TOUGHNESS OF GRAPHS AND THE EXISTENCE OF FACTORS

P. KATERINIS*
Department of Mathematics, Goldsmiths' College, University of London, U.K.

Rcccived 6 December 1984
Revised 19 January 1988

Abstract

The toughness of a graph G, denoted by $t(G)$, is defined as the largest real number t such that the deletion of any s vertices from G results in a graph which is either connected or else has at most s / t components.

Chvatal who introduced the concept of toughness in [2] conjectured that if G is a graph and k a positive integer such that $k|V(G)|$ is even and $t(G) \geqslant k$ then G has a k-factor. In [3] it was proved that Chvátal's conjecture is true. The main purpose of this paper is to present two theorems which imply the truth of Chvátal's conjecture as a special case.

All graphs considered are simple and finite. We refer the reader to [1] for standard graph theoretic terms not defined in this paper. Let G be a graph. Given a function $f: V(G) \rightarrow \mathbb{Z}^{+}$, we say that G has an f-factor if there exists a spanning subgraph H of G such that $d_{H}(x)=f(x)$ for every $x \in V(G)$. If f is the constant function taking the value k then an f-factor is said to be a k-factor. Thus a k-factor of G is a k-regular spanning subgraph of G. If X and Y are subsets of $V(G)$ then $e(X, Y)$ denotes the number and $E(X, Y)$ the set of edges of G having one end-vertex in X and the other in Y.

A subset I of $V(G)$ is an independent set of G if no two elements of I are adjacent in G and a subset C of $V(G)$ is a covering set if every edge of G has at least one end in C. It is not very difficult to deduce that a set $I \subseteq V(G)$ is an independent set of G if and only if $V(G) \backslash I$ is a covering set of G (Theorem 7.1 of [1]).
Tutte [5] proved the following theorem.
Tutte's f-factor theorem. A graph G has an f-factor if and only if

$$
q_{G}(D, S ; f)+\sum_{x \in S}\left(f(x)-d_{\sigma-n}(x)\right) \leqslant \sum_{x \in D} f(x)
$$

for all sets $D, S \subseteq V(G), D \cap S=\emptyset$, where $q_{G}(D, S ; f)$ denotes the number of components C of $(G-D)-S$ such that $e(V(C), S)+\sum_{x \in V(C)} f(x)$ is odd.

[^0]0012-365X/90/\$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland)

He also noted that for any graph G and any function f

$$
q_{G}(D, S ; f)+\sum_{x \in S}\left(f(x)-d_{G-D}(x)\right)-\sum_{x \in D} f(x) \equiv \sum_{x \in V(G)} f(x)(\bmod 2)
$$

Let G be a non-complete graph and let t be a real number. If for every vertex-cutset S of $G,|S| \geqslant t \omega(G-S)$, then we say that G is t-tough. The largest t such that G is t-tough is called the toughness of G and is denoted by $t(G)$. If $G \cong K_{n}, t(G)$ is defined as $n-1$, and G is said to be t-tough if and only if $t \leqslant n-1$.

Chvátal introduced the concept of toughness in [2] and made the following conjecture.

Chvátal's conjecture. Let G be a graph and k a positive integer such that $k|V(G)|$ is even and G is k-tough. Then G has a k-factor.

In [3] it was proved that Chvâtal's conjecture is true. The main purpose of this paper is to present two theorems (Theorem 1 and Theorem 3) which imply the truth of Chvátal's conjecture as a special case. The first of these theorems is as follows.

Theorem 1. Let G be a graph, a and b two positive integers and suppose that

$$
t(C) \geqslant\left\{\begin{array}{l}
\frac{(b+a)^{2}+2(b-a)}{4 a} \text { when } b \equiv a(\bmod 2) \\
\frac{(b+a)^{2}+2(b-a)+1}{4 a} \text { when } b \neq a(\bmod 2)
\end{array}\right.
$$

If f is a function from $V(G)$ into \mathbb{Z}^{+}such that
(i) $\sum_{x \in V(G)} f(x)$ is even, and
(ii) $a \leqslant f(x) \leqslant b$ for every $x \in V(G)$,
then G has an f-factor.

Clearly Theorem 1 implies the truth of Chvátal's conjecture, in the case when $a=b=k$. In addition to Theorem 1 we shall also obtain the following result, which is stronger than Theorem 1 , for the case $1 \leqslant a \leqslant b \leqslant 2$.

Theorem 2. Let G be a 2-tough graph. Then for any function $f: V(G) \rightarrow\{1,2\}$ such that $\sum_{x \in V(G)} f(x)$ is even, G has an f-factor.

Before stating the second main theorem of this paper it is necessary to make the following definition.

