TCT-697
Is Transcatheter Aortic Valve Replacement the Best Option for Patients with Severe Aortic Stenosis and Small Aortic Annulus? Insights From the PARTNER Trial
Josef Rodes-Cabau1, Philippe Pibarot2, Rakesh M. Suri3, Vinod Thourani4, Lars Svensson5, Eric Dumont6, Ke Xu7, Martin Leon7,8
1Queens Heart and Lung Institute, Quebec, Canada, 2NI, Quebec City, Canada, 3Mayo Clinic, Rochester, MN, 4Emory University, Atlanta, United States, 5Cleveland Clinic, Cleveland, Ohio, 6Quebec Heart and Lung Institute, Laval University, Quebec, QC, 7Cardiovascular Research Foundation, New York, NY, 8Cardiovascular Research Foundation, New York, United States

Background: We sought to evaluate the effects of aortic annulus size on valve hemodynamics and clinical outcomes in those patients included in the PARTNER randomized controlled trial (RCT) cohort A and the PARTNER non-randomized clinical cohort (NRCA) cohort.

Methods: Patients included the RCT (n=574) and NRCA (n=1358) cohorts were divided in tertiles according to aortic annular size (small, medium, large aortic annulus; SAA, MAA and LAA, respectively) as measured by transthoracic echocardiography. Moderate-to-severe prosthetic-patient mismatch (PPM) was defined as an effective aortic orifice area of <0.85 cm²/m².

Results: In the RCT cohort, patients in the SAA tertile who underwent TAVR had a lower incidence of PPM (39% vs. 63%, P<0.01), and only a trend toward a higher incidence of moderate-to-severe paravalvular leak (PVL) compared to SAVR (5.7% vs. 0.4%; P=0.06). In the LAA tertile, there were no differences in the rate of PPM between groups and a significant increase in moderate-to-severe PVL was associated with TAVR (9% vs 0%, P=0.01). In the NRCA cohort, there were no differences in PPM between the SAA and LAA tertiles, but a higher rate of moderate-to-severe PVL was observed in the MAA tertile (5.9% vs. 11.5%; P=0.004). Patients in the LAA tertile had a higher mortality rate at 1-year follow-up compared to the SAA and MAA tertiles (24.8%, 18.3% and 18.7%, respectively, P<0.02), and differences persisted in multivariable analysis (P=0.048 for LAA vs. MAA, P=0.035 for LAA vs. SAA).

Conclusions: Aortic annulus size had a major impact on valve hemodynamics and clinical outcomes following AVR. This study highlights the importance of considering aortic annulus size in the evaluation of high-risk patients who are candidates for AVR, and suggests that TAVR may be the preferred strategy for those with smaller aortic annulus.

TCT-698
Aortic Valve-in-Valve Implantation inside Stented vs. Stentless Bioprostheses: Insights from the Global Valve-in-Valve Registry
Matheus S. Santos1, John Webb2, Ran Kornowski3, Sabine Bleiziffer4, David Hildick-Smith5, Dominique Himbert6, Hendrik Treede7, Stephen Brecker8, Bruce Precious9, Adam J. Berger8, Yohei Ohno9,9FERRAROTTO S HOSPITAL, CATANIA, Catania, Italy, 10Cardiovascular Imaging Research Centre, University College London, London, United Kingdom, 11St Paul’s Hospital, Vancouver, BC, Canada

Background: Transcatheter aortic valve-in-valve (ViV) implantation inside failed bioprostheses is increasingly being performed. Stentless surgical valves lack fluoroscopy窗口features, which hinder their use in ViV procedures. We aimed to evaluate clinical outcomes following aortic ViV procedures in stentless bioprostheses, using a large global registry.

Methods: Aortic ViV procedures included in the Global Valve-in-Valve Registry were investigated (553 procedures: 441 in stented bioprostheses, 112 stentless). Patients with failed stentless bioprostheses were younger and had similar STS score in comparison with those with stented (73.4 ± 13.9 vs. 78.6 ± 8, p<0.001; 10.7 ± 8.3 vs. 12.1 ± 10.6, p=0.20, respectively). Stentless bioprostheses had a longer mean time to failure and failed more commonly with predominant regurgitation (11 vs. 9 years, p=0.02 and 58.9% vs. 21.8% in stented, p<0.001), were larger (23.8 ± 2.1 vs. 23.0 ± 2.1 in stented, p=0.002) and had lower degree of stenosis in comparison with stented valve: area 1.28 ± 0.62cm² vs. 0.88 ± 0.43cm², mean gradient 48 ± 26.6mmHg vs. 64.7 ± 26.4mmHg, respectively; p<0.001 for both).

