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Abstract

For integers k,s with 0 <s <k, let %(n,k,s) be the class of graphs on n vertices not containing
k independent (i.e., vertex disjoint) subgraphs of which & — s are cycles and the remaining
are complete graphs K. Let EX(n,k,s) be the set of members of %(n,k,s) with the maximum
number of edges and denote the number of edges of a graph in EX(n, k,s) by ex(n,k,s); to avoid
trivialities, assume k£ >2 and n >3k —s. Justesen (1989) determined ex(n,k,0) for all n>3k and
EX(n,k,0) for all n > (13k — 4)/4, thereby settling a conjecture of ErdGs and Posa; further
EX(n,k,k) was determined by Erdos and Gallai (n>2k). In the present paper, by modifying
the argument presented by Justesen, we determine EX(n,k,s) for all nk,s (0<s<k, k=2,
n=3k —s).

1. Introduction

All graphs considered in this paper are finite, undirected and do not contain loops
or multiple edges. For basic graph-theoretical terminology, we refer to [1]. To a large
extent, we adopt the notation of [5]. The letter G always denotes a graph; by |G|
and e(G), we denote the number of vertices and edges of G, respectively, and v(X)
denotes the valency of a vertex X (with respect to the graph denoted G). The num-
ber e(G) is called the size of G. The complete graph on n vertices is denoted (n)
(or likewise K,); the symbol {p,q) denotes a complete bipartite graph with classes of
cardinality p and g, respectively, and ({(p).q) denotes the graph obtained from (p,q)
by adding all possible edges between vertices in the class of cardinality p; 0% denotes
a graph consisting of k independent (i.e., vertex disjoint) cycles, and G D 0¥ means
that G contains & independent cycles. By GUH we denote the union of the graphs G
and H, and G UH denotes the disjoint union of G and H. By m(G) we denote the
matching number of G, ie., the maximum number of independent edges of G. For
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positive integers n,k such that n>2, let f(n, k) denote the number of edges of the
graph ((2k — 1),n — 2k + 1), i.e.,

f(nk)= (2"2_1> + 2k — 1) n=2k+1)= 2k — 1)n—k).

A classical result in extremal graph theory is the following.

Theorem A (Erdos and Posa [4]). For an integer k22, let |G| = n=24k. If e(G) >
f(n,k), then G205 further, ((2k — 1),n — 2k + 1) is the uniquely determined ex-
tremal graph, i.e., if e(G) = f(nk), then G 2 0% if and only if G = ({(2k — 1),
n—2k +1).

For positive integers n,k such that n23k — 1, let

g(n k) = <3k2_1)+n-—3k+1,

which (in particular) is the number of edges of a graph with n vertices resulting from
the complete graph {3k — 1) by attaching n— 3k + 1 pendant edges. Justesen established
the following extension of Theorem A to the range 3k <n < 24k, conjectured by Erdos
and Posa.

Theorem B (Justesen, [5]). For any integer k=2, if |G| = n=3k and e(G)=
max{ f(n,k),g(n,k) + 1}, then GO0 or G = ((2k —1),n — 2k +1).

In the present paper we show that Justesen’s argument can be modified to obtain
an extended version of Theorem B which includes the complete determination of the
corresponding extremal graphs. Let % '('3/(—1) be the class of graphs G on n vertices
(n=3k — 1,k =2) which can be written as

G=S(3k_1)UT1U"'UTr (r=0),

where S(3¢—1) is a subdivision of the complete graph (34k—1) and 7,...,7, are pairwise
disjoint trees with the property that the intersection 7; NSy is just a single vertex
(i = 1,...,r). Thus, roughly speaking, G results from (3k — 1) by subdivision of edges
and attachment of trees; note also that, in this definition, we have not excluded the
special cases 7 = 0 and S,y = (3k — 1). Clearly

e(G) = g(nk) for all G € A7y .
Now our extension of Theorem B reads as follows.
Theorem 1. For an integer k =22, let |G| = n=3k. If e(G) > max{f(n,k),g(n k)},
then G D 0*; the extremal graphs, i.e., the graphs G with e(G) = max{ f(n,k),g(n,k)}

and G 2 OF are the following. If n < (13k—4)/4, then A '<'3k_]> is precisely the set of
extremal graphs; if n > (13k —4)/4, then ((2k —1),n—2k + 1) is the unique extremal
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graph; if n = (13k — 4)/4, then G is an extremal graph if and only if G € J('ZM“])
or G= (2k-1),n—2k+1).

