TCT-24

Combined Near-Infrared Spectroscopic and Intravascular Ultrasound Assessment Of Coronary Plaque Burden and Lipid Pools: Validation With Histology

Rishi Puri, Sean Madden, James Muller, Kathy Wolski, Ryan Madden, Yu Katouka, Kyoko Uno, Jordan Andrews, Karilane King, Steve Sum, Craig Bologa, E Murat Tuzcu, Samir Kapadia, Akiko Maehara, Gary Mintz, Stephen Nicholls

1Cleveland Clinic, Cleveland, OH, 2Infrarex, Inc, Burlington, MA, 3Infrarex Inc., Burlington, MA, 4Frederick Meijer Heart & Vascular Institute/Spectrum Health, Grand Rapids, MI, 5Cleveland Clinic, Cleveland, USA, 6Cardiovascular Research Foundation and Columbia University Medical Center, New York, NY, 7CRF, Washington, United States

Background: Near-infrared spectroscopy (NIRS) enables specific identification of coronary lipid core plaques in vivo, which are thought to mediate plaque vulnerability. IVUS-derived coronary plaque burden is associated with clinical events. The relationship between coronary plaque burden and lipid core expression is yet to be evaluated.

Methods: Ex-vivo catheter-based coronary NIRS and IVUS imaging was performed through blood in 108 vessels from 51 autopsy hearts (mean donor age 65.9±15 yrs, 71% male). A single histological section was analyzed for every 2-mm block of artery, and assigned a modified American Heart Association (AHA) pathological grading scheme (1=normal/adaptive intimal thickening, 2=fibrous/calcified fibrous, 3= pathological intimal thickening, 4=fibroatheroma/ruptured plaque). For each block, percent atheroma volume (PAV) and lipid core burden index (LCBI) were derived from IVUS and NIRS respectively.

Results: Correlations were found between PAV vs LCBI (r=0.34, p<0.001), PAV vs AHA grade (r=0.064, p=0.0001) and AHA grade vs LCBI (r= 0.40, p<0.001). There were significant interrelationships between AHA plaque classification, LCBI and PAV values (Grade 1: n=942, mean LCBI 16.7±5.60, mean PAV 35.4±10.2; Grade 2: n=477, mean LCBI 38.2±8.8, mean PAV 54.8±9.9; Grade 3: n=367, mean LCBI 87.2±155; mean PAV 53.5±11; Grade 4: n=284, mean LCBI 162±206, mean PAV 60.5±10.8; p<0.001 for test of trend for both LCBI and PAV according to AHA grade). Table 1 highlights the 3-way relationship between tertiles of PAV, corresponding block LCBI values and plaque sub-types found within each PAV tertile.

Table 1

<table>
<thead>
<tr>
<th>Block Parameter</th>
<th>Tertile 1 PAV (0 - 38.5)</th>
<th>Tertile 2 PAV (38.5 - 53.5)</th>
<th>Tertile 3 PAV (53.6 - 82.6)</th>
<th>p-value (test of trend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block LCBI</td>
<td>13.5±58</td>
<td>36.8±97</td>
<td>112±172</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean PAV</td>
<td>29.9±5.6</td>
<td>46.7±4.3</td>
<td>62.9±6.6</td>
<td><0.001</td>
</tr>
<tr>
<td>AHA Grade 1 (%)</td>
<td>631 (91.4)</td>
<td>261 (37.8)</td>
<td>50 (7.2)</td>
<td>N/A</td>
</tr>
<tr>
<td>AHA Grade 2 (%)</td>
<td>20 (2.9)</td>
<td>207 (30.0)</td>
<td>250 (36.2)</td>
<td>N/A</td>
</tr>
<tr>
<td>AHA Grade 3 (%)</td>
<td>33 (4.8)</td>
<td>161 (23.3)</td>
<td>174 (25.2)</td>
<td>N/A</td>
</tr>
<tr>
<td>AHA Grade 4 (%)</td>
<td>6 (0.9)</td>
<td>62 (9.0)</td>
<td>216 (31.3)</td>
<td>N/A</td>
</tr>
<tr>
<td>LCBI and PAV data are presented as mean±SD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: Plaque burden on IVUS and NIRS-derived lipid core are modestly correlated, and each associate with increasing histological plaque complexity. This suggests that the combination of the two variables may yield enhanced characterization of plaques and possibly more effective prediction of clinical events.

Access Sites and Their Mangement

C219

Tuesday, October 23, 2012, 10:30 AM–12:30 PM

Abstract nos: 25-32

TCT-25

Cardiac catheterization via Ulnar. Deductive approach after 10 years of Experience.

Raul Valdezsoth, Juan Gimeno, Francisco Lacunza, Juan Garcia de Lara, Jose Hurtado, Eduardo Pinar, Mariano Valdes

1Hospital Universitario Virgen de Arrixaca, Murcia, Spain

Background: The Ulnar Artery (UA) access is rarely employed in cardiac catheterization. The “how to do” of the puncture has not been established. We propose how and where to puncture the UA after careful evaluation of complications and failures of the technique.