Stentless bioprostheses were more commonly treated by a CoreValve (61.5% vs. 34.7% SAPIEN, p<0.001) and TEE was utilized more during these procedures (75.2% vs. 62% in stented, p=0.001). Device malposition was more common in stentless surgical valves (16.1% vs. 4.0% vs. 9.0% in non-Mosaic stented valves, p=0.03). Coronary occlusion was more common in stentless bioprostheses (5.4% vs. 1.4% in stented, respectively, p=0.01). Post procedural mean aortic valve gradient was lower post stentless ViV procedures (11.7 ± 7.2mmHg vs. 16.9 ± 9.1mmHg in stented, p<0.001). Thirty-day and 1-year mortality rates were similar, when comparing stented and stentless procedures: 8.9% vs 6.6% (p=0.39), 17.9% vs 16.6% (p=0.68), respectively.

Conclusions: Aortic ViV implantation inside stentless bioprostheses is challenging and associated with more device malposition and coronary occlusion events. Nevertheless, ViV procedures performed in stentless bioprostheses resulted in better valve hemodynamics than in stented surgical valves and patient survival was similar.

TCT-700
The Effect of Tricuspid Regurgitation and Right Ventricular Dysfunction on Mortality in High Risk Patients Undergoing Transcatheter Aortic Valve Replacement: An Analysis of the PARTNER II Inoperable Cohort
Alan Zajarias1, Michael Mack2, Rakesh M. Suri3, Wael Jaber4, E. Murat Tuzcu5, Vinod Thourani6, Ke Xu7, Durham Doshi8, Martin Leon9, Brian R. Lindman10
1Washington University, St Louis, MO, 2Baylor Healthcare System, Plano, Texas, United States, 3Mayo Clinic, Rochester, United States, 4Cleveland Clinic Foundation, Cleveland, OH, 5Cleveland Clinic Foundation, Cleveland, United States, 6Emory University, Atlanta, United States, 7Cardiovascular Research Foundation, New York, NY, 8Cardiovascular Research Foundation, New York, United States, 9Washington University School of Medicine, St Louis, MO

Background: It is important to elucidate factors that are associated with a poor outcome after transcatheter aortic valve replacement (TAVR) to improve patient selection. Tricuspid regurgitation (TR) and right ventricular dysfunction (RVD) adversely affect outcomes in patients with heart failure or mitral valve disease, but their impact on outcomes in patients with severe aortic stenosis (AS) treated with TAVR has not been well characterized.

Methods: Patients enrolled and treated in the PARTNER II trial (inoperable cohort) (n=553) were included and stratified according to the presence and severity of TR and RVD (qualitatively measured) on the baseline (pre-TAVR) echocardiogram as determined by a core lab. Multivariable Cox PH models were used to evaluate the association between TR and RVD and 1-year all-cause death.

Results: TR severity and RV function were measured in 507 and 488 patients, respectively. Patients with none/trace (n=167), mild (n=205), moderate (n=117), and severe (n=18) TR had 1-year all-cause death rates of 16.9%, 17.2%, 32.6%, and 61.1%, respectively (p<0.001). Patients with normal RV function (n=335) and mild in 18%, moderate/severe in 18% had 1-year all-cause death rates of 19.0%, 25.5%, and 38.5%, respectively (p<0.001). Increasing severity of TR (p=0.003) and RVD (p<0.01) were also associated with increased re-hospitalization rates at 1 year.

After adjusting for age, sex, BMI, STS score, prior infarct, prior CABG, frailty, permanent pacemaker, atrial fibrillation, left ventricular ejection fraction, aortic transvalvular mean gradient, and mitral regurgitation, moderate/severe TR was associated with increased 1-year mortality (adjusted HR 1.73, 95% CI 1.09-2.75, p=0.01), whereas RVD was not (p=0.67).

Conclusions: In very high risk patients with severe symptomatic AS undergoing TAVR, moderate or severe TR is independently associated with increased 1-year mortality whereas RVD was only associated with mortality in univariable analysis. This may have implications for treatment decisions, including assessment of anticipated benefit from TAVR and whether concomitant surgical treatment of TR should be considered in operable patients.