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Abstract

Recently, several classes of permutation polynomials of the form (x2 + x + δ)s + x over F2m have been
discovered. They are related to Kloosterman sums. In this paper, the permutation behavior of polynomials
of the form (xp − x + δ)s + L(x) over Fpm is investigated, where L(x) is a linearized polynomial with
coefficients in Fp . Six classes of permutation polynomials on F2m are derived. Three classes of permutation
polynomials over F3m are also presented.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let Fq be the finite field of q elements, where q is a prime power. A polynomial f ∈ Fq [x]
is called a permutation polynomial if the associated polynomial function f : c �→ f (c) from Fq

into Fq is a permutation of Fq . Permutation polynomials have been a subject of study for many
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years, and have important applications in various areas, such as coding theory, cryptography, and
combinatorial designs. For an introduction to permutation polynomials, we refer the reader to
[6, Chapter 7].

We use Tr(·) to denote the trace function from F2m to F2, i.e.,

Tr(x) = x + x2 + x22 + · · · + x2m−1
.

For any e ∈ F2, define

Te = {
x ∈ F2m

∣∣ Tr(x) = e
}
.

Let c be an integer in {1,2, . . . ,2m −1}, and let the binary representation of c be c = ∑m−1
i=0 ci ·2i

with ci ∈ {0,1}. Define the weight of c to be w(c) = ∑m−1
i=0 ci . We define a polynomial function

on F2m as

Lc(x) =
m−1∑
i=0

cix
2i

.

Given integers c, d ∈ {0,1, . . . ,2m − 1}, we define a polynomial function on F2m as

Lc,d(x) = Lc(x) + Ld(1/x)

with the understanding that Lc,d(0) = 0.
In the study of Kloosterman sum identities, Hollmann and Xiang [3] introduced Kloosterman

polynomials which are defined as follows.
Let e = w(c) (mod 2). The polynomial Lc,d : F2m → F2m is called a Kloosterman polynomial

on F2m if w(d) is even and Lc,d maps T1 bijectively onto Te .
Kloosterman polynomials are interesting because every Kloosterman polynomial gives rise

to a Kloosterman sum identity (see [3, Theorem 3.2]). It is proved in [3] that L1,3(x) = x +
1/x + 1/x2, L1,6(x) = x + 1/x2 + 1/x4, and L1,10(x) = x + 1/x2 + 1/x8 are Kloosterman
polynomials on F2m for all m, and it is conjectured that for all m � 1, L1,d is a Kloosterman
polynomials on F2m if and only if d ∈ {0,3,6,10}.

In this paper, we first prove the equivalence of Kloosterman polynomials of the form L1,d

and permutation polynomials of a special form. Then we present six classes of permutation poly-
nomials over F2m with the form (x2 + x + δ)s + Lc(x). Finally, we describe three classes of
permutation polynomials of similar formats over F3m .

2. A link between Kloosterman polynomials and permutation polynomials

The objective of this section is to describe the relationship between Kloosterman polynomials
L1,d and permutation polynomials of a special form, and then present several classes of permu-
tation polynomials related to the Kloosterman polynomial L1,10.

Proposition 2.1. For any integer d ∈ {0,1, . . . ,2m − 1} with w(d) being even, L1,d (x) = x +
Ld(1/x) is a Kloosterman polynomial of F2m if and only if for any δ ∈ F2m with Tr(δ) = 1, the
polynomial
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(
Ld(x) + δ

)2m−2 + x = 1

Ld(x) + δ
+ x

is a permutation polynomial of F2m .

Proof. Assume that L1,d (x) is a Kloosterman polynomial. For any δ ∈ T1, a ∈ F2m , consider the
equation

1

Ld(x) + δ
+ x = a. (1)

Since δ ∈ T1, Tr(δ) = 1. On the other hand, since w(d) is even, Tr(Ld(x)) = 0 for all x. It then
follows that Ld(x) + δ �= 0 for any x ∈ F2m . So x = a cannot be a solution of (1). Thus, Eq. (1)
is equivalent to

(x + a)
(
Ld(x) + δ

) + 1 = 0. (2)

Let y = x + a, then y �= 0. Equation (2) then becomes y(Ld(y) + Ld(a) + δ) + 1 = 0. Hence

L1,d (1/y) = 1/y + Ld

(
1/(1/y)

) = Ld(a) + δ. (3)

