

DISCRETE MATHEMATICS

ELSEVIER Discrete Mathematics 149 (1996) 291-297

Note

On independent cycles and edges in graphs

Thomas Andreae

Mathematisches Seminar, Universiffit Hamburg, Bundesstr. 55. D-20146 Hamburg, Germany

Received 20 November 1992; revised 3 June 1994

Abstract

For integers k, s with $0 \le s \le k$, let $\mathcal{G}(n, k, s)$ be the class of graphs on n vertices not containing k independent (i.e., vertex disjoint) subgraphs of which $k-s$ are cycles and the remaining are complete graphs K_2 . Let $EX(n, k, s)$ be the set of members of $\mathcal{G}(n, k, s)$ with the maximum number of edges and denote the number of edges of a graph in $EX(n, k, s)$ by $ex(n, k, s)$; to avoid trivialities, assume $k \ge 2$ and $n \ge 3k - s$. Justesen (1989) determined $ex(n, k, 0)$ for all $n \ge 3k$ and $EX(n, k, 0)$ for all $n > (13k - 4)/4$, thereby settling a conjecture of Erdős and Pósa; further $EX(n,k,k)$ was determined by Erdős and Gallai $(n \geq 2k)$. In the present paper, by modifying the argument presented by Justesen, we determine $EX(n,k,s)$ for all n,k,s ($0 \le s \le k, k \ge 2$, $n \geqslant 3k - s$).

1. Introduction

All graphs considered in this paper are finite, undirected and do not contain loops or multiple edges. For basic graph-theoretical terminology, we refer to [1]. To a large extent, we adopt the notation of [5]. The letter G always denotes a graph; by $|G|$ and $e(G)$, we denote the number of vertices and edges of G, respectively, and $v(X)$ denotes the valency of a vertex X (with respect to the graph denoted G). The number $e(G)$ is called the *size* of G. The complete graph on *n* vertices is denoted $\langle n \rangle$ (or likewise K_n); the symbol $\langle p, q \rangle$ denotes a complete bipartite graph with classes of cardinality p and q, respectively, and $\langle \langle p \rangle, q \rangle$ denotes the graph obtained from $\langle p, q \rangle$ by adding all possible edges between vertices in the class of cardinality p ; 0^k denotes a graph consisting of *k independent* (i.e., vertex disjoint) cycles, and $G \supseteq 0^k$ means that G contains k independent cycles. By $G \cup H$ we denote the union of the graphs G and H, and $G \cup H$ denotes the *disjoint* union of G and H. By $m(G)$ we denote the *matching number* of G, i.e., the maximum number of independent edges of G. For positive integers *n,k* such that $n \ge 2$, let $f(n, k)$ denote the number of edges of the graph $\langle (2k-1), n-2k+1 \rangle$, i.e.,

$$
f(n,k) = {2k-1 \choose 2} + (2k-1)(n-2k+1) = (2k-1)(n-k).
$$

A classical result in extremal graph theory is the following.

Theorem A (Erdős and Pósa [4]). *For an integer k* ≥ 2 , *let* $|G| = n \geq 24k$. *If e(G) > f*(*n,k*), then $G \supseteq 0^k$; *further,* $\langle (2k - 1), n - 2k + 1 \rangle$ *is the uniquely determined extremal graph, i.e., if* $e(G) = f(n,k)$ *, then* $G \not\supseteq 0^k$ *if and only if* $G \cong \langle (2k-1),$ $n-2k+1$).

For positive integers *n*, *k* such that $n \ge 3k - 1$, let

$$
g(n,k)=\binom{3k-1}{2}+n-3k+1,
$$

which (in particular) is the number of edges of a graph with n vertices resulting from the complete graph $(3k - 1)$ by attaching $n - 3k + 1$ pendant edges. Justesen established the following extension of Theorem A to the range $3k \le n < 24k$, conjectured by Erdős and P6sa.

Theorem B (Justesen, [5]). *For any integer* $k \ge 2$, if $|G| = n \ge 3k$ *and* $e(G) \ge$ $\max\{f(n,k),g(n,k) + 1\}$, *then* $G \supseteq 0^k$ *or* $G \cong \langle (2k-1),n-2k+1 \rangle$.

