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Abstract

An integral representation is obtained for one family of associated Askey—Wilson polynomials in terms of the ordinary
Askey—wilson polynomials. This representation is then used to derive two generating functions for these associated
polynomials.
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1. Introduction

The associated Askey—Wilson polynomials pj(x) are the solutions of the 3-term recurrence relation

2xpa(x) = Anpa+1(x) + Bapa(x) + Copr-1(x), (L.1)
subject to the initial conditions
poi'l(x) = Oa p?)(x) = 17 (12)
where
4= a (1 — abqg"**)(1 — acq"**)(1 — adq"**)(1 — abcdg"**™ %)
n (1 _ abcdq2n+2u—1)(1 _ abcdq2n+2a) 4
c - beg" * ™) (1 = bdg" (1 —cdg" ™" H)(1 = ¢"*%) (1.3)
n (1 _ abcdq2n+2a—2)(1 _ abcdq2n+2a-1) ’ :

B,=a+a'-4,—-C,
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n=0,1,2,.... If « is real and nonnegative, and max(|al,|b|,|c|,|d|) <1 then A,C,+{ >0 for
n=0,1,..., assuming, of course, that 0 < g < 1. By Favard’s theorem (see, e.g., [3]) there exists
a positive measure with respect to which the polynomials pj(x) are orthogonal. When « = 0 they
reduce to the Askey—Wilson polynomials,

“" abcdg" 1, ae'®, ae 7
1 1 mw} (1.4)

ab,ac,ad

pa(x) = 4(153,:

x =cosf, 0 < 0 <. The ¢ symbol in (1.4) is a special case of the basic hypergeometric series ,¢;
defined by

a1,Q2,...,4,
r¢s b b )q’Z
15+--9Us

_ el (01,02,...,ar;‘I)n n n (331 +s—r
= L @b, bg), C LD (L.5)

which terminates after m + 1 terms and therefore is a polynomial of degree m in z if one of the
numerator parameters a,,d,, ..., 4, 1s ¢~ " and there are no zero factors in the denominator, where
the shifted factorials are defined by

1 ifn=0,
CL {(1 — a1l —ag)--(1—ag"™ ") ifn=1,2..., (1.6)
me=ggw®mlm<h (1.7)
and
(alsaZs“'aar;q)n = l_[ (ajsq)n (18)
j=1

For these notations, definitions and a discussion of convergence of the series in (1.5) when it does
not terminate, see [4]. In the case r =s + 1 and z = q the series is balanced if qa,a, ---as+1 =

bib,---bs. The , . ¢, series defined in (1.5) is called well-poised if ga, = a,by = --- = a,+1b,; it is
called very-well-poised if, in addition, a, = gai’? and a3 = —qa}’?. For notational economy we

shall follow [4] and use the symbol

re1Wilas;as,aa,...,8,4154,2)
1/2 1/2
a;,4a;’”, —qa; ", a3, ..., 4r+ 1
= ,4+10, 14,2 |. (1.9
1# [a%“,—-a}“,qal/as,u-,qal/ar+1 ]

In a monumental piece of work Askey and Wilson [1] showed that the weight function
w(x; a, b, c,d) with respect to which the polynomials p,(x) of (1.4) are orthogonal is given by

h(x;1,—1,q9'%, —q'/?)

X2y 12 1.10
h(x;a,b,c,d) (1= x5 (1.10)

w(x;a,b,c,d) =



M. Rahman/Journal of Computational and Applied Mathematics 68 (1996) 287—-296 289

with support on (—1, 1), where

k
h(x;ay,az,...,a4) = [] h(x;ay),
j=1

h(x;a) = [] (1 —2aq’x + a*q%)
j=0
=(ae" ae7";q),, x=cos0. (1.11)
We shall assume throughout this paper that 0 < g < 1, which guarantees the convergence of the
infinite products in (1.7) and (1.11).
In a recent paper, Ismail and Rahman [6] found the weight function for the associated
Askey—Wilson polynomials p;(x) and an explicit polynomial representation:

pa(x) = pa(x;a,b,c,d)

B n (q—n, abcdqz"‘”_1,abcdq2“_1,ae“’, ae —io;q)k .