Methods: We reviewed the results of 1,157 consecutive patients (pts) in which the UA approach was attempted from Nov-2001 till May-2012. All studies were performed by operators with experience in transradial approach. Follow-up was achieved in 93% of pts at 24 hours and 91% at 3 months after procedure. Haematomas (H) and neurological complications related to the UA puncture were recorded.

Results: Of a total of 22,825 pts, (73% radial approach) 1,357 (6%) were attempted via UA (mean aged 67 ± 14 years. 65% males, and risk factors the usual of a non-selected population). In the pts attempted, UA pulse was as strong as radial in 28% and even stronger in 26%. The UA was punctured over or near the wrist’s skin fold or 3 - 4 cm proximal (the 2 sites where the artery can be felt best). In 128 pts (11%) UA was attempted after failure of radial puncture in the same wrist. Study was completed in 1,205 pts (89%). The main cause of ulnar cross over was the puncture failure (75% of cases) needing 10-20 min±1 min. Out to 1,533 procedures performed (77% via the right UA) 691 (45%) were PTA. A total of 75 H ≥ 6 cm were documented; 12 (12%) of them within the first 100 cases performed, and the rest 63, in the following 1,105 (6%) pts (p<0.005). There were 13 neurological complications related to the nerve compression by big H and 15% of unintentional nerve punctures without sequelae at follow up (ulnar nerve runs medial and slightly below the switch from thrombolysis). In a multi-variable analysis, H was related to a proximal puncture place, that difficult the artery compression. Conclusions: Ulnar approach is more difficult and time consuming than radial. Puncture must be done over the carpal bones (at the level of the wrist’s skin fold) to diminish vascular complications. Needle must be directed from lateral to medial (45°) to avoid unintentional ulnar nerve puncture. UA might be a better approach than radial when ulnar pulse is felt stronger than radial.

TCT-26

Radial vs Femoral access for Primary PCI, observational data from the British Cardiovascular Intervention Society Database.

Karim Raith, Mamas Mamas, Adrian Large, Samer Arnaos, Helen Roulledge, Peter Ludman, Doug Fraser, Jim Nolan

1University Hospital of North Staffordshire, Stoke-on-Trent, UK, 2Manchester Royal Infirmary, Manchester, UK, 3Worcestershire Royal Hospital, Worcester, WRS 1DD, UK, 4University Hospital Birmingham, Birmingham, UK,

Background: Primary PCI is the gold standard treatment for patients with STEMI with a significant mortality benefit compared to thrombolysis. Advances in anti-thrombotic therapy have improved the prognosis of patients presenting with STEMI, reducing ischemic events and mortality, at the expense of increased bleeding complications. Radial access significantly reduces the risk of access site bleeding and is associated with a reduction of mortality similar to that observed with the switch from thrombolysis. We sought to assess the real world effects using of radial access for primary PCI using BCIS PCI database.

Methods: This study includes data collected by the British Cardiovascular Intervention Society Database in the UK from the first 100 cases performed, and the rest 63, in the following 1,105 (6%) pts (p<0.005). There were 13 neurological complications related to the nerve compression by big H and 15% of unintentional nerve punctures without sequelae at follow up (ulnar nerve runs medial and slightly below the switch from thrombolysis). In a multi-variable analysis, H was related to a proximal puncture place, that difficult the artery compression. Conclusions: Ulnar approach is more difficult and time consuming than radial. Puncture must be done over the carpal bones (at the level of the wrist’s skin fold) to diminish vascular complications. Needle must be directed from lateral to medial (45°) to avoid unintentional ulnar nerve puncture. UA might be a better approach than radial when ulnar pulse is felt stronger than radial.

Access Sites and Their Mangement

C219

Tuesday, October 23, 2012, 10:30 AM–12:30 PM

Abstract nos: 25-32

TCT-27

Transformation from a predominant Transfemoral to Transradial Access site for Percutaneous coronary intervention (PCI): Insights into an Achievable Revolution within Five Years.

Shanta Bundhoo, Ganesh Shivu, Tim Kinnaird, Richard Anderson

1University Hospital of Wales, Cardiff, South Glamorgan, 2University Hospital of Wales, Cardiff, Wales, 3University Hospital of Wales, Cardiff, Cardiff, Wales, 4University Hospital of Wales, Cardiff, Wales

Background: PCI via the radial (R) route continues to gain wider acceptance. The main limiting factors for its adoption include a learning curve, concerns of technical difficulty, longer fluoroscopy time and radiation doses. Little information is available on the learning curve in adopting this technique. Our study examines the change in practice in a high volume centre with regard to PCI access site.

Methods: Prospective study examining procedures and outcomes of all patients undergoing PCI between Jan 2006 and Dec 2010 at our centre. We performed between