Since w(d) is even, Ld(z) ∈ T0 for any z ∈ F2m . Because Tr(δ) = 1, we have Ld(a)+ δ ∈ T1 and
1/y ∈ T1. Since the function L1,d maps T1 injectively to T1, there is a unique y ∈ F2m satisfying
Eq. (3). Hence there is a unique x ∈ F2m satisfying Eq. (1). This proves that 1

Ld(x)+δ
+ x is a

permutation polynomial of F2m .
Assume that for any δ ∈ F2m with Tr(δ) = 1, the function 1

Ld(x)+δ
+x is a permutation polyno-

mial of F2m . Now given any element b ∈ T1, consider the equation L1,d (y) = y + Ld(1/y) = b.
Since L1,d (0) = 0, let z = 1/y. Then the equation becomes 1/z + Ld(z) = b. Since z �= 0 and
Ld(z) + b �= 0, this can be reformulated as 1

Ld(z)+b
+ z = 0. From the hypothesis, this equation

has a unique root z ∈ F2m . Hence there exists a y ∈ F2m such that L1,d (y) = y + Ld(1/y) = b.
Moreover, Tr(y) = Tr(y +Ld(1/y)) = Tr(b) = 1 as w(d) is even. Hence we have y ∈ T1. It then
follows that L1,d (y) = y +Ld(1/y) maps T1 injectively to T1, and hence L1,d is a Kloosterman
polynomial. �

In the remainder of this section, we present several classes of permutation polynomials related
to the Kloosterman polynomial L1,10. We first present the following two lemmas that will be
needed in the sequel.

Lemma 2.2. Let m be a positive integer. Let u,v ∈ F2m with u �= 0. The equation x2 +ux +v = 0
has roots in F2m if and only if Tr(v/u2) = 0.

Lemma 2.3. (See [4].) Let m be a positive integer. Let k be an integer in {1, . . . ,m − 1} with
gcd(k,m) = 1, and let r ∈ {1, . . . ,m − 1} be such that kr ≡ 1 (mod m). Define the integer m′ by
kr = 1 + mm′ and write σ = 2k . For α,β ∈ {0,1}, we define the polynomials

fα(X) = α Tr(X) +
r−1∑

Xσi
i=0
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and

gβ(X) = β Tr(X) +
k−1∑
j=0

X2j

.

The functions fα and gβ have the following properties:

1. gβ is a permutation on F2m if and only if k + βm ≡ 1 (mod 2).
2. For every x ∈ F2m , we have fα(gβ(x)) = gβ(fα(x)) = x + ω Tr(x) with

ω = m′ + αk + βr + αβm.

The following proposition describes a class of permutation polynomials of F2m related
to L1,10.

Proposition 2.4. Let m be a positive integer, and let δ be an element of F2m with Tr(δ) = 1. Then
h(x) = ( 1

x4+x+δ
)2 + x is a permutation function of F2m .

Proof. Assume there exist elements x, y in F2m such that x �= y and h(x) = h(y). Then we have

x + y =
(

1

x4 + x + δ

)2

+
(

1

y4 + y + δ

)2

(4)

=
(

x4 + y4 + x + y

(x4 + x + δ)(y4 + y + δ)

)2

. (5)

Let s = x + y and t = xy, then s �= 0. We write s2m−1
as

√
s. Raising both sides of (5) to the

power of 2m−1, we have

√
s = x4 + y4 + x + y

(x4 + x + δ)(y4 + y + δ)
. (6)

We have (x4 + x + δ)(y4 + y + δ) = t4 + st (s2 + t) + δs4 + t + δs + δ2. Thus (6) becomes

√
s = s4 + s

t4 + st (s2 + t) + δs4 + t + δs + δ2
. (7)

Since s �= 0, writing (7) as an equation in t , we have

t4 + st2 + (
s3 + 1

)
t + δs4 + δs + δ2 + (

s4 + s
)
/
√

s = 0. (8)

Writing T = t2 + (s + 1)t , we can rewrite (8) as

T 2 + (
s2 + s + 1

)
T + δs4 + δs + δ2 + (

s4 + s
)
/
√

s = 0. (9)
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We claim that s2 +s+1 �= 0. Otherwise, suppose s2 +s+1 = 0. Then s3 = 1. Since y = x+s,
we have y4 + y + δ = x4 + s4 + x + s + δ = x4 + x + δ + s(s3 − 1) = x4 + x + δ. Thus (4)
becomes s = 0, which contradicts our assumption.