In the present paper we show that Justesen's argument can be modified to obtain an extended version of Theorem B which includes the complete determination of the corresponding extremal graphs. Let $\mathcal{K}_{(3k-1)}^n$ be the class of graphs G on n vertices $(n \geq 3k - 1, k \geq 2)$ which can be written as

$$
G = S_{(3k-1)} \cup T_1 \cup \cdots \cup T_r \quad (r \geq 0),
$$

where $S_{(3k-1)}$ is a subdivision of the complete graph $\langle 3k-1 \rangle$ and T_1, \ldots, T_r are pairwise disjoint trees with the property that the intersection $T_i \cap S_{(3k-1)}$ is just a single vertex $(i = 1, ..., r)$. Thus, roughly speaking, G results from $\langle 3k-1 \rangle$ by subdivision of edges and attachment of trees; note also that, in this definition, we have not excluded the special cases $r = 0$ and $S_{(3k-1)} = (3k - 1)$. Clearly

 $e(G) = g(n,k)$ for all $G \in \mathcal{K}_{(3k-1)}^n$.

Now our extension of Theorem B reads as follows.

Theorem 1. *For an integer k* \geqslant 2, let $|G| = n \geqslant 3k$. If $e(G) > \max\{f(n,k),g(n,k)\},\$ *then* $G \supseteq O^k$; *the extremal graphs, i.e., the graphs G with* $e(G) = \max\{f(n,k), g(n,k)\}\$ *and* $G \not\equiv 0^k$ are the following. If $n < (13k-4)/4$, then $\mathcal{K}_{(3k-1)}^n$ is precisely the set of *extremal graphs; if* $n > (13k-4)/4$, *then* $\langle (2k-1), n-2k+1 \rangle$ *is the unique extremal*

graph; if $n = (13k - 4)/4$, *then G is an extremal graph if and only if* $G \in \mathcal{K}_{(3k-1)}^n$ *or* $G \cong \langle (2k-1), n-2k+1 \rangle$.

The proof of Theorem I is the content of Section 2. Similar as the proof of Theorem B given by Justesen [5], our proof of Theorem 1 is based on a result of Corrádi and Hajnal [2] stating that $G \supseteq 0^k$ for each G with $|G| \geq 3k$ and minimum valency at least 2k.

Let $\mathscr{G}(n,k,s)$ be defined as in the abstract $(0 \le s \le k)$. Note that, for the particular case $s = 0$, Theorem 1 provides a solution of the problem of determining the members of $\mathcal{G}(n,k,s)$ having maximum size. For another particular case, namely, for $s = k$, the same problem was settled by Erdős and Gallai [3] who determined, for given *n* and k, the graphs of maximum size with $|G| = n$ and $m(G) < k$; see also [1, Ch. II, Corollary 1.10]. In Section 3 (Theorem 2), we settle the general case of an arbitrary s with $0 < s \leq k$.

2. The proof of Theorem I

Clearly, $G \not\equiv 0^k$ if $G \cong \langle (2k-1),n-2k+1 \rangle$ or $G \in \mathcal{K}_{(3k-1)}^n$. By an easy computation, one obtains

(1) $g(n,k) \geq f(n,k)$ if and only if $n \leq \frac{1}{4}(13k - 4)$,

where equality holds simultaneously. Hence Theorem 1 is proved if we show the following. (For proof-technical reasons, we have included the trivial case $n = 3k - 1$.)

(*) For each $n \ge 1$, if $|G| = n$ and $e(G) \ge \max\{f(n,k),g(n,k)\}\)$ for an integer k with $k \ge 2$ and $n \ge 3k - 1$, then $G \supseteq 0^k$ or $G \cong \langle (2k - 1), n - 2k + 1 \rangle$ or $G \in \mathcal{K}_{(3k-1)}^n$.