Let G be a graph and let g and f be two integer-valued functions defined on $V(G)$, such that $g(x) \leqslant f(x)$ for all $x \in V(G)$. Then a $[g, f]$-factor of G is a
spanning subgraph F satisfying $g(x) \leqslant d_{F}(x) \leqslant f(x)$ for all $x \in V(G)$. If $g(x)=a$ and $f(x)=b$ for all $x \in V(G)$, then we will call such a $[g, f]$-factor, an $[a, b]$-factor.

Theorem 3. Let G be a graph and a, b be two positive integers such that $b \geqslant a$. If $t(G) \geqslant(a-1)+\frac{a}{b}$ and $a|V(G)|$ is even when $a=b$, then G has an $[a, b]-$ factor.

For the proofs of Theorem 1 and Theorem 2 we shall need the following lemmas.

Lemma 1. Let H be a graph and S_{1}, \ldots, S_{b-1} be a partition of the vertices of H such that if $x \in S_{j}$ then $d(x) \leqslant j$. (We allow $S_{j}=\emptyset$.) Then there exists a covering set C of H and an independent set I, such that

$$
\left.\begin{array}{l}
\sum_{j=1}^{b-1}(b-j) c_{j} \leqslant \sum_{j=1}^{b-1} j(b-j) i_{j} \\
\text { where }\left|I \cap S_{j}\right|=i_{j} \\
\text { and }\left|C \cap S_{j}\right|=c_{j}
\end{array}\right\} \text { for every } j=1, \ldots, b-1
$$

Proof. We proceed by induction on the number of vertices of H. If $|V(H)|=1$, the lemma clearly holds. Let $m=\min \left\{j \mid S_{j} \neq \emptyset\right\}$ and choose $y \in S_{m}$. Put $H^{\prime}=$ $H-\left(\{y\} \cup N_{H}(y)\right)$ and define $S_{j}^{\prime}=S_{j} \cap V\left(H^{\prime}\right)$.

If $V(H)=\{y\} \cup N_{H}(y)$, the lemma will clearly hold if we put $I=\{y\}$ and $C=N_{H}(y)$. So suppose that $V(H) \neq\{y\} \cup N_{H}(y)$. Then by induction there exists a covering set C^{\prime} and an independent set I^{\prime} of H^{\prime} such that

$$
\sum_{j=1}^{b-1}(b-j) c_{j}^{\prime} \leqslant \sum_{j=1}^{b-1} j(b-j) i_{j}^{\prime}
$$

where $c_{j}^{\prime}=\left|C^{\prime} \cap S_{j}^{\prime}\right|$ and $i_{j}^{\prime}=\left|I^{\prime} \cap S_{j}^{\prime}\right|$. Put $I=I^{\prime} \cup\{y\}$ and $C=C^{\prime} \cup N_{H}(y)$. Then

$$
\begin{aligned}
\sum_{j=1}^{b-1} j(b-j) i_{j} & =\sum_{j=1}^{b-1} j(b-j) i_{j}^{\prime}+m(b-m) \\
& \geqslant \sum_{i=1}^{b-1}(b-j) c_{j}^{\prime}+m(b-m)
\end{aligned}
$$

But since $d_{H}(y) \leqslant m$ and $m=\min \left\{j \mid S_{j} \neq \emptyset\right\}$, it follows that

$$
\sum_{j=1}^{b-1}(b-j) c_{j} \leqslant \sum_{j=1}^{b-1}(b-j) c_{j}^{\prime}+m(b-m)
$$

Hence

$$
\sum_{j=1}^{b-1} j(b-j) i_{j} \geqslant \sum_{j=1}^{b-1}(b-j) c_{j} .
$$

Lemma 2. Let a and b be two positive integers where $b \geqslant a$ and let G be a complete graph on at least $\left((a+b)^{2}+2(b-a)\right) /(4 a)+1$ vertices. Then for any function $f: V(G) \rightarrow \mathbb{Z}^{+}$such that
(i) $\sum_{x \in V(G)} f(x)$ is even, and
(ii) $a \leqslant f(x) \leqslant b$ for every $x \in V(G)$,
G has an f-factor.
Proof. Suppose that there exists a function f which satisfies conditions (i) and (ii) of the lemma, but G does not have an f-factor. Then by Tutte's theorem, (i) and (*) there exists $D, S \subseteq V(G), D \cap S=\emptyset$ such that

$$
\begin{equation*}
q_{G}(D, S ; f)+\sum_{x \in S}\left(f(x)-d_{G-D}(x)\right) \geqslant \sum_{x \in D} f(x)+2 \tag{1}
\end{equation*}
$$

Now since G is complete $q_{G}(D, S ; f) \leqslant 1$, and since $a \leqslant f(x) \leqslant b, \Sigma_{x \in S} f(x) \leqslant$ $b|S|$ and $\sum_{x \in D} f(x) \geqslant a|D|$. Thus (1) implies

$$
\begin{equation*}
b|S|-\sum_{x \in S} d_{G-D}(x) \geqslant a|D|+1 \tag{2}
\end{equation*}
$$