By Lemma 2.2, Eq. (9) has a solution T in F2m if and only if A = 0, where

A = Tr

(
δs4 + δs + δ2 + (s4 + s)/

√
s

(s2 + s + 1)2

)
.

On the other hand, we have

A = Tr

(
δ(s4 + s2 + 1) + δ(s2 + s + 1) + δ2 + (s4 + s)/

√
s

s4 + s2 + 1

)

= Tr

(
δ + δ

s2 + s + 1
+

(
δ

s2 + s + 1

)2

+ (s4 + s)/
√

s

s4 + s2 + 1

)

= 1 + Tr

(
(s4 + s)/

√
s

s4 + s2 + 1

)

= 1 + Tr

(
(s8 + s2)

s(s8 + s4 + 1)

)

= 1 + Tr

(
s7 + s

s8 + s4 + 1

)
.

Note that

s7 + s

s8 + s4 + 1
= s(s2 + 1)(s4 + s2 + 1)

(s4 + s2 + 1)2

= s3 + s

s4 + s2 + 1

= s(s2 + s + 1) + s2

s4 + s2 + 1

= s

s2 + s + 1
+

(
s

s2 + s + 1

)2

.

So we have A = 1. Hence (9) has no solution T in F2m , and there do not exist distinct elements
x, y ∈ F2m with h(x) = h(y). �
Remark. Proposition 2.4 can also be proved with the help of [3, Theorem 4.1] and Proposi-
tion 2.1. But we prefer the direct proof above.

As byproducts, in the case that m is odd, we have the following permutation polynomials of
the form (x2 + x + δ)−2 + Lc(x) over F2m .
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Corollary 2.5. If m ≡ 1 (mod 4) and δ is an element of F2m with Tr(δ) = 1, then

l1(x) = 1

(x2 + x + δ)2
+

(m−1)/2∑
i=0

x22i

is a permutation of F2m .

Proof. We apply Lemma 2.3, with k = 2, r = (m + 1)/2, m′ = 1, α = 0, β = 1. Note that
g1(x) = x2 + x + Tr(x) is a permutation polynomial of F2m . We have ω = m′ + αk + βr +
αβm = m′ + βr = 1 + (m + 1)/2 = 0, and so f0(g1(x)) = x + ω Tr(x) = x. Note that l1(x) =

1
(x2+x+δ)2 + f0(x). Hence

l1
(
g1(x)

) = 1

(g1(x)2 + g1(x) + δ)2
+ f0

(
g1(x)

) = 1

(x4 + x + δ)2
+ x = h(x).

Thus l1(z) = h(g−1
1 (z)) is a permutation of F2m since both g1 and h are permutations

of F2m . �
Corollary 2.6. If m ≡ 3 (mod 4) and δ is an element of F2m with Tr(δ) = 1, then

l2(x) = 1

(x2 + x + δ)2
+

(m−1)/2∑
i=0

x22i + Tr(x)

is a permutation of F2m .

Proof. We apply Lemma 2.3, with k = 2, r = (m + 1)/2, m′ = 1, α = 0, β = 1. Note that
g1(x) = x2 + x + Tr(x) is a permutation polynomial of F2m . We have ω = m′ + αk + βr +
αβm = m′ + βr = 1 + (m + 1)/2 = 1, and so f0(g1(x)) = x + ω Tr(x) = x + Tr(x). Note that
l2(x) = 1

(x2+x+δ)2 + f0(x) + Tr(x). It follows that

l2
(
g1(x)

) = 1

(g1(x)2 + g1(x) + δ)2
+ f0

(
g1(x)

) + Tr
(
g1(x)

)

= 1

(x4 + x + δ)2
+ x = h(x).

Thus l2(z) = h(g−1
1 (z)) is a permutation of F2m since both g1 and h are permutations

of F2m . �
3. Two classes of permutation polynomials on F2mF2mF2m for odd m

In this section, we consider permutation polynomials over F2m of the form f (x) = (x2 + x +
δ)s +Tr(x) where Tr(δ) = 1. If m is even, then f (x) cannot be a permutation since f (0) = f (1).
For small values of odd m we ran a computer search and recorded the numerical results in Table 1.
Here S = {1 � s � q − 1: (x2 + x + δ)s + Tr(x) is a permutation polynomial of F2m}, and α is
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Table 1
Values of s such that (x2 + x + δ)s + Tr(x) permutes F2m

m α’s minimal polynomial δ Values of s

3 α3 + α + 1 α3 1,3,5
5 α5 + α2 + 1 α3 1,7,11,19,25
7 α7 + α + 1 α7 1,15,27,43,45,51,71,77,85,89,99,113
9 α9 + α4 + 1 α5 1,31,57,71,103,115,171,173,213,271,

291,307,313,341,391,401,409,451,481

a primitive element of F2m . From every cyclotomic coset modulo 2m − 1, we only record one
value of s.

