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OF 

The toughness of a graph G, denoted by t(G), is defined as the largest real number t such 

that the deletion of any s vertices from G results in a graph which is either connected or else 

has at most s/t components. 

Chvatal who introduced the concept of toughness in [2] conjectured that if G is a graph and k 

a positive integer such that k IV(G)1 IS even and t(G) 2 k then G has a k-factor. In [3] it was 
proved that Chvatal’s conjecture is true. The main purpose of this paper is to present two 

theorems which imply the truth of Chvatal’s conjecture as a special case. 

All graphs considered are simple and finite. We refer the reader to [l] for 
standard graph theoretic terms not defined in this paper. Let G be a graph. Given 
a function f : V(G) + Z’ , we say that G has an f-factor if there exists a spanning 

subgraph H of G such that &(x) = f(x) f or every x E V(G). If f is the constant 
function taking the value k then an f-factor is said to be a k-factor. Thus a 
k-factor of G is a k-regular spanning subgraph of G. If X and Y are subsets of 
V(G) then e(X, Y) denotes the number and E(X, Y) the set of edges of G having 
one end-vertex in X and the other in Y. 

A subset Z of V(G) is an independent set of G if no two elements of Z are 
adjacent in G and a subset C of V(G) . IS a covering set if every edge of G has at 
least one end in C. It is not very difficult to deduce that a set Z E V(G) is an 
independent set of G if and only if V(G)\Z is a covering set of G (Theorem 7.1 of 

ill). 
Tutte [5] proved the following theorem. 

T&e’s f -Factor theorem. A graph G has an f-factor if and only if 

for all sets D, S c V(G), D fl S = 0, where q&D, S; f) denotes the number of 
components C of (G - D) - S such that e(V(C), S) + Cxev(Cj f (x) is odd. 
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He also noted that for any graph G and any function f 

Let G be a non-complete graph and let t be a real number. If for every 
vertex-cutset S of G, IS1 2 tw(G - S), then we say that G is t-tough. The largest t 

such that G is t-tough is called the toughness of G and is denoted by t(G). If 
G = K,,, t(G) is defined as n - 1, and G is said to be t-tough if and only if 
tsn--1. 

Chvatal introduced 
conjecture. 

the concept of toughness in [2] and made the following 

Chvaital’s conjecture. Let G be a graph and k a positive integer such that 
k IV(G)1 is even and G is k-tough. Then G has a k-factor. 

In [3] it was proved that Chvatal’s conjecture is true. The main purpose of this 
paper is to present two theorems (Theorem 1 and Theorem 3) which imply the 
truth of Chvatal’s conjecture as a special case. The first of these theorems is as 
follows. 

Theorem 1. Let G be a graph, a and b two positive integers and suppose that 

(b + a)* + 2(b -a) 

4a 
when b = a(mod 2) 

t(G) 3 
(b + a)2 + 2(b - a) + ’ when b + a(mod 2) 

4a 

!f f is a function from V(G) into B+ such that 

(9 c xav(Gjf (x) is even, and 
(ii) a S f (x) s b for every x E V(G), 

then G has an f-factor. 

Clearly Theorem 1 implies the truth of Chvatal’s conjecture, in the case when 
a = b = k. In addition to Theorem 1 we shall also obtain the following result, 
which is stronger than Theorem 1, for the case 1 =S a =S b s 2. 

Theorem 2. Let G be a 2-tough graph. Then for any function f : V(G)+ { 1, 2) 

such that C xsvCcj f (x) in euen, G has an f-factor. 

Before stating the second main theorem of this paper it is necessary to make 
the following definition. 

Let G be a graph and let g and f be two integer-valued functions defined on 
V(G), such that g(x) Sf (x) f or all x E V(G). Then a [g, f]-factor of G is a 
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spanning subgraph F satisfying g(x) < d&) <f(x) for all x E V(G). If g(x) = a 
and f(x) = b for all x E V(G), then we will call such a [g,f]-factor, an 

[a, b]-factor. 

Theorem 3. Let G be a graph and a, b be two positive integers such that b 3 a. Zf 

t(G) 2 (a - 1) +; and a IV(G)! is even when a = b, then G has an [a, b]-factor. 