Define $H=G-D$ and let $|V(H)|=m$. Clearly H is a complete graph. Then since

$$
|V(G)| \geqslant \frac{(b+a)^{2}+2(b-a)}{4 a}+1,|D| \geqslant \frac{(b+a)^{2}+2(b-a)}{4 a}+1-m .
$$

Thus (2) implies

$$
b m-m(m-1) \geqslant \frac{(b+a)^{2}+2(b-a)}{4}+a-a m+1
$$

since $|S| \leqslant m$ and $d_{I I}(x)=m-1$ for every $x \in V(H)$. So

$$
\begin{equation*}
b m-m^{2}+m+a m \geqslant \frac{(b+a)^{2}+2(b-a)}{4}+a+1 . \tag{3}
\end{equation*}
$$

Define $f(m)=b m-m^{2}+m+a m$. Then the function $f(m)$ attains its maximum value when $m=(b+a+1) / 2$. So $b m-m^{2}+m+a m \leqslant(b+a+1)^{2} / 4$ and therefore (3) implies $(b+a+1)^{2} / 4 \geqslant(b+a+1)^{2} / 4+\frac{3}{4}$ which is a contradiction. So the Lemma holds.

The following lemma was also stated in [2] and its proof is omitted.
Lemma 3. If a graph G is not complete, then $t(G) \leqslant \frac{1}{2} \delta(G)$.
Lemma 4. Let G be a t-tough graph which is not complete and let f be a function from $V(G)$ into \mathbb{Z}^{+}such that $t \geqslant f(x) \geqslant 1$ for every $x \in V(G)$. Suppose that there exist $D, S \subseteq V(G), D \cap S=\emptyset$ and $D \cup S \neq \emptyset$ such that
(i) $\omega((G-D)-S)+\sum_{x \in S}\left(f(x)-d_{G-D}(x)\right)>\sum_{x \in D} f(x)$,
(ii) for every $D_{0}, S_{0} \subseteq V(G), D_{0} \cap S_{0}=\emptyset$ and $D_{0} \cup S_{0} \neq \emptyset$ which satisfy (i), $|S| \leqslant\left|S_{0}\right|$.
If $L=G[S]$, then for every $x \in S$
(a) $d_{L}(x)+d_{G-D}(x) \leqslant 2 f(x)-1$, and
(b) $d_{L}(x) \leqslant f(x)-2$.

Proof. We can assume that $S \neq \emptyset$, otherwise there is nothing to prove. First we show that $|D \cup S| \geqslant 2$. Suppose that $|S|=1$ and $|D|=0$. Then by (i),

$$
\begin{equation*}
\omega(G-S)>\sum_{x \in S}\left(d_{G}(x)-f(x)\right) \tag{4}
\end{equation*}
$$

But $f(x) \leqslant t$ for all $x \in V(G)$ and by Lemma $3 d_{G}(x) \geqslant 2 t$. Thus (4) implies,

$$
\omega(G-S)>t|S|
$$

which contradicts the toughness of G.
(a) Suppose that there exists $u \in S$ such that $d_{L}(u)+d_{G-D}(u) \geqslant 2 f(u)$. Define $S^{\prime}=S \backslash\{u\}$ and $D^{\prime}=D \cup\{u\}$. Since $\omega\left(\left(G-D^{\prime}\right)-S^{\prime}\right)=\omega((G-D)-S)$,

$$
\sum_{x \in S^{\prime}}\left(f(x)-d_{G-D^{\prime}}(x)\right)=\sum_{x \in S}\left(f(x)-d_{G-D}(x)\right)+d_{L}(u)-\left(f(u)-d_{G-D}(u)\right)
$$

and

$$
\sum_{x \in D^{\prime}} f(x)=\sum_{x \in D} f(x)+f(u)
$$

we have

$$
\begin{aligned}
& \omega\left(\left(G-D^{\prime}\right)-S^{\prime}\right)+\sum_{x \in S^{\prime}}\left(f(x)-d_{G-D^{\prime}}(x)\right) \\
& \geqslant \omega((G-D)-S)+\sum_{x \in S}\left(f(x)-d_{G-D}(x)\right)+d_{L}(x)-\left(f(u)-d_{G-D}(u)\right) \\
& >\sum_{x \in D} f(x)+f(u) \\
& =\sum_{x \in D^{\prime}} f(x)
\end{aligned}
$$