The proof of $(*)$ is carried out by induction on *n*, the basis of the induction being trivial. Let G be a graph with $|G| = n \geq 2$ and assume that (*) holds for all graphs with fewer than *n* vertices; let further $k \ge 2$ such that $n \ge 3k - 1$ and $e(G) \ge \max\{f(n,k),g(n,k)\}.$ If $n = 3k - 1$, then $e(G) \ge g(n,k)$ implies $G \cong (3k - 1);$ hence $G \in \mathcal{K}_{(3k-1)}^n$, and we are done. Thus let $n \geq 3k$. If $k = 2$, then the assertion (*) immediately follows from a well-known result stating that any G with $n \ge 6$ vertices and at least $3n-6$ edges contains two disjoint cycles unless $G \cong \langle \langle 3 \rangle, n-3 \rangle$; see [4,6] or [5]. Hence let $k \ge 3$.

Let X_1 be a vertex of G such that $v(X_1)$ is minimum. If $v(X_1) \ge 2k$, then $G \supseteq 0^k$ by the theorem of Corrádi and Hajnal mentioned in Section 1. Hence let $v(X_1) \le 2k - 1$. We now finish the proof (similar as in [5]) by treating the alternatives: X_i is contained or not contained in a triangle of G.

Case 1: X_1 *is contained in a triangle of G. Let* X_1, X_2, X_3 be the vertices of a triangle of *G* and put $G' = G - X_1 - X_2 - X_3$. Because $v(X_1) \le 2k - 1$, we have

(2) $e(G) - e(G') \leq 2n + 2k - 6$, where equality holds if and only if $v(X_1) = 2k - 1$ and $v(X_2) = v(X_3) = n - 1$.

One easily obtains the following equalities;

(3)
$$
g(n,k) - g(n-3,k-1) = 9k - 9
$$
,
\n $f(n,k) - f(n-3,k-1) = 2n + 2k - 6$.

We claim that

(4)
$$
e(G') \ge \max\{f(n-3,k-1), g(n-3,k-1)+1\}.
$$

For the proof of (4), note that from $e(G) \ge f(n, k)$, together with (2) and (3), one obtains $e(G') \ge f(n-3, k-1)$. Now, assume $g(n-3, k-1) \ge e(G')$. Then $g(n-3, k-1)$ $1)\geqslant f(n-3,k-1)$, and thus by (1)

$$
n \leqslant 3 + \frac{13(k-1)-4}{4} = \frac{13k-5}{4}.
$$

On the other hand, $g(n,k) - g(n-3,k-1) \leq e(G) - e(G')$ and thus, by (2) and (3), $9k - 9 \le 2n + 2k - 6$. Hence

$$
\frac{7k-3}{2}\leqslant n\leqslant \frac{13k-5}{4},
$$

contradicting $k \ge 3$. Hence we have proved (4).

Applying the induction hypothesis to G', we conclude from (4) that $G' \supseteq 0^{k-1}$ or $G' \cong \langle (2k-3), n-2k \rangle$. (Note that, because $e(G') > g(n-3, k-1), G' \in \mathcal{K}_{(3k-4)}^{n-3}$) is impossible.) If $G' \supseteq 0^{k-1}$, then $G \supseteq 0^k$ and we are done. If $G' \cong \langle (2k-3), n-2k \rangle$, then $e(G') = f(n-3, k-1)$ and thus (by (2), (3) and because $e(G) \ge f(n, k)$) $v(X_1) =$ $2k - 1$, $v(X_2) = v(X_3) = n - 1$. Hence $G - X_1 \cong \langle (2k - 1), n - 2k \rangle$ from which one easily obtains $G \cong \langle (2k - 1), n - 2k + 1 \rangle$ or $G \supseteq 0^k$.

Case 2: X_1 *is not contained in a triangle of G.* Clearly the following equalities hold.

(5) $g(n,k) - g(n-1,k) = 1$, $f(n,k) - f(n-1,k) = 2k-1$.

If $v(X_1) = 0$, let $G' = G - X_1$. Then $e(G') = e(G) \ge \max\{f(n,k), g(n,k)\}$ $\max\{g(n-1,k), f(n-1,k)\}\$, from which we obtain $G' \supseteq 0^k$ by applying the induction hypothesis to G'. Hence $G \supset 0^k$.