For the proofs of Theorem 1 and Theorem 2 we shall need the following 

lemmas. 

Lemma 1. Let H be a graph and S,, . . . , &,_, be a partition of the vertices of H 
such that if x E Si then d(x) < j. (We allow Si = 0.) Then there exists a covering set 
C of H and an independent set Z, such that 

b-l b-l 

C (b -ikj s ,zl j(b - i)ij 
j=l 

where )I f~ Sjl = ij 

and IC n $1 = Cj 
foreveryj=l,...,b-1 

Proof. We proceed by induction on the number of vertices of H. If IV(H)/ = 1, 
the lemma clearly holds. Let m = min{ j ( Sj # 0) and choose y E S,,,. Put H’ = 
H - ({y} UN,(y)) and define S,! = S rl V(H’). 

If V(H) = {y} U N,(y), the lemma will clearly hold if we put Z = {y} and 
C = NH(y). So suppose that V(H) f {y } U N,(y). Then by induction there exists 
a covering set C’ and an independent set Z’ of H’ such that 

b-l b-l 

C (b -j)c; s ,Tl j@ -iFi’, 
j=l 

where c; = (C’ II $1 and ii = II’ rl ,!$I. Put Z = I’ U {y} and C = C’ UN,(y). Then 

b-l b-l 

2 j(b - j)ij = ,Tl j(b - j)ij + m(b -m) 
j=l 

b-l 

2 ,zl (b - j)ci + m(b - m). 

But since dH( y) < m and m = min{ j 1 Sj # El}, it follows that 

b-l b-l 

C (b-j)Cj~,~l(b-j)c;+WZ(b-F9Z). 
j=l 

Hence 
b-l b-l 

C j@ -ihj 3 ,,l @ -ikj. 0 
j=l 
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Lemma 2. Let a and b be two positive integers where b > a and let G be a 
complete graph on at least ((a + b)‘+ 2(b - a))l(4a) + 1 vertices. Then for any 
function f : V(G)+ Z+ such that 

(9 C xcVCojf(x) is even, and 
(ii) a s f (x) < b for every x E V(G), 

G has an f-factor. 

Proof. Suppose that there exists a function f which satisfies conditions (i) and (ii) 

of the lemma, but G does not have an f -factor. Then by Tutte’s theorem, (i) and 

(* ) there exists D, S c V(G), D fl S = 0 such that 

GAD, S;f)+XTs(f(x)-do-n(x))s 2 f(x)+2. 
XED 

(1) 

Now since G is complete qo(D, S; f) c 1, and since a cf (x) s b, C,,sf (x) c 

b ISI and CXEDf(x) aa IDI. Thus (1) implies 

b (SJ - c d,_,(x) 2 a (DI + 1. 
xes 

(2) 

Define H = G - D and let IV(H)1 = m. Clearly H is a complete graph. Then since 

IV(G)l~ 
(b+42+W-a)+1 IDI~(b+a)2+2(b-a)+1_m 

4a 
, 

4a 

Thus (2) implies 

bm-m(m-l)> (b+a)2+2(b-a)+a_am+l 
4 

since ISI < m and dn(x) = m - 1 for every x E V(H). So 

bm-m*+m+ama (b + a)’ + 2(b - a) + a + l 
4 (3) 

Define f(m) = bm - m* + m + am. Then the function f(m) attains its maximum 

value when m = (b + a + 1)/2. So bm - m* + m + am s (b + a + 1)*/4 and there- 

fore (3) implies (b + a + 1)*/4 2 (b + a + 1)*/4 + ‘4 which is a contradiction. So 

the Lemma holds. q 

The following lemma was also stated in [2] and its proof is omitted. 

Lemma 3. Zf a graph G is not complete, then t(G) c +6(G). 

Lemma 4. Let G be a t-tough graph which is not complete and let f be a function 
from V(G) into Z+ such that t a f (x) Z= 1 for every x E V(G). Suppose that there 
existD,ScV(G), DflS=0andDUS#0suchthat 

(i) o((G -D) - S) + zxes (f(x) - do-D(x)) ’ xx.Df (x), 
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(ii) for every D,, S0 E V(G), Do fl S,, = 0 and D,, U &,# 0 which satisfy (i), 

ISI s I&l. 
Zf L = G[S], then for every x E S 

(a) d=(x) + d,_,(x) s 2f(x) - 1, and 

(b) dL(x) sf(x) - 2. 