This contradicts the minimality of S. Therefore $d_{L}(x)+d_{G-D}(x) \leqslant 2 f(x)-1$ for all $x \in S$.
(b) Now suppose that there exists $v \in S$ such that $d_{L}(v) \geqslant f(v)-1$. Let $S^{\prime}=S \backslash\{v\}$ and $W=(G-D)-S^{\prime}$. Clearly $D \cup S^{\prime} \neq \emptyset$ because $|D \cup S| \geqslant 2$. Since $\omega\left((G-D)-S^{\prime}\right) \geqslant \omega((G-D)-S)-\left(d_{W}(v)-1\right)$,

$$
\sum_{x \in S^{\prime}}\left(f(x)-d_{G-D}(x)\right)=\sum_{x \in S}\left(f(x)-d_{G-D}(x)\right)-\left(f(v)-d_{G-D}(v)\right)
$$

and $d_{G-D}(v)=d_{W}(v)+d_{L}(v)$ we have

$$
\omega\left((G-D)-S^{\prime}\right)+\sum_{x \in S^{\prime}}\left(f(x)-d_{G-D}(x)\right)>\sum_{x \in D} f(x)
$$

This contradicts the minimality of S. Therefore $d_{L}(x) \leqslant f(x)-2$ for cvery $x \in S$.

Proof of Theorem 1. Suppose that there exists a function f which satisfies the conditions of the theorem, but G does not have an f-factor. Then by Tutte's theorem there exists a pair of disjoint subsets of $V(G), D$ and S, such that

$$
\begin{equation*}
q_{G}(D, S ; f)+\sum_{x \in S}\left(f(x)-d_{G-D}(x)\right)>\sum_{x \in D} f(x) . \tag{5}
\end{equation*}
$$

Since $\sum_{x \in V(G)} f(x)$ is an even number, we can conclude that $q_{G}(\emptyset, \emptyset ; f)=0$. Thus

$$
\begin{equation*}
D \cup S \neq \emptyset \tag{6}
\end{equation*}
$$

Also since for any graph $G,|V(G)| \geqslant t(G)+1$, by Lemma 2 we can assume that G is not a complete graph.

Let $\Delta=\max \left\{d_{G-D}(x) \mid x \in S\right\}, L=G[S]$ and put $R=\left\{x \in S \mid d_{L}(x)=0\right\}, R_{i}=$ $\left\{x \in R \mid d_{G-D}(x)=i\right\}, \quad\left|R_{i}\right|=r_{i}$, and $M=\left\{x \in S \mid d_{L}(x) \geqslant 1\right\}$. Define $S_{i}=\{x \in$ $\left.M \mid d_{G-D}(x)=i\right\}, \quad\left|S_{i}\right|=s_{i}, \quad T=S_{1} \cup S_{2} \cup \cdots \cup S_{b-1}$ and $H=G[T]$. Since for every element of S_{i} we have that $d_{H}(x) \leqslant i$, by Lemma 1 we can find a covering set C^{\prime} and an independent set I^{\prime} of H, such that

$$
\begin{equation*}
\sum_{j=1}^{b-1}(b-j) c_{j}^{\prime} \leqslant \sum_{j=1}^{b-1} j(b-j) i_{j}^{\prime} \tag{7}
\end{equation*}
$$

where $\left|I^{\prime} \cap S_{j}\right|=i_{j}^{\prime}$ and $\left|C^{\prime} \cap S_{j}\right|=c_{j}^{\prime}$ for every $j=1,2, \ldots, b-1$. We may assume that I^{\prime} is a maximal independent set of H. We now choose a maximal independent set I of $G[M]$, such that $I^{\prime} \subseteq I$. Putting $C=M \backslash I$ we have $C^{\prime} \subseteq C$, by the maximality of I^{\prime}. Also if we put $I_{j}=I \cap S_{j},\left|I_{j}\right|=i_{j}, C_{j}=C \cap S_{j}$ and $\left|C_{j}\right|=c_{j}$ for $1 \leqslant j \leqslant \Delta$, then

$$
\begin{equation*}
i_{j}=i_{j}^{\prime} \quad \text { and } \quad c_{j}=c_{j}^{\prime} \quad \text { for } \quad 1 \leqslant j \leqslant b-1 \tag{8}
\end{equation*}
$$

Now let Ω be the set of components of $W=(G-D)-S$ and put $Y=$ $\{H \in \Omega \mid e(x, R \cup I)=0$ for every $x \in V(H)\}, X_{1}=\{H \in \Omega \mid e(x, R \cup I) \geqslant 2$ for some $x \in V(H)\}, X_{2}=\Omega \backslash\left(X_{1} \cup Y\right)$. Let $|Y|=y,\left|X_{1}\right|=x_{1}$ and $\left|X_{2}\right|=x_{2}$. Suppose that $X_{2}=\left\{H_{1}, \ldots, H_{x_{2}}\right\}$ and choose $z_{i} \in V\left(H_{i}\right)$ such that $e\left(z_{i}, R \cup I\right)=1$ for all $1 \leqslant i \leqslant x_{2}$. If we put $U=D \cup C \cup\left((N(R \cup I) \cap V(W)) \backslash\left\{z_{1}, z_{2}, \ldots, z_{x_{2}}\right\}\right)$,

$$
\begin{equation*}
|U| \leqslant|D|+\sum_{j=1}^{\Delta} j i_{j}+\sum_{j=1}^{\Delta} j r_{j}-\left(x_{1}+x_{2}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(G-U) \geqslant \sum_{j=0}^{\Delta} r_{j}+\sum_{j=1}^{\Delta} i_{j}+y \tag{10}
\end{equation*}
$$