In Table 1, the value s = 1 is explained by the following simple result, as x2 + x has only two
zeros 0 and 1 in F2m .

Proposition 3.1. Let m be an odd integer, and let c be an integer in {1,2, . . . ,2m − 1} with even
weight. Then Lc(0) = Lc(1) = 0 in F2m . Assume that 0 and 1 are the only zeros of Lc(x) in F2m .
Then Lc(x) + Tr(x) is a permutation polynomial of F2m .

Proof. Note that Tr(1) = 1 since m is odd. Assume that there exist a, b ∈ F2m , a �= b, with
Lc(a) + Tr(a) = Lc(b) + Tr(b). We consider the following two cases.

If Tr(a) = Tr(b), then we have Lc(a − b) = Lc(a) − Lc(b) = 0. Thus a − b = 0 or 1. Since
a �= b, we have a − b = 1. Thus Tr(a) − Tr(b) = Tr(1) = 1. This is a contradiction.

If Tr(a) �= Tr(b), then we have Lc(a) = Lc(b) + 1. Thus Tr(Lc(a)) = Tr(Lc(b)) + Tr(1) =
Tr(Lc(b)) + 1. However, since the weight of c is even, we have that Tr(Lc(a)) = Tr(Lc(b)) = 0.
This is also a contradiction.

Thus Lc(x) + Tr(x) is a permutation polynomial of F2m . �
All the remaining values of s in Table 1 are explained by the following result.

Proposition 3.2. Let m be odd and let δ be an element of F2m with Tr(δ) = 1. Let i, j be integers
with 0 � i < j � m − 1. Let e be any positive integer with (2i + 2j ) · e ≡ 1 (mod 2m − 1). Then

f (x) = (
x2 + x + δ

)e + Tr(x)

is a permutation polynomial of F2m .

Proof. Since m is odd, it is easy to prove that gcd(2i +2j ,2m −1) = 1 (see e.g. [1, Lemma 2.1]).
Thus such an e exists for any i, j with 0 � i < j � m − 1.

Assume there exist distinct elements x, y ∈ F2m such that f (x) = f (y) = a for some a ∈ F2m .
We now claim that Tr(x) �= Tr(y). Otherwise, suppose Tr(x) = Tr(y). Then we have (x2 + x +
δ)e = (y2 + y + δ)e . Thus x2 + x + δ = y2 + y + δ. It follows that (x + y)(x + y + 1) = 0.
Since x �= y, we have x = y + 1. Then Tr(x) = Tr(y) + Tr(1) = Tr(y) + 1 since m is odd. This
is contrary to the assumption that Tr(x) = Tr(y).

Now without loss of generality, assume that Tr(x) = 0 and Tr(y) = 1. We rewrite f (x) = a as

(
x2 + x + δ

)e = Tr(x) + a. (10)
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Raising both sides of (10) to the power of 2i + 2j , we obtain that

x2 + x + δ = (
Tr(x) + a

)2i+2j

,

which can be reformulated as

x2 + x + δ = Tr(x)
(
1 + a2i + a2j ) + a2i+2j

. (11)

Since Tr(x) = 0, taking the trace function of both sides of (11), we have Tr(a2i+2j
) = 1.

Similarly, we have the equation

y2 + y + δ = Tr(y)
(
1 + a2i + a2j ) + a2i+2j

. (12)

Since Tr(y) = 1, we obtain that 1 = Tr(1) + Tr(a2i+2j
). Thus we have Tr(a2i+2j

) = 0, which is
a contradiction. �
4. Three classes of permutation polynomials on F2mF2mF2m for even m

In this section, we first prove that permutation polynomials of a particular form always appear
in pairs when m is even. We then describe three classes of permutations polynomials over F2m

for even m.
Two functions f and g from F2m to F2m are said permutation equivalent if f induces a

permutation of F2m if and only if g induces a permutation of F2m .