The proof of Theorem 1 is the content of Section 2. Similar as the proof of Theorem
B given by Justesen [5], our proof of Theorem 1 is based on a result of Corradi
and Hajnal [2] stating that G D 0f for each G with |G|>3k and minimum valency
at least 2k.

Let %(n,k,s) be defined as in the abstract (0<s<k). Note that, for the particular
case s = 0, Theorem 1 provides a solution of the problem of determining the members
of %(n,k,s) having maximum size. For another particular case, namely, for s = k, the
same problem was settled by Erdds and Gallai [3] who determined, for given n and
k, the graphs of maximum size with |G| = n and m(G) < k; see also [1, Ch. II,
Corollary 1.10]. In Section 3 (Theorem 2), we settle the general case of an arbitrary
s with 0 < s<k.

2. The proof of Theorem 1

Clearly, G 2 0 if G = ((2k —1),n—2k+ 1) or G € H'ly_yy- By an easy
computation, one obtains

(1) g(n, k)= f(n,k) if and only if n<L(13k —4),

where equality holds simultaneously. Hence Theorem 1 is proved if we show the
following. (For proof-technical reasons, we have included the trivial case n = 3k — 1.)

(*) For each n>1, if |G| = n and e(G) = max{ f(n,k),g(n,k)} for an integer k with

k=2 and n23k—1,then GO0 or G= ((2k—1),n—2k+1) or G € H sy

The proof of (x) is carried out by induction on n, the basis of the induction
being trivial. Let G be a graph with |G| = n>2 and assume that (x) holds for
all graphs with fewer than n vertices; let further k>2 such that n>3k — 1 and
e(G)= max{f(nk),g(nk)}. If n =3k — 1, then e(G)=g(n,k) implies G = (3k — 1);
hence G € 1”'53,(_1), and we are done. Thus let n23k. If k = 2, then the assertion (x)
immediately follows from a well-known result stating that any G with n>6 vertices
and at least 3n— 6 edges contains two disjoint cycles unless G 2 ((3),n—3); see [4,6]
or [5]. Hence let £ =3.

Let X be a vertex of G such that v(X;) is minimum. If v(X;)>2k, then G D 0% by
the theorem of Corradi and Hajnal mentioned in Section 1. Hence let v(X;)<2k — 1.
We now finish the proof (similar as in [5]) by treating the alternatives: X, is contained
or not contained in a triangle of G.

Case 1: X, is contained in a triangle of G. Let Xy, X, X; be the vertices of a triangle
of G and put G' = G — X; — X, — X3. Because v(X,)<2k — 1, we have

(2) e(G)— e(G')<2n + 2k — 6, where equality holds if and only if v(X;) = 2k — 1
and v(X>) = ov(X3)=n— 1.
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One easily obtains the following equalities;
3) glnk)—gn—3,k—-1)=9% -9,
fnk)— f(n—3k—-1)=2n+2k -6
We claim that
4) (G zmax{f(n—3,k—1),g(n—3,k—-1)+1}.

For the proof of (4), note that from e(G)= f(n,k), together with (2) and (3), one
obtains e(G')> f(n— 3,k —1). Now, assume g(n— 3,k — 1)>e(G’). Then g(n—3,k —
)2 f(n— 3,k — 1), and thus by (1)

13k—1)—4 13k -5

<
n<3 + 7 3

On the other hand, g(n, k) — g(n — 3,k — 1)<e(G) — e(G’) and thus, by (2) and (3),
9% — 9<2n+ 2k — 6. Hence

Tk -3 13k -5
<n<g ,
2 4
contradicting k£ >3. Hence we have proved (4).

Applying the induction hypothesis to G’, we conclude from (4) that G’ D 0¢~! or
G’ = ((2k — 3),n — 2k). (Note that, because e(G') > g(n -3,k — 1), G' € .1”&3_4)
is impossible.) If G’ D2 0¢~!, then G D 0F and we are done. If G’ = ((2k — 3),n — 2k),
then e(G') = f(n—3,k—1) and thus (by (2), (3) and because e(G) = f(n,k)) v(X)) =
2k — 1, v(X2) = v(Xz) = n— 1. Hence G — X; = ((2k — 1),n — 2k} from which one
easily obtains G = ((2k — 1),n — 2k + 1) or G D 0F.

Case 2: Xy is not contained in a triangle of G. Clearly the following equalities
hold.

5) gnk)—gin—Lk)y=1, f(nk)y— f(n—-1,k) =2k - 1.