Let $t(G)=t$. We next show that $d_{G-D}(v) \leqslant b$ for some $v \in S$. If for every element v of $S d_{G-D}(v) \geqslant b+1$, then by (5) $q_{G}(D, S ; f)>\sum_{x \in D} f(x)-$ $\Sigma_{x \in S}(f(x)-(b+1)) \geqslant a|D|+|S|$ and since by (6) $D \cup S \neq \emptyset$, we contradict the fact that G is t-tough.
Now by Lemma $3,2 t \leqslant d(v) \leqslant d_{G-D}(v)+|D|$ for all $v \in S$. Thus choosing $v \in S$ such that $d_{G-D}(v) \leqslant b$ we have $|D| \geqslant 2 t-b$ and since $t \geqslant b$

$$
\begin{equation*}
|D| \geqslant t . \tag{11}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
|U| \geqslant t \omega(G-U) . \tag{12}
\end{equation*}
$$

If $\omega(G-U)>1$ then (12) follows immediately from the fact that G is t-tough. If $\omega(G-U)=1$ then the inequality follows since $|U| \geqslant|D| \geqslant t$ by (11).

Using (9), (10) and (12)

$$
|D|+\sum_{j=1}^{\Delta} j i_{j}+\sum_{j=1}^{\Delta} j r_{j}-\left(x_{1}+x_{2}\right) \geqslant t\left(\sum_{j=1}^{\Delta} i_{j}+\sum_{j=0}^{\Delta} r_{j}+y\right) .
$$

Hence

$$
|D| \geqslant \omega((G-D)-S)+\sum_{j=1}^{\Delta}(t-j) i_{j}+\sum_{j=0}^{\Delta}(t-j) r_{j}
$$

and since by (5)

$$
\omega((G-D)-S)>a|D|-\sum_{x \in S}\left(b-d_{G-D}(x)\right),
$$

we have

$$
|D|>a|D|-\sum_{x \in S}\left(b-d_{G-D}(x)\right)+\sum_{j=1}^{\Delta}(t-j) i_{j}+\sum_{j=0}^{\Delta}(t-j) r_{j}
$$

Since

$$
\begin{align*}
& \sum_{x \in S}\left(b-d_{G-D}(x)\right)=\sum_{j=1}^{\Delta}(b-j) i_{j}+\sum_{j=0}^{\Delta}(b-j) r_{j}+\sum_{j=1}^{\Delta}(b-j) c_{j} \\
& |D|>a|D|+\sum_{j=1}^{\Delta}(t-b) i_{j}+\sum_{j=0}^{\Delta}(t-b) r_{j}+\sum_{j=1}^{\Delta}(j-b) c_{j} \tag{13}
\end{align*}
$$

Now if $I^{\prime}=\emptyset$ then $C_{1} \cup C_{2} \cup \cdots \cup C_{b-1}=\emptyset$, since

$$
\sum_{j=1}^{b-1}(b-j) c_{j} \leqslant \sum_{j=1}^{b-1} j(b-j) i_{j}, \text { and therefore by (13) }|D|>a|D|+\sum_{j=0}^{\Delta}(t-b) r_{j}
$$

which is a contradiction since it implies that $|D|>|D|$ because $t \geqslant b$. Hence we deduce that $I^{\prime} \neq \emptyset$. If $\left|I^{\prime}\right| \geqslant 2$ then by the toughness of $G,\left|D \cup N\left(I^{\prime}\right)\right| \geqslant t \omega(G-$ ($D \cup N\left(I^{\prime}\right)$)). Hence

$$
\begin{equation*}
|D|+\sum_{j=1}^{b-1} j i_{j} \geqslant t \sum_{j=1}^{b-1} i_{j} . \tag{14}
\end{equation*}
$$

Moreover the conclusion remains valid if $\left|I^{\prime}\right|=1$, since if $I^{\prime}=\{v\}|D \cup N(v)| \geqslant$ $d(v) \geqslant 2 t$ by Lemma 3. Multiplying both sides of (14) by ($a-1$) we have

$$
\begin{equation*}
(a-1)|D| \geqslant(a-1) \sum_{j=1}^{b-1}(t-j) i_{j} \tag{15}
\end{equation*}
$$