If $v(X_1) \ge 1$, then let G' result from G by contracting an edge (X_1, X_2) of G. Then $e(G') = e(G) - 1$ by the hypothesis of Case 2 and thus by (5) $e(G') \ge \max\{g(n-1)\}$ 1,k), $f(n-1,k) + 1$. Hence application of the induction hypothesis to G' yields $G' \supseteq 0^k$ or $G' \in \mathcal{H}_{(3k-1)}^{n-1}$. If $G' \supseteq 0^k$, then $G \supseteq 0^k$, and we are done. Let $G' \in \mathcal{H}_{(3k-1)}^{n-1}$. If $v(X_1) \le 2$, then G can be obtained from G' by attaching a pendant edge to G' or subdividing an edge of G' and thus, in either case, we have $G \in \mathcal{K}_{(3k-1)}^n$. Now let $v(X_1) \geq 3$. Then G has minimum valency at least 3 and we conclude from the hypothesis of Case 2 that the same holds for G'. Hence $G' \cong \langle 3k-1 \rangle$ since, otherwise, $G' \in$ $\mathcal{H}_{(3k-1)}^{n}$ would imply that G' has minimum valency at most 2. Let $G'' = G - X_1 - X_2$. Then $G'' \cong \langle 3k - 2 \rangle$ and each of the vertices X_1 and X_2 has at least two neighbors in G'' . From this one immediately obtains $G \supseteq 0^k$. \Box

3. The Case $s \geq 1$

We need some additional notation. Throughout, let k, s be integers with $k \geq s \geq 1$ and $k \ge 2$. By 0^{k-s} $\cup e^s$ we denote a graph consisting of k components of which s are complete graphs $\langle 2 \rangle$ and the remaining are cycles. By $\{n\}$ we denote the edgeless graph with *n* vertices. For $n \ge 2k - s$, let $f_3(n,k)$ denote the number of edges of the graph $\langle (2k - s - 1), n - 2k + s + 1 \rangle$, i.e.,

$$
f_s(n,k) = {2k-s-1 \choose 2} + (2k-s-1)(n-2k+s+1).
$$

Further, denote by $g_s(k)$ the number of edges of the complete graph $\langle 3k-s-1 \rangle$, i.e.,

$$
g_s(k)=\binom{3k-s-1}{2}.
$$

By an easy computation, one obtains that

(6) $g_s(k) \ge f_s(n,k)$ if and only if $n \le 3k - s - 1 + \frac{k(k-1)}{2(2k-s-1)}$

where equality holds simultaneously. Now, with the short-hand notation

$$
\alpha(k,s) = 3k - s - 1 + \frac{k(k-1)}{2(2k - s - 1)},
$$

our result is the following.

Theorem 2. For integers k,s with $k \ge s \ge 1$ and $k \ge 2$, let $|G| = n \ge 3k - s$. If $e(G) > 0$ $\max\{f_s(n,k),g_s(k)\}\$, then $G \supseteq 0^{k-s} \cup e^s$, and the extremal graphs are the following. *If* $n < \alpha(k, s)$, then $\langle 3k - s - 1 \rangle \cup \{n - 3k + s + 1\}$ *is the unique extremal graph*; *if* $n > \alpha(k, s)$, then $\langle (2k - s - 1), n - 2k + s + 1 \rangle$ *is the unique extremal graph; if* $n = \alpha(k, s)$, then there are precisely two extremal graphs, $\langle 3k - s - 1 \rangle \cup \{n - 3k + s + 1\}$ *and* $\langle (2k - s - 1), n - 2k + s + 1 \rangle$.

Proof. Because of (6), Theorem 2 is proved if we show the following.