K=o (g, abg®, acq®, adq®, abcdq® ™1 ; q);

X 10W9(abcdq2°‘+k_1;q“,bcq°‘_1,bdq“‘l,cdq"‘_l,q“l,abcdqz”"“‘_l,q"_";q, aZ).
(1.12)

We would like to add that a second family of associated Askey—Wilson polynomials satisfying
a different set of initial conditions was also obtained in [6].

The normalized absolutely continuous measure du(x) for pj(x) is rather complicated, but the
orthogonality relation is quite simple:

f BB G) = o L13)

where

1 —abcdg® ™' (¢°*',bcg% bdg®, cdg™;q)n
_ " 1.14
én 1 _abcdq2n+2a—1(abcdqa—1,abqa,acqa,adqa;q)na ( )

If we specialize the parameters by setting a = g#2* Y4 b = aq'?, ¢ = —q"**1* d = ¢q*/* and let
q — 1 then we obtain the associated Jacobi polynomials studied by Wimp [9]. On the other hand, if
we replace a, b, c,d by q° q°, q°, q°, respectively, replace €” by g* and then take the limit g — 1, one
gets the associated Wilson polynomials considered by Ismail et al. [5], which are an extension of
the Wilson polynomials

Pn(x;a,b,c,d)=41:3[ na+b+c+ad+n ,a 1t,a+1t.1:|,

1.1
a+ba+ca+d ’ (1.13)

x = (a? + t*)*/2. Wilson [8] discovered the orthogonality of these polynomials on (— oo, 00) with
respect to the weight function

Il (@ +iOT (b +iOT (c + i) (d + it)/T (2i0)|%
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The authors in [5] found the weight function of two families of associated Wilson polynomials that
correspond to two different sets of initial conditions, gave their generating functions, and deduced
an explicit form of one of these families from its generating function. However, their explicit
formula [5, Eq. (6.28)] is more akin to Bustoz and Ismail’s [2] associated g-ultraspherical
polynomials:

Cicos 03819 = 3. [ B Cmule0s 8:510)Cleos i 0 (116)
than to the double series form given in (1.12). On the other hand, formula (1.12), simple and
attractive as it is, does not seem to be very useful in this form. In particular, it does not enable us to
compute a generating function for pZ#(x) unless, of course, a = B2, b = (Bq)'?, ¢ = — B3,

= —(gPB)''?, in which case it is possible, through a long calculation, to reduce (1.12) to (1.16).

In this paper we will first show that it is possible to use the transformation theory of basic
hypergeometric series, see [4], to transform the {,W, series in (1.12) in such a way that pj(x)
acquires a simpler form

pa(x) _(abcqua—l’qa+1;q)n o i (q—n abcdq2a+n—1 aqaeie aq e 10,‘1)». m
’ (g, abedq®™ ;) m=0 ("', abg* acq®, adq*; g}
m a,ab a—l’ac a—l,adqa 1’
Goaba”acd”_adq” Ldk g (1.17)

k=0 (g, abcdq**~*,aq*e”,aq’e ~"; q)

We shall prove this in Section 2. The shifted factorial factors in front will prove very useful since
most generating functions are of the form ¥ % C,pa(x)t"/(q; 9)s, [t] < 1, and we do not have a (g; g)»
factor in the normalization constant &, in (1.14). Assuming that

max(lal,|b],lc|,1d]) < ¢ 7?2, « >0, (1.18)

we shall then be able to show in Section 3 that pZ(x; a, b, ¢, d) has the following integral representa-
tion in terms of the Askey-Wilson polynomial p,(x;aq®? bq*?, cq™?,dq™?):

pr(x;a,b,c,d)
1 (abcqua—l qzx+1 q)n
= K(x,z 22 4™ " pu(z; aq™?, bg¥'?, cq*'?,dg*?) dz, (1.19)
f— 1 ( ) (q’ adeq la q)n
where
(4,9.9,abg* ', acq®™*,adq*™ ', beq®~,bdq* ™, cdq® ', 4% @)

K(x,z) =

4n*(abedg®~2,¢°* 1 q)s

(CZull e - 2iy. q)w 1
h(Z qa/2 qa/z —18)

. -1)/2 - —-1)/2 —1)/2
w(y’aq(a /2 pala= 112 oq@=1i2 ja6=1)/2)

@+1)/2gi6 J@+1)/2¢ —io)

h(y;q 4
hnd e g e ) P
x =cosf and z = cosy. Formula (1.19) implies, of course, that a generating function for the
Askey-Wilson polynomials will immediately lead to a generating function for the associated ones.