Proof. We can assume that S f 0, otherwise there is nothing to prove. First we 
show that ID USI >2. Suppose that ISI = 1 and IDI =O. Then by (i), 

(4) 

But f(x) s t for all x E V(G) and by Lemma 3 d,(x) 3 2f. Thus (4) implies, 

o(G - S) > t ISI, 

which contradicts the toughness of G. 
(a) Suppose that there exists u E S such that dL(u) + d,_D(u) 2 2f(u). Define 

S’ = S\(u) and D’ = D U {u}. Since w((G - D’) - S’) = o((G - D) -S), 

*;, (f(x) - d,_,.(x)) = zs (f(x) - d,-,(x)) + d&) - (f(u) - dG-&)) 

and 

we have 

4(G - D’) - s’) + ,;, (f(x) - d,-,,(x)) 

3 o((G - D) - s) + xTs (f(x) - d,-,(x)) + b.(x) - (f(u) - dG-D(“)) 

> c f(x) +f(u) 
XED 

This contradicts the minimality of s. Therefore d,(x) + d,_,(x) S 2f (x) - 1 for 

all x E S. 
(b) Now suppose that there exists v E S such that dL(v) 3 f(v) - 1. Let 

S’ = S\(V) and W = (G - D) - S’. Clearly D U S’ f 0 because 10 U Sl> 2. Since 

w((G - D) - S’) 2 o((G - D) - S) - (d,(v) - l), 

xz, (f(x) - k-D(x)) = gs (f(x) - dG-D(x)) - (f(v) - dG-D(v)) 
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and do-&v) = d,(v) + 4,(u) we have 

@((G - D) - S’) + ,;, (f(x) - 6D(X)) > xp). 

This contradicts the minimality of S. Therefore dL(x) cf(x) - 2 for every 

XES. 0 

Proof of Theorem 1. Suppose that there exists a function f which satisfies the 
conditions of the theorem, but G does not have an f-factor. Then by Tutte’s 
theorem there exists a pair of disjoint subsets of V(G), D and S, such that 

qGcD, s;f) + xss (f(x) - dG-dx)) >xTDf(x)* (5) 

Since C xsV(Gjf(x) is an even number, we can conclude that qG(@, @;f) = 0. Thus 

DUS#0 (6) 

Also since for any graph G, IV(G)1 5 t(G) + 1, by Lemma 2 we can assume that 
G is not a complete graph. 

Let A = max{dG_D(x) ( x ES}, L = G[S] and put R = {x ES 1 d=(x) = 0}, Ri = 
{X E R 1 d~_&X)=i}, IRil =rip and M={x~SId~(x)~l}. Define Si={xE 
Mld~_,(X)=i}, lStl=Sip T=&U$U** * US,_, and H = G[T]. Since for 
every element of Si we have that dH(x) c i, by Lemma 1 we can find a covering 
set C’ and an independent set I’ of ZZ, such that 

b-l b-l 

c (b - i>c; c ,Zl j@ - i)C 
j=l 

(7) 

where II’ f~ S,] = i,! and IC’ flSj[ = c; for every j = 1,2, . . . , b - 1. We may 
assume that I’ is a maximal independent set of ZZ. We now choose a maximal 
independent set Z of G[M], such that I’ c I. Putting C = M\Z we have C’ c C, by 
the maximality of I’. Also if we put 4 = Z f~ Sj, 141 = ii, Cj = C f~ Sj and ]Cj] = cj for 

l<j<A, then 

ii = ii’ and cj=ci for lsjsb-1. (8) 

