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Abstract 

For integers k, s with 0 ~<s ~< k, let fq(n, k, s) be the class of graphs on n vertices not containing 
k independent (i.e., vertex disjoint) subgraphs of which k - s  are cycles and the remaining 
are complete graphs K2. Let EX(n,k,s) be the set of members of ~(n,k,s) with the maximum 
number of edges and denote the number of edges of a graph in EX(n,k,s) by ex(n,k,s); to avoid 
trivialities, assume k ~> 2 and n >~ 3~ - s. Justesen (1989) determined ex(n, k, 0) for all n >~ 3k and 
EX(n,k,O) for all n > (13k - 4 ) / 4 ,  thereby settling a conjecture of Erdrs and P6sa; further 
EX(n,k,k) was determined by Erdrs and Gallai (n>~2k). In the present paper, by modifying 
the argument presented by Justesen, we determine EX(n,k,s) for all n,k,s (0~<s~<k, k>~2, 
n>~3k - s). 

1. Introduction 

All graphs considered in this paper are finite, undirected and do not contain loops 
or multiple edges. For basic graph-theoretical terminology, we refer to [1]. To a large 
extent, we adopt the notation of  [5]. The letter G always denotes a graph; by IGI 

and e(G),  we denote the number of  vertices and edges of  G, respectively, and v(X) 
denotes the valency of  a vertex X (with respect to the graph denoted G). The num- 
ber e(G) is called the size of  G. The complete graph on n vertices is denoted (n) 
(or likewise K,) ;  the symbol (p,q) denotes a complete bipartite graph with classes of  
cardinality p and q, respectively, and ( (p) ,q)  denotes the graph obtained from (p,q) 
by adding all possible edges between vertices in the class of  cardinality p; O k denotes 

a graph consisting of  k independent (i.e., vertex disjoint) cycles, and G _~ O k means 
that G contains k independent cycles. By G tA H we denote the union of  the graphs G 
and H ,  and G O H  denotes the disjoint union of  G and H.  By m(G) we denote the 
matching number of  G, i.e., the maximum number of  independent edges of  G. For 
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positive integers n,k such that n~>2, let f ( n , k )  denote the number of edges of the 
graph ((2k - 1),n - 2k + 1), i.e., 

f ( n , k ) =  ( 2 k 2 1 )  + ( 2 k - 1 ) ( n -  2k + l ) = ( 2 k -  l ) ( n - k ) .  

A classical result in extremal graph theory is the following. 

Theorem A (Erdfs and P6sa [4]). For an integer k~>2, let [G[ = n>~24k. I f  e(G) > 
f (n , k ) ,  then G_~0k; further, ((2k - 1),n - 2k + 1) is the uniquely determined ex- 
tremal graph, i.e., if  e(G) = f (n , k ) ,  then G ~ O h if and only if G ~- ( ( 2 k -  1), 
n - 2 k +  1). 

For positive integers n, k such that n >/3k - 1, let 

9(n,k ) = ( 3 k 2 1 )  + n - 3k + l, 

which (in particular) is the number of edges of a graph with n vertices resulting from 
the complete graph ( 3 k -  1) by attaching n -  3k + 1 pendant edges. Justesen established 
the following extension of Theorem A to the range 3k<~n < 24k, conjectured by Erdfs 
and P6sa. 

Theorem B (Justesen, [5]). For any integer k >>,2, i f  [G[ = n>~3k and e(G)>~ 
max{ f (n , k ) ,g (n , k )  + 1}, then GDO h or G ~ ( ( 2 k -  1 ) , n -  2k + 1). 

In the present paper we show that Justesen's argument can be modified to obtain 
an extended version of Theorem B which includes the complete determination of the 
corresponding extremal graphs. Let )ff~3~-U be the class of graphs G on n vertices 
(n>~3k-  1,k>~2) which can be written as 

G = S(3k_l) t j T2 U "'" tA Tr (r~>0), 

where S(3k_ l> is a subdivision of the complete graph (3k -  1) and T1 . . . . .  Tr are pairwise 
disjoint trees with the property that the intersection Ti N S(3k-l) is just a single vertex 
(i = 1 . . . . .  r). Thus, roughly speaking, G results from ( 3 k - 1 )  by subdivision of edges 
and attachment of trees; note also that, in this definition, we have not excluded the 
special cases r = 0 and S(3k-l> ----- (3k - 1). Clearly 

e(G) = g(n,k) for all G E ~U~3k_l). 