(1.20)
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In Section 4 we compute the generating function

@© a—1.
Gi) = ¥ (abedg®” " q)n

n=0 ( arl )n

and in Section 5 we compute

(tq")"pa(x;a,b,c,d),

(abcdq® ™1, acq®, adq®; @),
o+ 1, abcqua— I,qua; q)n

0= ¥

(tq*?/a)"pi(x; a,b,c,d),
n=0 (q

where |t]| < 1.

2. Proof of (1.19)
By [4, Exercise 2.20]
10W9(abcdq2"‘+"'2;q“, bcq“_l,bdq“_l,cdq“—l,q“ 1,abcdq2“+"+"_1,q" n,q, )

— (abcqua - a L » q)n (q’ adeqa 1 s q)k
(q’ adeq H q)n (qa * 1: adeq 2l s q)k

a(k—n)

X

n—k (qk—n abcdq2a+n+k—1 aqk+1/d qzz.q)j qj
o (q abqa+k a+k a+k+1’q)]

p “Jadg* ', bdq* !, cdg* 1
3 abcdqz" 2 adg***,dg~ %" ’/a’q’

However, by [4,111.15]

k1 a+k’ =i abq*~ 1, da*
[ 1= a); 4¢3[61 abq*™',acq*”*,adg*~ }

(adqaz+k, k+1/d,q)] abcqua—Z,ana+k q—k i aq,

Using (2.1) and (2.2) we find that

a(x) _ (abcqua—l’qa+1;q)n o n n—k (q—n’abcdq2a+n—1,q,a2qa q)1+k
(g,abcdq®™1;q), x=o 5o (abq®,acq” adq®,q** ;5 q)jx

(@ 9iae®,ae ™ D irrar

(a:9)(a.a*q% qh

2a—2 2 a+k ~k-j 94

X o q 7, abq* " ',acq* " ',adg*~ !
4 abcdq ,a“q* % q

291

1.21)

(1.22)

2.1)

2.2)

} 2.3)
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Setting j + k = m and replacing j by m — k we get

at1 2a+n—-1

2e—1 n on
(abcq AT D 5 (g~ ", abcdg 148> 4%} D 4" s (2.4)

pr(x) = = q p
) (g, abcdg®~1; g), m=o (q*"',abq"% acq®, adq®; q)m
where
_ 5 (4% Dm-x (ac”,ae""; gk - ¢3[ q“~",abg""',acq* ", adq“"‘,q }
" S (T Dm—r (@a%q% 9 abcdq® =2, a*q* g 7
_ (@ @m < (@ " abg"" " acq* ', adg* " ) k3¢2[ q*” "'ae‘,ae‘“’_qq] 2.5)
(GDm =0 (g,abcdg®~%,a*q% q~™; q) 2grth gt

But the terminating 3¢, series on the right is balanced, so by applying the g-Saalschiitz formula
[4,11.12] and simplifying we obtain

a—1 a—1

,acqg* ™ adg® " q) K 2.6)
2272 aq®e” ag®e 7 q), '

1

(ag*e®,a9°¢ ;) T (g% abq
(@ ¢ 4;Dm =0 (g, abcdg
Combining (2.4) and (2.6) we get (1.17).

Am =

3. Integral representation

The key formula needed to derive an integral representation of p3(x) given in (1.17) is the
Askey—Wilson integral [1,4]:

1
J w(x;a1,a;,as,a4) (a1 a1¢7%; q), dx
-1

1
= f w(x;a19" az,a3,a,)dx (x = cos 0)
-1

_ 2n(a1a,a3a4; Qo (ar1az,a1a3,a1a4;q), 3.1)
(g,a1a;,a103,0104,0203,0,04,0304;9) (arazasa4;q)n

provided max(|a;]) < 1,j=1,2,3,4,n=0,1,2,.... Hence

m a—1 a—1

(g%, abg ,adg® gk,

=0 (g, abcdq® ™%, aq9%e”, ag*e ~; q);

_(g,abg*" ", acq*" ", adq* "', beq* ', bdg* ", cdq* ™ g)o
2n(abcdq®** ™ 2;q)o,

,acq
2a—2

1

. —-1)/2 —-1)/2 -1)/2 -1)/2

XJ w(y; ag®= V2 bg@=1I2 cq@=1i2 ja@=1)2)
-1

(q aq(a 1)/2 oid aq(a 1)/2 o —i¢.