(**) For each $n \ge 1$, if $|G| = n$ and $e(G) \ge \max\{f_s(n,k), g_s(k)\}\$ for integers k, s with $k \ge s \ge 1, k \ge 2$ and $n \ge 3k - s - 1$, then $G \supseteq 0^{k-s}$ $\bigcup_{e} s$ or $G \cong \langle 2k - s - 1 \rangle$ 1 , $n-2k+s+1$ or $G \cong (3k-s-1) \cup \{n-3k+s+1\}.$

Proceeding similar as in the proof of Theorem 1, we use induction on *n*. For $n = 1$, assertion (**) is trivial. Let $n \geq 2$ and assume that (**) holds for graphs with fewer than *n* vertices. Let k, s such that $k \ge s \ge 1$, $k \ge 2$, $n \ge 3k - s - 1$ and let G be a graph with $|G| = n$ and $e(G) \ge \max\{f_s(n,k), g_s(k)\}\$. If $n = 3k - s - 1$, then $e(G) \ge g_s(k)$ implies $G \cong \langle 3k - s - 1 \rangle$, and we are done. Hence let $n \geq 3k - s$.

For $s = 1$, assertion (**) can be obtained from Theorem 1 as follows. Let G^+ result from G by adding to G a new vertex X which is joined by edges to all vertices of G . Note that $f(n+1,k) = f_1(n,k)+n$ and $g(n+1,k) = g_1(k)+n$. Hence $|G^+| = n+1 \ge 3k$

and $e(G^+) = e(G) + n \ge \max\{f_1(n,k), g_1(k)\} + n = \max\{f(n+1,k), g(n+1,k)\}$, and we conclude from Theorem 1 that $G^+ \supseteq 0^k$ or $G^+ \in \mathcal{K}_{(3k-1)}^{n+1}$ or $G^+ \cong \langle (2k-1),$ $n-2k+2$). If $G^+ \supseteq 0^k$, then (obviously) $G \supseteq 0^{k-1}$ $\bigcup e^1$. If $G^+ \in \mathcal{H}_{(3k-1)}^{n+1}$, then (because G^+ has a vertex of valency n) G^+ must be isomorphic to a graph which results from $\langle 3k - 1 \rangle$ by attaching $n - 3k + 2$ pendant edges to a fixed vertex of $\langle 3k - 1 \rangle$; hence $G \cong (3k-2) \cup \{n-3k+2\}$. Finally, $G^+ \cong \langle (2k-1), n-2k+2 \rangle$ immediately implies $G \cong \langle (2k-2), n-2k+2 \rangle$. This settles the case $s = 1$. Hence let $s \ge 2$.

In addition, statement (**) is easily seen to be true for $k = s = 2$. Hence let $k \ge 3$. If the minimum valency of G is at least $2k - s$, then we can apply the above mentioned theorem of Corrádi and Hajnal in the following way. Let G^+ result from G by adding s new vertices to G such that (i) each new vertex is adjacent to all vertices of G, and (ii) there is no edge between any two of the new vertices. Then $|G^+|\geq 3k$ and G^+ has minimum valency at least $2k$. Hence we can apply the theorem of Corrádi and Hajnal to G^+ , thus obtaining $G^+ \supseteq 0^k$. From this one easily obtains $G \supseteq 0^{k-s} \cup e^s$. Indeed, for $t \in \{0, 1, ..., |s/2|\}$ call a spanning subgraph H of G a *t-graph* if $H =$ 0^{k-s+t} $\bigcup e^{s-2t} \bigcup \{r\}$ with $r \ge 2t$ and note that G possesses at least one t-graph for some t since each system of k disjoint chordless cycles of G^+ gives rise to a t-graph of G (where t is the number of those of the k chordless cycles which do not contain an edge of G). For a *t*-graph H with t minimal denote by $C_1, \ldots, C_{k-s+t}, e_1, \ldots, e_{s-2t}, Y_1, \ldots, Y_r$ the cycle-, edge-, and vertex-components of H, respectively. Suppose that $t \ge 1$. If there exists an edge of G joining a vertex Y_i to another vertex Y_j or to a cycle C_j , then one readily obtains a contradiction to the minimality of t . Otherwise, one concludes from the fact that each Y_i has valency at least $2k - s > s - 2t$ that there is an edge e_h such that Y_1 is a neighbor of one end-vertex of e_h and Y_2 is a neighbor of the other, which also gives rise to a contradiction to the minimality of t. Hence $t = 0$, implying $G \supset 0^{k-s} \bigcup e^s$. Consequently, we may assume that G contains a vertex X_1 with $v(X_1) \le 2k - s - 1$.