Now our extension of Theorem B reads as follows. 

Theorem 1. For an integer k >~2, let [G[ = n>~3k, l f  e(G) > max{ f (n ,k ) ,g (n ,k )} ,  
then G ~_ Ok; the extremal graphs, i.e., the graphs G with e( G) = max { f ( n,k ),g( n,k ) } 
and G ~ O k are the following. I f  n < (13k-4) /4 ,  then o,ud"(3k_j> is precisely the set o f  
extremal graphs; t fn  > (13k-4) /4 ,  then ( ( 2 k - 1 ) , n - 2 k + l )  is the unique extremal 
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yraph; / f  n = (13k - 4)/4, then G is an ex tremal  9raph i f  and only i f  G E J~'~3k--1) 
or G -~ ((2k - 1),n - 2k + 1). 

The proof  of  Theorem I is the content of  Section 2. Similar as the proof  of  Theorem 
B given by Justesen [5], our proof  of  Theorem 1 is based on a result o f  Corr~idi 

and Hajnal [2] stating that G ~ 0  k for each G with IGl>~3k and minimum valency 

at least 2k. 

Let f#(n,k,s)  be defined as in the abstract (O<~s<~k). Note that, for the particular 

case s -- 0, Theorem 1 provides a solution of  the problem of  determining the members  
of  ~ ( n , k , s )  having maximum size. For another particular case, namely, for s = k, the 

same problem was settled by Erd6s and Gallai [3] who determined, for given n and 

k, the graphs of  maximum size with IGI = n and m(G)  < k; see also [1, Ch. II, 
Corollary 1.10]. In Section 3 (Theorem 2), we settle the general case of  an arbitrary 

s w i t h 0  < s ~ < k .  

2. The proof of Theorem I 

Clearly, G 7~ 0 h if G ~ ( ( 2 k -  1 ) , n - 2 k +  1) or G E oU~3k_~). By an easy 

computation, one obtains 

(1) 9 ( n , k ) > ~ f ( n , k )  if and only if n~< l (13k - 4), 

where equality holds simultaneously. Hence Theorem 1 is proved if we show the 
following. (For proof-technical reasons, we have included the trivial case n = 3k - 1.) 

(*) For each n>~ 1, if IGI = n and e(G)>, m a x { f ( n , k ) , 9 ( n , k ) }  for an integer k with 
k >t 2 and n >1 3k - 1, then G 2 O k or G -~ ((2k - 1), n - 2k + 1) or G E Jf~3k-~)" 

The proof  of  ( . )  is carried out by induction on n, the basis of  the induction 
being trivial. Let G be a graph with [G I = n~>2 and assume that ( . )  holds for 
all graphs with fewer than n vertices; let further k>~2 such that n > ~ 3 k -  1 and 

e(G)>, m a x { f ( n , k ) , g ( n , k ) } .  I f  n = 3k - 1, then e(G)>~9(n,k)  implies G ~ (3k - 1); 
hence G E 3¢f~3k_l), and we are done. Thus let n>~3k. I f  k = 2, then the assertion ( . )  
immediately follows from a well-known result stating that any G with n/> 6 vertices 
and at least 3 n -  6 edges contains two disjoint cycles unless G ~ ((3), n -  3); see [4, 6] 
or [5]. Hence let k ~> 3. 

Let Xl be a vertex of  G such that v(X1 ) is minimum. If  v(Xl ) >~ 2k, then G ~ 0 k by 

the theorem of  Corr~idi and Hajnal mentioned in Section 1. Hence let v(Xl )<~ 2k - 1. 

We now finish the proof  (similar as in [5]) by treating the alternatives: )(i is contained 
or not contained in a triangle of  G. 

Case 1:X1 is contained in a trianole o f  G. Let X~,X2,X3 be the vertices of  a triangle 
of  G and put G' = G - X 1  - X 2  - ) (3 .  Because v(Xt )~< 2k - 1, we have 

(2) e(G)  - e(Gt)<~2n + 2k - 6, where equality holds if and only if v(Xl)  = 2k - 1 
and v(X2 ) = v(X3 ) = n - I. 
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One easily obtains the following equalities; 

(3) g(n ,k)  - g(n - 3 ,k  - 1) -- 9k - 9, 

f ( n , k )  - f ( n  - 3 ,k  - 1) -- 2n + 2k - 6. 

We claim that 

(4) e(G')>>, m a x { f ( n  - 3,k - 1),g(n - 3,k - 1) + 1}. 