Now let A2 be the set of components of W = (G -D) - S and put Y = 
{HE 52 1 e(x, R U I) = 0 for every x E V(H)}, X1 = {H E ST2 I e(x, R U I) 3 2 for 
some x E V(H)}, X2= Q\(X, U Y). Let IY] =y, 1X1] =x1 and 1X,( =x2. Suppose 
thatX,={Z&,..., ZZ,,} and choose zi E V(H,) such that e(xi, R U I) = 1 for all 
1s i <x2. If we put U = D U C U ((N(R U I) n V(W))\{z,, zz, . . . , z,,}), 

and 

lUl~IOl+~jij+~ir,-(X1+X?) (9) 
j=l j=l 

w(G-U)355+2ij+y. (10) 
j=O j=l 
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Let t(G) = t. We next show that dG-D(u) < b for some v ES. If for every 

element ZJ of S do_,(u)2 b + 1, then by (5) q6(D9 S;f) > Lof(x) - 

LS (f(x) - (b + 1)) a a IDJ + ISJ and since by (6) D U S # 0, we contradict the 

fact that G is t-tough. 
Now by Lemma 3, 2t C d(v) S demo (v) + IDI for all u E S. Thus choosing u E S 

such that dc_D(v) < b we have ID( 3 2t - b and since t 3 b 

)DJat. 

We next show that 

(11) 

JUI 2 tw(G - U). (12) 

If o(G - V) > 1 then (12) follows immediately from the fact that G is t-tough. If 
w(G - U) = 1 then the inequality follows since lUl> IDI 2 t by (11). 

Using (9) (10) and (12) 

lDl+~jij+~ir,-(~~+X3~t(~ij+~~j+y). 
j=l j=l j=l j=O 

Hence 

IDI 3 w((G - D) - S) + i (t - j)ij + 5 (t - j)rj 
j=l j=O 

and since by (5) 

o((G - D) - S) > ~1 PI - xzs (b - 4m(x)), 

we have 

IDI > u JDJ - C (b - do-D(X)) + i (t - j)ij + i (t -j)q. 
xss j=l j=O 

Since 

zs (b - ~-D(X)) =$ (b -i)ij +,go (b -ih +,,1 (b -ih~ 

ID(>alDI+i (t-b)ij+i (t-b)q+i (j-b)cj. 
j=l j=O j=l 

NowifZ’=0thenC1UC2U*-*UCb_-l=0, since 

(13) 

b-l b-l 

C @ -ikj s ]?I j(b -i) j, i and therefore by (13) JDJ > u IDI + 2 (t - b)q, 
j=l j=O 

which is a contradiction since it implies that (DI > (DI because t 2 b. Hence we 
deduce that I’ # 0. If )I’( 3 2 then by the toughness of G, ID U N(Z’)l 2 to(G - 
(D U N(Z’))). Hence 

b-l b-l 

(D(+ C jijat C ii. 
j=l j=t 

(14) 



88 P. Katernis 

Moreover the conclusion remains valid if lZ’1 = 1, since if I’ = {v} ID U N(v)1 2 
d(v) 5 2t by Lemma 3. Multiplying both sides of (14) by (a - 1) we have 

b-l 

ta - I) IDI 5 Ca - l) ,zl Ct -iPj. (15) 

But 

(a - l)(t -j) zj(b -j) - (t - 6) (16) 

whent*(bj-j’+b+ju-j)la=f(j), and the function f(j) attains its maximum 
value, when j=(b+u-1)/2 if bfu(mod2), and when j=(b+u)/2 if 
b = a (mod 2). Thus (16) holds when t 2 ((b + a)’ + 2(6 - u))/4u if b = a (mod 2) 
and when t 2 ((b + a)* + 2(b - a) + 1)/4u if b fu (mod2). So using (16), (15) 
implies 

b-l b-t 

t” - l) IDI a ,FI jCb -iIij - ,TI tt - bPj- 

Substituting in (13) gives 

b-l 

(DI>IDJ+C j(b-j)ij+i(t-b)q+$(j-b)Cj 
j=l j=O j=l 

and since t 3 b, we have 

b-l b-l 

C (b -ikj > ,lZl j@ -iPj + jz$+l (i - b)cj 
j=l 

which contradicts (7) and (8). 
Therefore the theorem holds. 0 

Proof of Theorem 2. Suppose that there exists a function f which satisfies the 
conditions of the theorem, but G does not have an f-factor. Then by Tutte’s 
f-factor theorem there exist D, S c V(G), D n S = 0, such that 

Since C xsVCG1f(~) is even we can conclude that qc(O, 0;f) = 0. Thus D U S Z 0. 