gy y—coss, (32)

x Y

k=0 (g,a9%¢”, aq*e "~

1
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since the parameters a, b, c,d are assumed to satisfy the inequalities (1.18). The series inside the
integral in (3.2) is
(g%, aq(a— 1)/Zei¢, aq(a— 1)/2 —i¢; D .
K=o (g,aq%¢”, ag*e ~; gk
@=1)/2

. M eq®. a ei¢ ag@=D2e—i¢
= lim 4¢3 R 7 ;9-9
e 1 aqaew aq e 16,8(] m

m

g

—ig

~if —a—m. -m a (at+1)/2 i(0+¢) (@+1)/2 4i(0 — ¢)
8 s4/m aym ’8 ’q € .
— tig U TPl e, |00 |

e>1 (ag®e %, 4™ @)m aqaele sql meiO/a,qu-l
_ @ q), ¢3[q_ 45q°" e i(M”‘1M.m"iw_4’);q,q] by [4, IIL15].  (33)
(aqde-—lg,q,q)m qa+1 aqaexe q1 mele/a
Applying (3.1) once again we find that the 4¢3 series above equals
(q, qa, q(a+ 1)/Zei(9+¢)’ q(aH- 1)/2 i(9—¢) q (a+1)/2 i(d)—()), q(a+ 1)/2€—i(0+¢), q, q)ao
21(g* "5 @)oo
' a/2 2,0 172 i 172, —i g "qe 0V, g2 w),
xj_l w(z; g*2e%, q¥%e % q'%el? ql/%e ¢)3¢2|: aq“‘e‘o,ql mei?/g ,q,q}dz
(q’q,q :Deo h(y.q(az+1)/2 i q(a+1)/2 —i0)
2n(g* "5 9)w (ag*e”, ae ™ )
X Jl W(Z, qa/ZeiG, qa/Ze—i0,ql/ZeidJ,ql/Ze—i¢)(aqaz/26illf’ aqa/le—iw;q)m dZ, (34)
-1

on summing the 3¢, series by the g-Saalschiitz formula [4,11.12]. Substituting (3.2), (3.3) and (3.4)
in (1.17) we obtain the integral representation (1.20).

4. Generating function I

To compute the generating function G§(¢) defined in (1.21) we first need the generating function

(abcdq™*;q), q " abcdq" !, ae’, ac
t" ; 4.1

ngo (q q)n 4¢3 ab, aC, ad B q’ q b ( )
which is related to the g-analogue of the generating function of the Wilson polynomials

3

@+b+c+d-1),
n!

P.(x;a,b,c,d)w"

_ (1 —w)l-ebe=d R ja@a+b+c+d—1),3(a+b+c+d,a+ita—it, 4w

- a3 a+b,a+ca+d (1 —w)?
4.2)
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Iw] <1, see [5,(6.2)]. G1(t) can be easily evaluated by using [4, Exercise 7.34] and [4,(3.4.1)],
a special case of this evaluation having been given in [4, Exercise 7.34]. However, for the sake of
completeness we shall give some details of this calculation. First,

q ", abcdq"" !, ae’ ae
4¢3[ 4,9

ab,ac,ad
1o (BC; ), f 7 (due®, due ", abcdu/q;q)  (q/u; @) (adu\"
_ 1 _
= A" OV a9, )wu (daujq baula, douiqa), @hcdigan\ g ) S #3)

the g-integral on the right-hand side defined in [4,(1.11.1),(1.11.3)]. If || < p < 1,0 < p < 1, then

qe—ia/d (dueio’ due —iﬂ’ abcdu/q, q)w

Git)=A"16
0 ®) gea (dau/q,bdu/q, dcu/q; q).,

abcd/q, be,q/u
3¢>2[ ad, abedulq ’ g, adut/q |d,u. 4.4
In (4.3) and (4.4)
_ —ig(1 —g) . : .
A(0) = ———(g,ab,ac,bc; ), h(cos 0;d)w(cos 0;a,b, c,d). 4.5

2d
However, by [4,(3.4.1)],

|:abcd/q, be, q/u
302 ;

ad, abedujq * % q}

_(abcdtq™';9)s é (abcd/q)'"?, —(abcd/q)/?,(abed) "2, —(abed) ', adu/q
- ;9o 4 ad,abcdu/q, abcdt/q, q/t 44