For the proof  o f  (4), note that from e(G)>>.f(n,k),  together with (2) and (3), one 

obtains e(G' )  >1 f ( n  - 3, k - 1 ). Now, assume g(n - 3, k - 1 ) ~> e(G I). Then g(n - 3, k - 

1 ) ~ > f ( n -  3 , k -  1), and thus by (1) 

1 3 ( k -  1 ) - 4  1 3 k - 5  
n ~ < 3 +  

4 4 

On the other hand, g ( n , k ) -  g ( n -  3 , k -  1 ) ~ < e ( G ) -  e(G ~) and thus, by (2) and (3), 
9k - 9 ~< 2n + 2k - 6. Hence 

7k - 3 13k - 5 
- - ~ < n ~ < - - ,  

2 4 

contradicting k~>3. Hence we have proved (4). 
Applying the induction hypothesis to G t, we conclude from (4) that G ~ _~0 k-1 or 

r~ . , ~ n - 3  G' = ((2k - 3),n - 2k) (Note that, because e(G' )  > g(n - 3,k - 1), G'  E (3k-4) 

is impossible.) I f  G'  _~ 0 k - l ,  then G _~ 0 k and we are done. I f  G'  ~ ((2k - 3),n - 2k), 

then e(G' )  = f ( n - 3 , k - 1 )  and thus (by (2), (3) and because e ( G ) > ~ f ( n , k ) )  v(X1) = 

2k - 1, v(X2) -- v(X3) = n -  1. Hence G - A t  ~ ( ( 2 k -  1),n - 2 k )  from which one 

easily obtains G---  ( ( 2 k -  1 } , n -  2k + 1} or G D 0  k. 
Case 2: Xt is not contained in a triangle o f  G. Clearly the following equalities 

hold. 

(5) g ( n , k ) -  g ( n -  1,k) = 1, f ( n , k ) -  f ( n -  1,k) = 2 k -  1. 

I f  o(X1)  = 0, let G'  = G - ) ( 1 .  Then e(G' )  = e(G)>, m a x { f ( n , k ) , g ( n , k ) }  > 

m a x { g ( n -  1,k), f ( n -  1, k)}, from which we obtain Gt_~ O k by applying the induction 

hypothesis to G'.  Hence G _~ O k. 
I f  v(Xl )/> 1, then let G'  result from G by contracting an edge (X1, 3(2) of  G. Then 

e(G I) = e ( G ) -  1 by the hypothesis of  Case 2 and thus by (5) e(G~)>~ m a x { g ( n -  
1,k), f ( n  - 1,k) + 1}. Hence application of  the induction hypothesis to G'  yields 

__ ~ n - - 1  (3k - - l )"  G' D 0 k or G'  E (3k-l)" I f  G'  _~ &,  then G D 0 k, and we are done. Let G'  E J r ' - 1  
I f  v(X1 )~< 2, then G can be obtained from G'  by attaching a pendant edge to G t or 
subdividing an edge of  G'  and thus, in either case, we have G C o,~3k_1). Now let 
v(Xl )/> 3. Then G has minimum valency at least 3 and we conclude from the hypothesis 
o f  Case 2 that the same holds for G'.  Hence G'  ---- ( 3 k -  1) since, otherwise, G'  E 
Jf'~sk-l) would imply that G'  has minimum valency at most 2. Let G"  = G - X z  - ) (2 .  
Then G"  ~ (3k - 2) and each of  the vertices X1 and )(2 has at least two neighbors in 
G ' .  From this one immediately obtains G ~ 0 ' .  [] 
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3. The Case s >~ 1 

We need some additional notation. Throughout, let k,s be integers with k>~s>~l 
and k >~ 2. By 0 k-s 0e  ~ we denote a graph consisting of  k components of  which s are 

complete graphs (2) and the remaining are cycles. By {n} we denote the edgeless 

graph with n vertices. For n>~2k- s, let f.~(n,k) denote the number of  edges of  the 

graph ((2k - s -  l ) , n -  2k + s +  1), i.e., 

f , . (n ,k)= ( 2 k - s -  l )  2 + ( 2 k - s -  l ) ( n - 2 k + s + l ) .  