Also since 1 <f(x) s 2, 

d(G - D> - 9 + xTs (2 - 4+,(x)) ’ PI . (17) 

We may assume that G is not a complete graph because if G = K3, the theorem 
clearly holds and if G z K,,, where n 2 4, the theorem holds by Lemma 2. 

Now suppose that S is minimal with respect to (17), and to the condition that 
D US #0. If L = G[S], then by Lemma 4, dL(x) = 0 and d,_,(x) < 3 for all 
elements x of S. Define Ri = {x ES 1 d,_,(x) = i} and IRi( = ri where i = 
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0, 1,2,3. Let Q be the set of components of W = (G -D) -S and put 
Y={HEBIe(x,S)=Of or every x E V(H)}, X1 = {H E 8 1 e(x, S) 3 2 for some 
x E V(H)}, X, = Q\(X, U Y). Let IYI =y, IX11 =x1, and IX,1 =x2. Define 
X2={&,..., H,,} and choose zi E V(H,) such that e(zi, S) = 1 for all i, 1 s i c 
x2. Put U = D U (N(S)\{z,, . . . , z,,}). Then 

and 

w(G-U)&+y. 0% 
j=O 

We next show that C&-~(V) s 2 for some u E S. If for every element u of 
S, C&~(V) 3 3, then by (17) o((G - D) - S) > IDI+ ISI, and since D U S # 0, 
we contradict the fact that G is 2-tough. 

Now by Lemma 3, 4 < d(v) S de-o (v) + IDI for all v E S. Thus choosing v E S 
such that C&-~(V) s 2 we have 

IDI ~2. 

We next show that 

(20) 

IUI s 20(G - U). (21) 

If w(G - U) > 1 then (21) follows immediately from the fact that G is 2-tough. If 
w(G - U) = 1 then (21) follows since IUla IDI 3 2 by (20). 

Using (18), (19) and (21), 

Hence IDI~co((G-D)-S)+C~~~(~-~)~ 5 and since by (17) w((G - D) - 

S) > PI + LS (4-,(x) - 2)) we have IDI > IDI which is a contradiction. 
Therefore the theorem holds. Cl 

Theorem 1 and Theorem 2, in the case when a = b = k, are best possible. This 
can be seen from the graph given in [3], which does not possess a k-factor and 
whose toughness is arbitrarily close to k. 

Although we do not know if Theorem 1 is in general best possible, we give an 
example of a graph G such that t(G) is arbitrarily close to (b + 1)‘/4 ((b(b + 

2))/4) if b is odd (even), and G does not possess all possible f-factors, where 
1 <f(x) =S b for every x E V(G). 

Let y be an even number. Then V(G) = X1 U X2, where IX,1 = (y(b + 1)2)/4 - 
2 if b is odd and (X11 = (y(b)(b + 2))/4 - 2 if b is even, and X2 is a set of y copies 
of Kb,2(KCb+1),2) if b is even (odd). We form G by joining every element of X, to 
all the other vertices of G. Now define f : V(G) + Z!+ such that f(x) = 1 for every 
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x E Xi andf(x) = b for every x E XZ. Then if we put D = X1 and S = X2 we have, 

qG(D, S;f) +lzs (b - d,-,(x)) ’ PI, 

since C,,,(b -d,_,(x)) = (b/4)(b +2)y when b is even and CXES(b - 
d,_,(x)) = ((b + 1)2/4)y when b is odd. Hence G does not have an f-factor. 

Now t(G) = ]X,]/o(G -X,> b ecause for every vertex-cutset T of G 

ITI 1x11 
w(G - T) z o(G -XI) 

since IT] 3 1X1] and o(G - T) s w(G -XI). 

Thus 

t(G) = (b + ‘I2 2 b(b+2) 2 ~-- 
4 Y 

t(G) = 4 -;) 

if b is odd(even) and so when y + ~0, t(G) is arbitrarily close to the values we 

stated. 

In order to prove the second main theorem of this paper we will use the 

following generalization of Tutte’s theorem due to Lovasz (41. 