(abcd/q, adu/q, adt, abcdut/q; q)
(ad, abcdu/q, adut/q,t ™ ; q).,

t(abed/q)''?, —t(abed/q) 2, t(abed) ', —t(abcd)'?, adut/q
X 5¢4 2 9,9 |- (46)
adt,abcdut/q, qt,abcdt?/q
We now substitute (4.6) in (4.4) and, observing that by [4,(2.10.18)]
7 (due®®, due ~*°, abcdug®1; q).,
qeoa  (daug“~*,dbu/q,dcu/q;q)e
6 —if.

(ab, ac; q),
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and

qu““/d (due®, due ", abedtug* " ; g).,
o (datug* T dbujg,dcu/g;q)
(abt, act; q),, h(cos 6;a)(ate”,ate ~; q); (4.8)

=4
©) (ab,ac;q)s,  h(cos 8;at)(abt,act;q)

k=0,1,2,..., we finally obtain the formula

(abcdtq™";q)

G = (t:9)es

I:(abcdq_l)l/z, —(abcdq™1)V?,(abcd)?, —(abcd)'?, ae®, ae ]
X 65 54,4

ab,ac,ad,abcdtq™t,qt ™!

(abcdq™!,abt, act,adt,ae® ae = q),
(ab,ac,ad,t™ !, ate® ate 7% q),

t(abcdg™ )2, —t(abedq™ )2, t(abed)'?, —t(abed) ', ate®, ate ~°
X 6Ps 34,9 |-

abt,act, adt,qt,abcdt*q ™!
4.9)

It follows from (1.19) and (4.9) that

7o) b d 2a—1.
i) = j Kix bAT” 5 np, (x; g7, b2, cq™?, dg?'?) dz
"=0 @)

_ (abedtq®* ™5 g)
(£ 9w

Jl dzK(x,z)

q*(abcdq™")'1?, —q*(abedq™ )", q*(abed)'/?, —q*(abcd)'?, aq*? e, aq*?e Y
X 6Ps 4,9

abq®, acq®, adq®, abcdtg®* =1, qt ™1
abcd 2:1—1, bt a’ t zz, dl' a; w 1 a/2 i a:/2 —iy.
( 1 o 4 rxq a(;z q-la g q) J dZK(x Z) (aqa/Z iy s a/2 q)
(abq »acq aadq >t aq)oo -1 (atq atq ’q)co

% ¢ ’:tqa(abcdq“ 1)1/2’ _tqa(abcdq—l)l/z’ tqa(abcd)l/z, —tqa(abcd)l/z,atq“/zei‘/‘, atq“/ze_i‘/’.
o abtq®, actq®, adtq®, qt,abcdt*q** ™! 39,9
(4.10)
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5. Generating function I1

For the Askey—Wilson polynomials, Ismail and Wilson [7] found the generating function

& lac,ad;q),
G,(1) = ————(t/a)"p.(x;a,b,c,d),
0= L edq), Pl )
aeie,beiel » ce i de —ie,. N
_2¢1|: ab aqate :|2¢1 [ Cd sq,te :| (51)

This is, of course, that a = 0 case of (1.22). But this formula leads us immediately to the general
formula

aqa/zeilﬂ,bqa/zeilﬁ.q te—ixlz:| ¢ |:eqa/2 illz,dqa/Ze—l
s 4 2¥1

1
z = N iy
G5(t) J—1 K(x,z) 26, |: abg® cdg® iq,te }dz, (5.2)

z =cos ¥, |t| < p < 1. It may appear from (5.1) and (5.2) that the symmetry in the angle variables
that is there on the left-hand side is missing on the right. However, by (4, I11.4)

] aq“/ze“",bqa/zew.qte—iw =M b aq™*e, aq®?e ~V . 4, btg*? (5.3)
SN PV e B | |

with a similar formula for the other ,¢, series on the right-hand side of (5.2). Thus,

IKXZ aa/Zu//aa/Z — iy
G3(t) = (atq™?, ctq™?; q) j ( )2¢2[ 1 1 a2 ,q,btq“”}

-1 h(z;t) abq®, atq
aj2 1|/1 a/2
q »Cq a
X 2¢2 |: qu ,ctq“/2 ,q, dtq /2j|dZ. (54)
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