Further, denote by g~(k) the number o f  edges of  the complete graph ( 3 k -  s -  1), i.e., 

g"(k)= ( 3 k - s - l )  " 2  

By an easy computation, one obtains that 

k(k-I) 
(6) gs(k)>~f.~(n,k) i f  and only i f  n<~3k - s -  1 + 2(2k-s-l~ 

where equality holds simultaneously. Now, with the short-hand notation 

k(k - 1) 
~(k,s)= 3 k - s -  1+ 

2 ( 2 k - s -  1) '  

our result is the following. 

Theorem 2, For integers k,s with k >~s>~ l and k >~2, let IG[ = n>~3k-s. I f  e(G) > 
max{fs(n,k),gs(k)}, then G ~ 0k-~0e ~, and the extremal graphs are the following. 
I f  n < ot(k,s), then (3k - s - 1)0{n - 3k + s + 1} is the unique extremal graph: 
if  n > ~(k,s), then ((2k - s - l ) , n  - 2k + s + 1) is the unique extremal graph; if 
n =- ~(k,s), then there are precise O, two extremal graphs, (3k - s -  1) O{n-3k+s+  1} 

and ( ( 2 k - s -  1 ) , n - Z k + s + l ) .  

Proof .  Because of  (6), Theorem 2 is proved if  we show the following. 

(**) For each n>~ 1, if  JG I = n and e(G)>~ max{f~(n,k),g~(k)} for integers k,s 
with k>~s>~l,k>~2 and n > ~ 3 k - s -  1, then G D0k-"  0e  ~ or G ~- ( ( 2 k - s -  

1 ) , n - Z k + s + l )  or G ~  ( 3 k - s -  1 ) O { n - 3 k + s + l } .  

Proceeding similar as in the proof  of  Theorem 1, we use induction on n. For n = 1, 

assertion (**) is trivial. Let n>~2 and assume that (**) holds for graphs with fewer 

than n vertices. Let k, s such that k >7 s ~> 1, k >~ 2, n ~> 3k - s - 1 and let G be a graph 

with ]G] = n and e(G)>~ max{fs(n,k),gs(k)}. If n = 3k - s - 1, then e(G)~gs(k) 
implies G ~ (3k - s - 1 ), and we are done. Hence let n >~ 3k - s. 

For s = 1, assertion (**) can be obtained from Theorem 1 as follows. Let G + result 

from G by adding to G a new vertex X which is joined by edges to all vertices of  G. 

Note that f ( n + l , k )  =- f l (n ,k )+n and g ( n +  1,k) = gl(k)+n. Hence IG+[ -- n + l  >~3k 
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and e(G +) = e( G) + n >- m a x { f  l (n ,k  ),g~(k )} + n = m a x { f ( n  + 1,k ),g(n + 1,k)}, and 

_ ~¢-.+1 G + ~ ( ( 2 k  1),  we conclude from Theorem 1 that G+DO k or G + E ~o (3k-l) or = -- 

-,~n+l then (because n - 2 k + 2 ) .  I f  G + ~ O k, then (obviously)  G _~ 0 k- I  @e 1. I f  G + E ~zt (3k_l), 

G + has a vertex o f  valency n) G + must be isomorphic to a graph which results from 

(3k - 1) by attaching n - 3k + 2 pendant edges to a fixed vertex o f  (3k - 1); hence 

G ~ (3k - 2) ©{n - 3k + 2}. Finally, G + -~ ((2k - 1), n - 2k + 2) immediately implies 

G ~ ((2k - 2) ,n  - 2k + 2). This settles the case s = 1. Hence let s~>2. 

In addition, statement (**) is easily seen to be true for k = s --  2. Hence let k~>3. 

I f  the minimum valency o f  G is at least 2k - s, then we can apply the above 

mentioned theorem of  Corrfidi and Hajnal in the following way. Let G + result from G 

by adding s new vertices to G such that (i)  each new vertex is adjacent to all vertices 

o f  G, and (ii)  there is no edge between any two of  the new vertices. Then IG+[ ~>3k 

and G + has minimum valency at least 2k. Hence we can apply the theorem of  Corrfidi 

and Hajnal to G +, thus obtaining G+_~ O k. From this one easily obtains G 2 0 k-s @e s. 