But

$$
\begin{equation*}
(a-1)(t-j) \geqslant j(b-j)-(t-b) \tag{16}
\end{equation*}
$$

when $t \geqslant\left(b j-j^{2}+b+j a-j\right) / a=f(j)$, and the function $f(j)$ attains its maximum value, when $j=(b+a-1) / 2$ if $b \not \equiv a(\bmod 2)$, and when $j=(b+a) / 2$ if $b \equiv a(\bmod 2)$. Thus (16) holds when $t \geqslant\left((b+a)^{2}+2(b-a)\right) / 4 a$ if $b \equiv a(\bmod 2)$ and when $t \geqslant\left((b+a)^{2}+2(b-a)+1\right) / 4 a$ if $b \not \equiv a(\bmod 2)$. So using (16), (15) implies

$$
(a-1)|D| \geqslant \sum_{j=1}^{b-1} j(b-j) i_{j}-\sum_{j=1}^{b-1}(t-b) i_{j}
$$

Substituting in (13) gives

$$
|D|>|D|+\sum_{j=1}^{b-1} j(b-j) i_{j}+\sum_{j=0}^{\Delta}(t-b) r_{j}+\sum_{j=1}^{\Delta}(j-b) c_{j}
$$

and since $t \geqslant b$, we have

$$
\sum_{j=1}^{b-1}(b-j) c_{j}>\sum_{j=1}^{b-1} j(b-j) i_{j}+\sum_{j=b+1}^{\Delta}(j-b) c_{j}
$$

which contradicts (7) and (8).
Therefore the theorem holds.
Proof of Theorem 2. Suppose that there exists a function f which satisfies the conditions of the theorem, but G does not have an f-factor. Then by Tutte's f-factor theorem there exist $D, S \subseteq V(G), D \cap S=\emptyset$, such that

$$
q_{G}(D, S ; f)+\sum_{x \in S}\left(f(x)-d_{G-D}(x)\right)>\sum_{x \in D} f(x)
$$

Since $\sum_{x \in V(G)} f(x)$ is even we can conclude that $q_{G}(\emptyset, \emptyset ; f)=0$. Thus $D \cup S \neq \emptyset$. Also since $1 \leqslant f(x) \leqslant 2$,

$$
\begin{equation*}
\omega((G-D)-S)+\sum_{x \in S}\left(2-d_{G-D}(x)\right)>|D| \tag{17}
\end{equation*}
$$

We may assume that G is not a complete graph because if $G \cong K_{3}$, the theorem clearly holds and if $G \cong K_{n}$, where $n \geqslant 4$, the theorem holds by Lemma 2 .
Now suppose that S is minimal with respect to (17), and to the condition that $D \cup S \neq \emptyset$. If $L=G[S]$, then by Lemma $4, d_{L}(x)=0$ and $d_{G-D}(x) \leqslant 3$ for all elements x of S. Define $R_{i}=\left\{x \in S \mid d_{G-D}(x)=i\right\}$ and $\left|R_{i}\right|=r_{i}$ where $i=$
$0,1,2,3$. Let Ω be the set of components of $W=(G-D)-S$ and put $Y=\{H \in \Omega \mid e(x, S)=0$ for every $x \in V(H)\}, X_{1}=\{H \in \Omega \mid e(x, S) \geqslant 2$ for some $x \in V(H)\}, \quad X_{2}=\Omega \backslash\left(X_{1} \cup Y\right)$. Let $|Y|=y, \quad\left|X_{1}\right|=x_{1}$, and $\left|X_{2}\right|=x_{2}$. Define $X_{2}=\left\{H_{1}, \ldots, H_{x_{2}}\right\}$ and choose $z_{i} \in V\left(H_{i}\right)$ such that $e\left(z_{i}, S\right)=1$ for all $i, 1 \leqslant i \leqslant$ x_{2}. Put $U=D \cup\left(N(S) \backslash\left\{z_{1}, \ldots, z_{x_{2}}\right\}\right)$. Then

$$
\begin{equation*}
|U| \leqslant|D|+\sum_{j=1}^{3} j r_{j}-\left(x_{1}+x_{2}\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(G-U) \geqslant \sum_{j=0}^{3} r_{j}+y . \tag{19}
\end{equation*}
$$

We next show that $d_{G-D}(v) \leqslant 2$ for some $v \in S$. If for every element v of $S, d_{G-D}(v) \geqslant 3$, then by (17) $\omega((G-D)-S)>|D|+|S|$, and since $D \cup S \neq \emptyset$, we contradict the fact that G is 2 -tough.

Now by Lemma $3,4 \leqslant d(v) \leqslant d_{G-D}(v)+|D|$ for all $v \in S$. Thus chousing $v \in S$ such that $d_{G-D}(v) \leqslant 2$ we have

$$
\begin{equation*}
|D| \geqslant 2 . \tag{20}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
|U| \geqslant 2 \omega(G-U) \tag{21}
\end{equation*}
$$

If $\omega(G-U)>1$ then (21) follows immediately from the fact that G is 2 -tough. If $\omega(G-U)=1$ then (21) follows since $|U| \geqslant|D| \geqslant 2$ by (20).