If v(X;) = 0, let G’ = G — X|. Then &(G') = e(G)= max{f(nk),g(nk)} >
max{g(n—1,k), f(n—1,k)}, from which we obtain G’ 2 0* by applying the induction
hypothesis to G’. Hence G D 0.

If v(X;)>1, then let G’ result from G by contracting an edge (X, X3) of G. Then
e(G') = e(G) — 1 by the hypothesis of Case 2 and thus by (5) e(G’)> max{g(n —
1,k), f(n — 1,k) + 1}. Hence application of the induction hypothesis to G’ yields
G' 20 or G' € ALy, If G/ 20, then G 2 0%, and we are done. Let G’ € X7, .
If v(X;)<2, then G can be obtained from G’ by attaching a pendant edge to G’ or
subdividing an edge of G’ and thus, in either case, we have G € X '<'3k_l). Now let
v(X;)=3. Then G has minimum valency at least 3 and we conclude from the hypothesis
of Case 2 that the same holds for G'. Hence G’ = (3k — 1) since, otherwise, G’ €
A '<'3k_,> would imply that G’ has minimum valency at most 2. Let G” = G — X; — Xa.
Then G” = (3k — 2) and each of the vertices X; and X, has at least two neighbors in
G”. From this one immediately obtains G2 0¢. O
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3. The Case s> 1

We need some additional notation. Throughout, let k,s be integers with £ >=2s5>1
and k >2. By 0~ Ue* we denote a graph consisting of k& components of which s are
complete graphs (2) and the remaining are cycles. By {n} we denote the edgeless
graph with n vertices. For n>2k — s, let f(n,k) denote the number of edges of the
graph ((2k —s — 1),n =2k + s+ 1), ie,

2k —s—1

f.\'(nvk) = ( 2

>+(2k—s— D(n— 2k +s+ 1).

Further, denote by g,(k) the number of edges of the complete graph (3k —s— 1}, i.e.,

3dk—s—1
gs(k):< 2 >

By an easy computation, one obtains that

(6) gu(k)= f(nk) if and only if n<3k —s — 1 + =L

where equality holds simultaneously. Now, with the short-hand notation

k(k — 1)

Ot(k,s) =3k —s5s—1+ m,

our result is the following.

Theorem 2. For integers k,s with k=2s>=1 and k22, let |G| =n=3k —s. If e(G) >
max{ fs(n,k),gs;(k)}, then GO0 ~*Ue*, and the extremal graphs are the following.
If n < alk,s), then 3k —s — )U{n — 3k + s + 1} is the unique extremal graph;
if n > olk.s), then {2k —s — 1).n — 2k + s + 1) is the unique extremal graph; if
n = a(k,s). then there are precisely two extremal graphs, (3k —s—1) U{n—3k+s+1}
and {2k —s —1),n =2k +s+1).

Proof. Because of (6), Theorem 2 is proved if we show the following.

(%) For each nz1, if |G| = n and e(G)= max{f;(n,k),g,(k)} for integers ks
with k>s>1,k>2 and n>3k —s — 1, then G20 Ue® or G = {(2k — s —
Don—2k+s+1)or G2 Bk —s~1U{n—3k+s+1}.

Proceeding similar as in the proof of Theorem 1, we use induction on n. For n = 1,
assertion (xx) is trivial. Let n>>2 and assume that (xx) holds for graphs with fewer
than n vertices. Let &,s such that k>s>1,k>2,n23k —s — 1 and let G be a graph
with |G| = n and e(G)= max{f(n k), gs(k)}. If n =3k — s — 1, then e(G)>g,(k)
implies G = (3k — s — 1), and we are done. Hence let n>3k — s.

For s = 1, assertion (**) can be obtained from Theorem | as follows. Let G* result
from G by adding to G a new vertex X which is joined by edges to all vertices of G.
Note that f(n+1,k) = fi(n,k)+n and g(n+1,k) = g,(k)+n. Hence |G| = n+123k
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and e(G*) = e(G)+ n= max{f1(n,k),g1(k)} +n = max{f(n+ 1,k),g(n+ 1,k)}, and
we conclude from Theorem 1 that GT D0 or G* € Jf’gkl_l) or Gt = ((2k - 1),
n—2k+2). If G* D0, then (obviously) G D 0*~! Ue'. If Gt € .)i/’gk'_l), then (because
G* has a vertex of valency n) G* must be isomorphic to a graph which results from
(3k — 1) by attaching n — 3k + 2 pendant edges to a fixed vertex of (3k — 1); hence
G = (3k —2)U{n— 3k +2}. Finally, Gt = ((2k — 1}, n — 2k + 2) immediately implies
G 2 ((2k — 2),n — 2k + 2). This settles the case s = 1. Hence let s2.