Proposition 4.1. Let m be even, δ be an element of F2m with Tr(δ) = 1, and let h(x) be any
function from T1 to F2m . Assume that s and t are integers in {1,2, . . . ,2m − 1} such that w(s)

is even and w(t) is odd. Let f1(x) = h(Ls(x) + δ) + Lt(x) and f2(x) = f1(x) + Tr(x). Then f1
and f2 are permutation equivalent.

Proof. Assume that f1 induces a permutation of F2m . We now prove that f2 also induces a per-
mutation of F2m . Assume there exist a, b ∈ F2m with f2(a) = f2(b). We consider the following
two cases.

If Tr(a) = Tr(b), then from f1(a)+ Tr(a) = f2(a) = f2(b) = f1(b)+ Tr(b) we have f1(a) =
f1(b). Since f1 is a permutation of F2m , we have a = b.

If Tr(a) �= Tr(b), without loss of generality, assume that a ∈ T1 and b ∈ T0. From f2(a) =
f2(b) and f2(x) = f1(x) + Tr(x) we have that f1(a) + 1 = f1(b). Let ā = a + 1. Then we have
Ls(ā) = Ls(a) since w(s) is even. Note that Lt(ā) = Lt(a)+1 because w(t) is odd. We also have
Tr(ā) = Tr(a + 1) = Tr(a) = 1 since m is even. Thus we have f1(ā) = h(Ls(ā) + δ) + Lt(ā) =
h(Ls(a) + δ) + Lt(a) + 1 = f1(a) + 1 = f1(b). However, we have ā �= b since ā ∈ T1, b ∈ T0.
This contradicts the fact that f1 is a permutation of F2m . Hence f2 is a permutation of F2m given
that f1 is a permutation of F2m .

By definition, we have

f1(x) = f2(x) + Tr(x) = h
(
Ls(x) + δ

) + Lt(x) + Tr(x) = h
(
Ls(x) + δ

) + Lt ′(x),

where t ′ = 2m − 1 − t . Since w(t) is odd and m is even, w(t ′) is odd. Hence by symmetry and
the proof above, f1 is a permutation of F2m if f2 is a permutation of F2m . �
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Applying Proposition 4.1 to [2, Lemma 1], Proposition 2.4 of this paper, and [7, Theorems 3.1
and 3.3], we have the following results.

Corollary 4.2. Let m be even, and let δ be an element of F2m with Tr(δ) = 1. We have the
following classes of permutation polynomials of F2m :

• f1(x) = 1
Ld(x)+δ

+ x + Tr(x), where d = 3,6,10.

• f2(x) = ( 1
x2+x+δ

)2m−1+2m/2−1−1 + x + Tr(x).

• f3(x) = (x2 + x + δ)(2
m+1−2m/2−1)/3 + x + Tr(x).

5. Three classes of permutation polynomials on F3mF3mF3m

In the concluding remarks of [3], Hollmann and Xiang mentioned the fact that over F3m ,
x �→ x − 1/x + 1/x3 is injective outside T0. This motivated us to consider whether 1

x3−x+δ
+ x

is a permutation of F3m where Tr(δ) �= 0.
In this section, we first prove the following result about quartic equations.

Lemma 5.1. Let m be a positive integer, and let b be an element of F3m with Tr(b) �= 0. Then the
quartic equation

x4 − x2 + bx + 1 = 0 (13)

has at most one solution in F3m .

Proof. Suppose on the contrary that (13) has two solutions x and x + a, where a �= 0. Clearly
x �= 0 and x �= −a. We have then

{
x4 − x2 + bx + 1 = 0,

(x + a)4 − (x + a)2 + b(x + a) + 1 = 0.
(14)

Hence

{
x4 − x2 + bx + 1 = 0,

x3 + (
a2 + 1

)
x + a3 − a + b = 0.

(15)

It follows that a2 �= 1 because Tr(b) �= 0. By (15) we have

{
x4 − x2 + bx + 1 = 0,(
a2 − 1

)
x2 + a

(
a2 − 1

)
x − 1 = 0.

(16)

Note that x �= 0. The second equation in (16) yields

(
1

x

)2

+ 2a
(
a2 − 1

) 1

x
− (

a2 − 1
) = 0.

It then follows that
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(
1

x
+ (

a3 − a
))2

= (
a2 − 1

)(
a2 + 1

)2
. (17)

Therefore, a2 − 1 must be a square. Assume that a2 − 1 = A2, where A ∈ F3m . Then by (17)

1

x
= −(

a3 − a
) ± (

A3 − A
)
.