Using (18), (19) and (21),

$$
|D|+\sum_{j=1}^{3} j r_{j}-\left(x_{1}+x_{2}\right) \geqslant 2\left(\sum_{j=0}^{3} r_{j}+y\right) .
$$

Hence $|D| \geqslant \omega((G-D)-S)+\sum_{j=0}^{3}(2-j) r_{j}$ and since by (17), $\omega((G-D)-$ $S)>|D|+\sum_{x \in S}\left(d_{G-D}(x)-2\right)$, we have $|D|>|D|$ which is a contradiction. Therefore the theorem holds.

Theorem 1 and Theorem 2, in the case when $a=b=k$, are best possible. This can be seen from the graph given in [3], which does not possess a k-factor and whose toughness is arbitrarily close to k.

Although we do not know if Theorem 1 is in general best possible, we give an example of a graph G such that $t(G)$ is arbitrarily close to $(b+1)^{2} / 4((b(b+$ 2))/4) if b is odd (even), and G does not possess all possible f-factors, where $1 \leqslant f(x) \leqslant b$ for every $x \in V(G)$.

Let y be an even number. Then $V(G)=X_{1} \cup X_{2}$, where $\left|X_{1}\right|=\left(y(b+1)^{2}\right) / 4-$ 2 if b is odd and $\left|X_{1}\right|=(y(b)(b+2)) / 4-2$ if b is even, and X_{2} is a set of y copies of $K_{b / 2}\left(K_{(b+1) / 2}\right)$ if b is even (odd). We form G by joining every element of X_{1} to all the other vertices of G. Now define $f: V(G) \rightarrow \mathbb{Z}^{+}$such that $f(x)=1$ for every
$x \in X_{1}$ and $f(x)=b$ for every $x \in X_{2}$. Then if we put $D=X_{1}$ and $S=X_{2}$ we have,

$$
q_{G}(D, S ; f)+\sum_{x \in S}\left(b-d_{G-D}(x)\right)>|D|
$$

since $\quad \sum_{x \in S}\left(b-d_{G-D}(x)\right)=(b / 4)(b+2) y$ when b is even and $\sum_{x \in S}(b-$ $\left.d_{G-D}(x)\right)=\left((b+1)^{2} / 4\right) y$ when b is odd. Hence G does not have an f-factor. Now $t(G)=\left|X_{1}\right| / \omega\left(G-X_{1}\right)$ because for every vertex-cutset T of G

$$
\frac{|T|}{\omega(G-T)} \geqslant \frac{\left|X_{1}\right|}{\omega\left(G-X_{1}\right)} \quad \text { since } \quad|T| \geqslant\left|X_{1}\right| \quad \text { and } \quad \omega(G-T) \leqslant \omega\left(G-X_{1}\right) .
$$

Thus

$$
t(G)=\frac{(b+1)^{2}}{4}-\frac{2}{y}\left(t(G)=\frac{b(b+2)}{4}-\frac{2}{y}\right)
$$

if b is odd(even) and so when $y \rightarrow \infty, t(G)$ is arbitrarily close to the values we stated.
In order to prove the second main theorem of this paper we will use the following generalization of Tutte's theorem due to Lovász [4].

Lovász's theorem. Let G be a graph and g and f be integer-valued functions defined on $V(F)$ such that $g(x) \leqslant f(x)$ for all $x \in V(G)$. Then G has a $[g, f]$-factor if and only if

$$
q_{G}(D, S)+\sum_{x \in S}\left(g(x)-d_{G-D}(x)\right) \leqslant \sum_{x \in D} f(x)
$$

for all disjoint sets $D, S \subseteq V(G)$, where $q_{G}(D, S)$ denotes the number of components H of $(G-D)-S$ such that $g(x)=f(x)$ for all $x \in V(H)$ and $e(S, V(H))+\sum_{x \in V(H)} f(x) \equiv 1(\bmod 2)$.

The following lemma is a corollary of Lemma 1.
Lemma 5. Let H be a graph and $S_{1}, S_{2}, \ldots, S_{a-1}$ be a partition of the vertices of H such that if $x \in S_{j}$ then $d(x) \leqslant j$. (We allow $S_{j}=\emptyset$.) Then there exists a covering set C of H and an independent set I such that

$$
(a-1) c_{1}+(a-2) c_{2}+\cdots+c_{a-1} \leqslant(a-1)\left((a-1) i_{1}+(a-2) i_{2}+\cdots+i_{a-1}\right)
$$

where $\left|I \cap S_{j}\right|=i_{j}$ and $\left|C \cap S_{j}\right|=c_{j}$, for every $j=1,2, \ldots, a-1$.
Lemma 6. Let G be a graph and a, b be two positive integers such that $b \geqslant a$. Suppose that there exists $D, S \subseteq V(G), D \cap S=\emptyset$ such that

$$
\begin{equation*}
\sum_{x \in S}\left(a-d_{G-D}(x)\right)>b|D| . \tag{22}
\end{equation*}
$$

If S is minimal with respect to (22), then $d_{G-D}(x) \leqslant a-1$ for every $x \in S$.