LovPsz’s theorem. Let G be a graph and g and f be integer-valued functions 
defined on V(F) such that g(x) s f (x) f or all x E V(G). Then G has a [g, f]-factor 
if and only if 

q&D> S) + xzs (g(x) - do-b(x)) s xT,f (x) 

for all disjoint sets D, S G V(G), where qo(D, S) denotes the number of 
components H of (G - D) - S such that g(x) = f (x) for all x E V(H) and 

e(S, V(H)) + C,,vcn,f (x) = 1 (mod 2). 

The following lemma is a corollary of Lemma 1. 

Lemma 5. Let H be a graph and S1, S,, . . . , S,_, be a partition of the vertices of 
H such that if x E Si then d(x) sj. (We allow Si = 0.) Then there exists a covering 
set C of H and an independent set Z such that 

(a - l)ci + (a - 2)c2 + . . * + c,_, C (a - l)((a - l)ir + (a - 2)i2 + . . - + i,_I) 

where ]I f~ Si] = ii and ) C fl S,] = cj, for every j = 1, 2, . . . , a - 1. 

Lemma 6. Let G be a graph and a, b be two positive integers such that b z= a. 
Suppose that there exists D, S c V(G), D fl S = 0 such that 

xTs (a - 4-&I) > b PI . 

Zf S is minimal with respect to (22), then do_,(x) s a - 1 for every x E S. 

(22) 
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Proof. It follows immediately. 0 

Proof of Theorem 3. The theorem is true for the case a = b by Theorem 1. So we 
can assume that b > a. Suppose that G does not have an [a, b]-factor. Then by 
Lovasz’s theorem there exists D, S E V(G), D fl S = 0 such that 

zs (a - 4+&)) > b PI (23) 

since g(x) = a andf(x) = b for every x E V(G). In addition if we assume that S is 
minimal with respect to (23), then by Lemma 6 we will have that 

d,_,(x) <a - 1 (24) 

for every x E S. Define Si = {X E S 1 t&_&x) = i} for 0 s i 6 u - 1, ISi1 = si and 
H = G[S, US, U . . . U &_,I. Since for every element of Si we have that d&) c i, 
by Lemma 5 we can find a covering set C and an independent set Z of H, such 

that 
(a - l)c, + . * * + c,-~ C (a - l)((u - l)il + - . - + ia_,), (25) 

where )I n Sjl = ij and ]C fJ Sjl =cj for 1 CZ <a - 1. We may assume that Z is a 
maximal independent set of H. Put U = D U C U (N(Z) f~ V(W)) where W = 

(G - D) - S. Then 

a-l 

lU( s IDI + C iii 
j=l 

and 
0-l 

w(G- U)2 2 ij+so (27) 
j=l 

Now let t(G) = 1. Since G is t-tough, then 

(UI 2 to(G - U) (28) 

if w(G - U) > 1. Moreover (28) holds if w(G - U) = 1 since for every element v 

of s 
IZZ]z=d,_,(v)+ IDI~d(v)~t+l, 

because by Lemma 3 and the definition of toughness, for the case when G is 
complete, 6(G) 2 c + 1. 

Using (26), (27) and (28) 

a-1 Cl-1 

IDI+CjijatC ij+tSo 
j=l j=l 

Now from (23) we have 

(29) 

0-l 0-l 

OS,+ C (u-i)ij+ C (u-j)cj>b IDI. 
j=l j=l 
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Thus using (29), 

a-l 0-l a-1 

aso+ C (a-j)ij+ C (u-j)cj> C b(t-j)ij+bts,. 
j=l j=l j=l 

So ET:: (a - j)cj > Cpzt (bt - jb - a + j)ij and since t 2 a - 1 + u/b it follows that 

Cy:; (a - j)cj > Cp=;’ (bu - b - jb + j)ij. Using (25) Cp=;l (a - l)(u - j)i, > 

Cy:j (ba - b - jb + j)i,. But (a - l)(u - j) 6 (bu - b - jb + j) for all j, 1 S j s a - 

1. This contradiction completes the proof of the theorem. 0 

Although all the graphs that we considered in this paper were simple, the 

theorems that we have proved hold also for multigraphs (with loops), since a 

multigraph has the same toughness as its underlying graph. 
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