Hence Tr(1/x) = 0. But Tr(b) = Tr(−x3 + x − 1/x) = Tr(−1/x) = 0. This is contrary to the
assumption that Tr(b) �= 0. The proof is completed. �

The first class of permutation polynomials on F3m is described by the following proposition.

Proposition 5.2. Let m be a positive integer, and let δ be an element of F3m with Tr(δ) �= 0. Then
1

x3−x+δ
+ x is a permutation of F3m .

Proof. It suffices to prove that the following equation

1

x3 − x + δ
+ x = a (18)

has at most one solution for each a ∈ F3m .
We rewrite (18) as

(
x3 − x + δ

)
(x − a) + 1 = 0.

Set y = x − a. Then the above equation has the same number of solutions x as that of the
following equation:

y4 − y2 + (
δ − (

a3 − a
))

y + 1 = 0

in y. The conclusion then follows from Lemma 5.1. �
We are now interested in values of s with 2 � s � 3m − 2 such that (x3 − x + δ)s + x is

a permutation of F3m . For small values of m, we recorded the experimental results in Table 2,
where α is a primitive element of F3m , and Tr(δ) �= 0.

In Table 2, the values of s marked with a are covered by Proposition 5.2, and those marked
with b correspond to linearized permutation polynomials. We now explain those marked with c

and d .

Table 2
Values of s such that (x3 − x + δ)s + x permutes F3m

m α’s minimal polynomial δ Values of s

3 α3 − α + 1 α2 3b,9b,11,13c,16,21d ,24,25a

4 α4 − α3 − 1 α 9b,30,40c,79a

5 α5 − α + 1 α4 3b,9b,27b,81b,97d ,121c,241a

6 α6 − α4 + α2 − α − 1 α2 9b,81b,364c,727a
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Proposition 5.3. Let q = pm be a prime power. Let h(x) be a function defined over Fq . Let L(x)

be a linearized polynomial over Fq such that for any a, b ∈ Fq, h(a) − h(b) ∈ ker(L) := {x ∈
Fq | L(x) = 0}. Then f (x) = h(L(x)+ c)+ x is a permutation polynomial of Fq for any c ∈ Fq .

Proof. Assume there exist x, y ∈ Fq such that f (x) = f (y). Then we have x − y = h(L(y) +
c) − h(L(x) + c) ∈ ker(L). So L(x) = L(y), which in turn implies x − y = h(L(y) + c) −
h(L(x) + c) = 0. Hence f is a permutation over Fq . �

An example is the permutation functions η(x3 − x + c) + x of F3m , where η is the quadratic
character of F3m and c ∈ F3m . This explains the values marked with c above.

The following proposition explains the values of s marked with d in Table 2.

Proposition 5.4. Let m be odd, and let b be any element of F3m . If m ≡ 3 (mod 4), then the
function

f (x) = (
x3 − x + b

) 4·3m−3
5 + x

is a permutation polynomial of F3m .
If m ≡ 1 (mod 4), then the function

f (x) = (
x3 − x + b

) 2·3m−1
5 + x

is a permutation polynomial of F3m .

Proof. We have 4·3m−3
5 ≡ 5−1 (mod 3m −1) when m ≡ 3 (mod 4) and 2·3m−1

5 ≡ 5−1 (mod 3m −
1) when m ≡ 1 (mod 4). Let a ∈ F3m . We need to prove f (x) = a has exactly one solution
in F3m .

Since m is odd, gcd(5,3m − 1) = 1. f (x) = a is equivalent to

x3 − x + b = (a − x)5.

Let x − a = y. Then y5 + (y + a)3 − (y + a) + b = 0, i.e., y5 + y3 − y = −a3 + a − b. Since
gcd(5,32m − 1) = 1, y5 + y3 − y is a Dickson permutation polynomial [5]. So f (x) is a permu-
tation on F3m . �

It is open whether the remaining unexplained values of s in Table 2 lead to new classes of
permutation polynomials.

6. Concluding remarks

The Kloosterman sum K(a) over F2m is defined for any a ∈ F2m by

K(a) =
∑

x∈F
∗
2m

(−1)Tr(ax+ 1
x
).

Helleseth and Zinoviev [2] proved two identities involving Kloosterman sums, and proved that
1/(x2 + x + δ)s + x is a permutation polynomial of F2m where s = 1 or 2, and δ is an element
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with Tr(δ) = 1. in [7], more permutation polynomials of this form are derived. This paper is a
continuation of earlier works in [2–4,7].
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