Proof. It follows immediately.

Proof of Theorem 3. The theorem is true for the case $a=b$ by Theorem 1. So we can assume that $b>a$. Suppose that G does not have an $[a, b]$-factor. Then by Lovász's theorem there exists $D, S \subseteq V(G), D \cap S=\emptyset$ such that

$$
\begin{equation*}
\sum_{x \in S}\left(a-d_{G-D}(x)\right)>b|D| \tag{23}
\end{equation*}
$$

since $g(x)=a$ and $f(x)=b$ for every $x \in V(G)$. In addition if we assume that S is minimal with respect to (23), then by Lemma 6 we will have that

$$
\begin{equation*}
d_{G-D}(x) \leqslant a-1 \tag{24}
\end{equation*}
$$

for every $x \in S$. Define $S_{i}=\left\{x \in S \mid d_{G-D}(x)=i\right\}$ for $0 \leqslant i \leqslant a-1,\left|S_{i}\right|=s_{i}$ and $H=G\left[S_{1} \cup S_{2} \cup \cdots \cup S_{a-1}\right]$. Since for every element of S_{i} we have that $d_{H}(x) \leqslant i$, by Lemma 5 we can find a covering set C and an independent set I of H, such that

$$
\begin{equation*}
(a-1) c_{1}+\cdots+c_{a-1} \leqslant(a-1)\left((a-1) i_{1}+\cdots+i_{a-1}\right) \tag{25}
\end{equation*}
$$

where $\left|I \cap S_{j}\right|=i_{j}$ and $\left|C \cap S_{j}\right|=c_{j}$ for $1 \leqslant j \leqslant a-1$. We may assume that I is a maximal independent set of H. Put $U=D \cup C \cup(N(I) \cap V(W))$ where $W=$ $(G-D)-S$. Then

$$
\begin{equation*}
|U| \leqslant|D|+\sum_{j=1}^{a-1} j i_{j} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(G-U) \geqslant \sum_{j=1}^{a-1} i_{j}+s_{0} \tag{27}
\end{equation*}
$$

Now let $t(G)=t$. Since G is t-tough, then

$$
\begin{equation*}
|U| \geqslant t \omega(G-U) \tag{28}
\end{equation*}
$$

if $\omega(G \cdots U)>1$. Moreover (28) holds if $\omega(G-U)=1$ since for every element v of S

$$
|U| \geqslant d_{G-D}(v)+|D| \geqslant d(v) \geqslant t+1,
$$

because by Lemma 3 and the definition of toughness, for the case when G is complete, $\delta(G) \geqslant t+1$.

Using (26), (27) and (28)

$$
\begin{equation*}
|D|+\sum_{j=1}^{a-1} j i_{j} \geqslant t \sum_{j=1}^{a-1} i_{j}+t s_{0} \tag{29}
\end{equation*}
$$

Now from (23) we have

$$
a s_{0}+\sum_{j=1}^{a-1}(a-j) i_{j}+\sum_{j=1}^{a-1}(a-j) c_{j}>b|D| .
$$

Thus using (29),

$$
a s_{0}+\sum_{j=1}^{a-1}(a-j) i_{j}+\sum_{j=1}^{a-1}(a-j) c_{j}>\sum_{j=1}^{a-1} b(t-j) i_{j}+b t s_{0}
$$

So $\sum_{j=1}^{a-1}(a-j) c_{j}>\sum_{j=1}^{a-1}(b t-j b-a+j) i_{j}$ and since $t \geqslant a-1+a / b$ it follows that $\sum_{j=1}^{a-1}(a-j) c_{j}>\sum_{j=1}^{a-1}(b a-b-j b+j) i_{j}$. Using (25) $\quad \sum_{j=1}^{a-1}(a-1)(a-j) i_{j}>$ $\sum_{j=1}^{a-1}(b a-b-j b+j) i_{j}$. But $(a-1)(a-j) \leqslant(b a-b-j b+j)$ for all $j, 1 \leqslant j \leqslant a-$ 1. This contradiction completes the proof of the theorem.

Although all the graphs that we considered in this paper were simple, the theorems that we have proved hold also for multigraphs (with loops), since a multigraph has the same toughness as its underlying graph.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland 1976).
[2] V. Chvatal, Tough graphs and hamiltonian circuits, Discrete Mathematics 5 (1973) 215-228.
[3] H. Enomoto, B. Jackson, P. Katerinis and A. Saito, Toughness and the existence of k-factors, J. Graph Theory 9 (1985) 87-95.
[4] L. Lovász, Subgraphs with prescribed valancies, J. Combinatorial Theory 8 (1970) 391-416.
[5] W.T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952) 314-328.

[^0]: *Present address: Dept. of Mathematics, University of Crete, Iraklion, Crete, Greece, P.O. Box 1470.