In addition, statement (*x) is easily seen to be true for £ =5 = 2. Hence let k=3.

If the minimum valency of G is at least 2k — s, then we can apply the above
mentioned theorem of Corradi and Hajnal in the following way. Let G* result from G
by adding s new vertices to G such that (i) each new vertex is adjacent to all vertices
of G, and (ii) there is no edge between any two of the new vertices. Then |G*| >3k
and G* has minimum valency at least 2k. Hence we can apply the theorem of Corradi
and Hajnal to G*, thus obtaining Gt D 0. From this one easily obtains G 2 0*~* Ue®.
Indeed, for ¢ € {0,1,...,|s/2]} call a spanning subgraph H of G a t-graph if H =
0F—s+ U2 U{r} with r >2¢ and note that G possesses at least one ¢-graph for some
t since each system of k disjoint chordless cycles of G gives rise to a #-graph of G
(where ¢ is the number of those of the k chordless cycles which do not contain an edge
of G). For a t-graph H with ¢ minimal denote by C,...,Ci_syre1,....e5-2,Y1,.... Y,
the cycle-, edge-, and vertex-components of H, respectively. Suppose that ¢ > 1. If there
exists an edge of G joining a vertex Y; to another vertex Y; or to a cycle C;, then
one readily obtains a contradiction to the minimality of . Otherwise, one concludes
from the fact that each Y; has valency at least 2k —s > s — 2¢ that there is an edge
e, such that ¥; is a neighbor of one end-vertex of e, and Y, is a neighbor of the
other, which also gives rise to a contradiction to the minimality of ¢. Hence ¢ = 0,
implying G D 0= Ue®. Consequently, we may assume that G contains a vertex X; with
uX))<2k—s—1.

Case 1: v(X;)=0. Let G' = G — X, and observe that

(7) fs(nk)— fo(n—Lk)=2k —s—1.

Hence e(G') = e(G) = max{fs(n,k),gs(k)} = max{fs(n — 1,k) + 1,g5(k)}. Thus, we
can apply the induction hypothesis to G’ and find G’ 2 0* = Ue* or G’ = (3k —s — 1)
U{n — 3k +s}. Hence G2 0*~* Ue® or G = (3k —s — 1) U{n — 3k +s+ 1}, and Case
1 is settled.

Case 2: v(X1)>1. Let X; be a neighbor of X; and put G’ = G —X| —X;. It follows
from v(X;)<2k —s — 1 that

(8) e(G) — e(G')<n + 2k — s — 3, where equality holds if and only if v(X|) =
2k—s—1and v(X2)=n—1.

One easily obtains the following equalities:

(9) gs(k)—gs—1(k—1) =6k — 25— 5,
fmk)— foi(n=2,k—1D)=n+2k—s-3.
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We claim that
(10) e(G")= max{fs_((n — 2,k — 1), gs—1(k — 1)+ 1}.

Clearly (by (8), (9) and because e(G)= f(n,k)) we have e(G')= fs_1(n — 2,k — 1)
and thus it remains to show e(G')>g,_1(k— 1)+ 1. Assume e(G")<g;_(k—1). Then
fso1(n—2,k—1)<gs_1(k — 1) and we obtain from (6)

k= 1)}k -—-2)

2% —s—2)

On the other hand, 6k — 25 — 5 = gy(k) — gs—1(k — 1) <e(G) — e(G)<n+2k —s -3,
and thus 4k — s — 2<n. Hence

n<3k-s—-1+

(k- 1)k —2)
523k —s— 14— 2T 2
4k —5—-2<3k —s +2(2k—s—2)
which (because & >=s) implies
(k - 1)k —2) k-1 1-k
<l - <l k=,
OSt-k+ o —s—g S kT3 2

contradicting k >2. This proves (10).

Applying the induction hypothesis to G’, we conclude (from (10)) G’ D 0k~ Ues~!
or G' = ({(2k —s — 2),n — 2k + s). The former clearly implies G D 0*~* Ue®; thus
assume the latter. Then e(G') = f,_((n — 2,k — 1), which (by (8), (9) and because
e(G)= fy(n,k)) implies v(X;) = 2k —s — 1 and v(X;) = n — 1. Hence G — X; =
({(2k—s—1),n—2k+s), from which one easily concludes G = ((2k—s—1),n—~2k+s+1)
or GO0, O
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