Indeed, for t E {0, 1 , . . . ,  Ls/2J } call a spanning subgraph H of  G a t-graph i f  H = 

0 k-s+t @e ~-2t @{r} with r>~2t and note that G possesses at least one t-graph for some 

t since each system of  k disjoint chordless cycles of  G + gives rise to a t-graph of  G 

(where t is the number o f  those of  the k chordless cycles which do not contain an edge 

o f  G). For a t-graph H with t minimal denote by Cl . . . . .  C k - s + t ,  e l  . . . . .  e s - 2 t ,  Y1 . . . . .  Yr 

the cycle-, edge-, and vertex-components o f  H,  respectively. Suppose that t/> 1. If  there 

exists an edge of  G joining a vertex ~ to another vertex Yj or to a cycle Cj, then 

one readily obtains a contradiction to the minimality o f  t. Otherwise, one concludes 

from the fact that each Yi has valency at least 2k - s > s - 2t that there is an edge 

eh such that II1 is a neighbor of  one end-vertex of  eh and Y2 is a neighbor o f  the 

other, which also gives rise to a contradiction to the minimali ty o f  t. Hence t = 0, 

implying G _~ 0 k-s @e s. Consequently, we may assume that G contains a vertex X~ with 

v(Xl ) <~ 2k - s - 1. 

Case 1:v(X1 ) = 0. Let G ~ = G - X1 and observe that 

(7) f ~ ( n , k )  - f s ( n  - 1,k) = 2k - s - 1. 

Hence e(G' )  = e(G)>>, max{ f~(n ,k) ,9~(k)}>~ max{f~(n  - 1,k) + 1,gs(k)}.  Thus, we 

can apply the induction hypothesis to G ~ and find G~D 0 k-s  ©e ~ or G ~ --- ( 3 k -  s -  1) 

@ { n -  3k + s } .  Hence G D 0 k-~ @e ~ or G ~ ( 3 k -  s -  1 ) @ { n -  3k + s + 1}, and Case 

1 is settled. 

Case 2: v(X1)>~ 1. Let 3(2 be a neighbor Of Xl and put G '  = G - X 1  - ) (2 .  It follows 

from V(Xl ) ~< 2k - s - 1 that 

(8) e(G)  - e(G')<~n + 2k - s - 3, where equality holds i f  and only i f  v(Xl)  = 

2 k - s -  1 and v ( X 2 ) = n - 1 .  

One easily obtains the following equalities: 

(9)  9s(k)  - 9 s - l ( k  - 1) = 6k - 2s - 5, 

f ~ ( n , k ) -  f s - l ( n -  2 ,k  - 1) = n + 2k - s - 3. 
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W e  c la im that 

(10)  e(G')>~ m a x { f  s_ l (n  - 2 , k  - 1 ) ,gs_ l (k  - 1 ) +  1}. 

Clear ly  (by (8),  (9)  and because e ( G ) > ~ f s ( n , k ) )  we have  e ( G ' ) > ~ f s _ l ( n -  2 , k -  1) 

and thus it remains to show e ( G t ) > ~ y s _ l ( k -  1 ) +  1. Assume  e ( G ' ) < ~ g s _ l ( k -  1). Then 

f s - i ( n -  2 , k -  1 ) < ~ g s - l ( k -  1) and we  obtain f rom (6) 

(k - 1)(k - 2)  
n < ~ 3 k - s -  1 +  

2(2k - s - 2) " 

On  the other  hand, 6k - 2s - 5 = 9s( k ) - 9~-1( k - 1 ) <~ e( G ) - e( G' ) <~ n + 2k - s - 3, 

and thus 4k - s - 2 ~< n. Hence  

4k - s - 2 <<, 3k - s - l + 

which  (because k>~s) implies  

(k - 1)(k - 2)  

2 ( 2 k -  s -  2)  ' 

( k - l ) ( k - 2 )  k -  1 1 - k  
0 < ~ l - k +  ~ < l - k + - -  - - -  

2 ( 2 k - s - 2 )  2 2 ' 

contradict ing k ~> 2. This  proves  (10). 

App ly ing  the induct ion hypothesis  to G ' ,  we conclude ( f rom (10) )  GI_~ 0 k-s  t3e ~- t  

or  G '  ~ ((2k - s - 2) ,n  - 2k + s). The former  clearly implies  G _ ~ 0  k-~ Oe~; thus 

assume the latter. Then e ( G ' )  = f s - l ( n  - 2 ,k  - 1), which (by (8),  (9)  and because 

e ( G ) > ~ f s ( n , k ) )  implies  v (X l )  = 2 k -  s -  1 and v(X2) =- n -  1. Hence  G - X 1  

( ( 2 k -  s -  1), n -  2k + s ) ,  f rom which one easily concludes  G ~ ( ( 2 k -  s -  1), n -  2k + s  + 1) 

or G ~ 0  k-s  t3e.~. [] 
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