblasts: implications for SAPK/JNK-
mediated signal transduction. Oncogene 1996, 12:2409-2418. 

14. Castellazzi M, Spyrou G, La Vista N, Dangy J, Piu F, Yaniv M, Brun G:
Overexpression of c-jun, junB, or junD affects cell growth
differently. Proc Natl Acad Sci USA 1991, 88:8890-8894. 

15. Gao M, Morgan I, Vogt PK: Differential and antagonistic effects of
v-Jun and c-Jun. Cancer Res 1996, 56:4229-4235. 

16. Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, et al.:
Phorbol ester-inducible genes contain a common cis element
recognised by a TPA-modulated trans-acting factor. Cell 1987,
49:729-739. 

17. Franza BR, Josephs SF, Gilman MZ, Ryan W, Clarkson B:
Characterization of cellular proteins recognizing the HIV enhancer
using a microscale DNA-affinity precipitation assay. Nature 1987,
330:391-395.

18. Minden A, Lin A, Smeal T, Derijard B, Cobb M, Davis R, Karin M: c-
Jun N-terminal phosphorylation correlates with activation of the
JNK subgroup but not the ERK subgroup of mitogen-activated
protein kinases. Mol Cell Biol 1994, 14:6683-6688. 

19. Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ, et
al.: Differential activation of ERK and JNK mitogen-activated
protein kinases by Raf-1 and MEKK. Science 1994, 266:1719-1723.

20. Zanke BW, Boudreau K, Rubie E, Winnet E, Tibbles A, Zon L, et al.:
The stress-activated protein kinase pathway mediates cell death
following injury induced by cis-platinum, UV irradiation or heat.
Curr Biol 1996, 6:606-613. 

21. Bohman D, Tjian R: Biochemical analysis of transcriptional activation
by Jun: differential activity of c-and v-Jun.Cell 1989, 59:709-717. 

22. Baichwal VR, Tjian R: Control of c-Jun activity by interaction of a
cell-specific inhibitor with regulatory domain delta: differences
between v- and c-Jun. Cell 1990, 63:815-825. 

23. Havarstein LS, Morgan IM, Wong W, Vogt PK: Mutations in the Jun
Delta region suggest an inverse correlation between
transformation and transcriptional activation. Proc Natl Acad Sci
USA 1992, 89:618-622. 

24. Sap J, Munoz A, Schmitt J, Stunnenberg H, Vennstrom B: Repression
of transcription mediated at a thyroid hormone response element
by the v-erb-A oncogene product. Nature 1989, 340:242-244.

25. Bartel P, Chien C, Sternglanz R, Fields S: Elimination of false
positives that arise in using the two-hybrid system. Biotechniques
1993, 14:920-924.

26. Mumberg D, Muller R, Funk M: Regulatable promoters of
Saccharomyces cerevisiae: comparison of transcriptional activity
and their use for heterologous expression. Nucleic Acids Res
1994, 22:5767-5768.

27. Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ: Integration of MAP
kinase signal transduction pathways at the serum response
element. Science 1995, 269:403-407.

120 Current Biology, Vol 8 No 2


	An oncogenic mutation uncouples the v-Jun oncoprotein from positive regulation by the SAPK/JNK pathway in vivo
	Results and discussion
	Acknowledgements
	References

	Figures
	Figure 1
	Figure 2 
	Figure 3