Case 1: $v(X_1) = 0$. Let $G' = G - X_1$ and observe that

(7) $f_s(n,k) - f_s(n-1,k) = 2k - s - 1.$

Hence $e(G') = e(G) \ge \max\{f_s(n,k), g_s(k)\}\ge \max\{f_s(n-1,k) + 1, g_s(k)\}\$. Thus, we can apply the induction hypothesis to G' and find $G' \supseteq 0^{k-s}$ $\bigcup e^s$ or $G' \cong \langle 3k - s - 1 \rangle$ $\bigcup \{n-3k+s\}$. Hence $G \supseteq 0^{k-s}$ \bigcup_{e^s} or $G \cong \langle 3k-s-1 \rangle \bigcup \{n-3k+s+1\}$, and Case 1 is settled.

Case 2: $v(X_1) \ge 1$. Let X_2 be a neighbor of X_1 and put $G' = G - X_1 - X_2$. It follows from $v(X_1) \le 2k - s - 1$ that

(8) $e(G) - e(G') \le n + 2k - s - 3$, where equality holds if and only if $v(X_1) =$ $2k - s - 1$ and $v(X_2) = n - 1$.

One easily obtains the following equalities:

(9) $q_s(k) - q_{s-1}(k-1) = 6k - 2s - 5$, $f_s(n,k) - f_{s-1}(n-2,k-1) = n + 2k - s - 3.$ We claim that

$$
(10) e(G') \geq \max\{f_{s-1}(n-2,k-1),g_{s-1}(k-1)+1\}.
$$

Clearly (by (8), (9) and because $e(G) \ge f_s(n,k)$) we have $e(G') \ge f_{s-1}(n-2,k-1)$ and thus it remains to show $e(G') \geq g_{s-1}(k-1)+1$. Assume $e(G') \leq g_{s-1}(k-1)$. Then $f_{s-1}(n-2,k-1) \leq g_{s-1}(k-1)$ and we obtain from (6)

$$
n \leqslant 3k - s - 1 + \frac{(k-1)(k-2)}{2(2k - s - 2)}.
$$

On the other hand, $6k - 2s - 5 = g_s(k) - g_{s-1}(k-1) \leq e(G) - e(G') \leq n + 2k - s - 3$, and thus $4k - s - 2 \leq n$. Hence

$$
4k-s-2\leqslant 3k-s-1+\frac{(k-1)(k-2)}{2(2k-s-2)},
$$

which (because $k \geq s$) implies

$$
0 \leq 1 - k + \frac{(k-1)(k-2)}{2(2k - s - 2)} \leq 1 - k + \frac{k-1}{2} = \frac{1-k}{2},
$$

contradicting $k \ge 2$. This proves (10).

Applying the induction hypothesis to G', we conclude (from (10)) $G' \supset 0^{k-s} \cup e^{s-1}$ or $G' \cong \langle (2k - s - 2), n - 2k + s \rangle$. The former clearly implies $G \supseteq 0^{k-s} \cup e^s$; thus assume the latter. Then $e(G') = f_{s-1}(n-2, k-1)$, which (by (8), (9) and because $e(G) \ge f_s(n,k)$ implies $v(X_1) = 2k - s - 1$ and $v(X_2) = n - 1$. Hence $G - X_1 \cong$ $\langle (2k - s - 1), n - 2k + s \rangle$, from which one easily concludes $G \cong \langle (2k - s - 1), n - 2k + s + 1 \rangle$ or $G \supset 0^{k-s} \cup e^s$. \Box

References

- [1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
- [2] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439.
- [3] P. Erd6s and T Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356.
- [4] P. Erd6s and L. P6sa, On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen 9 (1962) 3-12.
- [5] P. Justesen (1989), On independent circuits in finite graphs and a conjecture of Erd6s and P6sa, in: L.D. Andersen et al., eds., Graph Theory in Memory of G.A. Dirac, Proc. the Meeting held in Sandbjerg, 2-7 June 1985, Annals of Discrete Mathematics, Vol. 41 (North-Holland, Amsterdam 1989) 299-305.
- [6] H. Walther and H.-J. Voss, 0ber Kreise in Graphen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1974.