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A b s t r a c t - - B a s e d  on the qualitative properties of Bessel's differential equation and its solutions, 
a method is proposed for the simultaneous evaluation of Bessel functions of first and second kind. 
Special attention is paid to the numerical properties of the method and to the errors of approximation. 
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1. I N T R O D U C T I O N  

In  this paper,  we consider Bessel functions Jp(x) and Yp(x) of real variable x 6 (0, oo) and real 

nonnegat ive index p. Similarly to  [1], our investigations are based on Bessel's differential equat ion 

x2y"(x)  + x y ' ( z )  + (x ~ - p~)y(x)  = o, (1.1) 

and the modified Priifer t ransformation.  Here we extend the method  proposed in [1] to the  

Bessel functions Yp(X) of second kind. Differently from [1], we introduce here the scaling factor 

into the Priifer t ransformat ion  in a symmetr ic  way. Thus,  for the phase and ampl i tude  funct ion 

we obta in  slightly different equations from those in [1] for 3p(X). Therefore, the scaling factor 

is chosen newly. In contras t  to  [1], the direction of the stable integrat ion of the  equat ion for 

the ampl i tude  becomes independent  of the index. Besides, we construct  sharper  error es t imates  

for our approximat ions.  In turn,  these est imates permit  shortening of the intervals where the  

auxil iary initial value problems have to be solved. Based on these results, we describe a new 
algor i thm providing Bessel function values Jp(x) and Yp(x), simultaneously. 

2. THE MODIFIED 
PR~IFER T R A N S F O R M A T I O N  

Let us fix the  index p (p _> 0), and define the phase functions Oj(x), OF(x) and ampl i tude  

functions rig(x), rig(x) implicitly by formulae 

V~Jp(x) - rij(x) cosCj (x ) ,  (V~Jp(x)) '= -r i j (x) , (x)sinCj(x) ,  (2.1) 
.(x) 

and 

v'TY~(~)- riY(~) v(x) cos Cy(X), (V/-xYp(x)) ' = -riy(x)u(x) sin Cy(x) ,  (2.2) 
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88 K. BALLA AND V. H. LINH 

with Cd(x) = 83(x) + x - {(2p + 1), Cy(x) : By(X) "~ X - -  ~(2p + 1), respectively. The scaling 
function is common for Jp(x) and Yp(x). Depending on the values of p and x, u(x) is given by 
the formula 1 

I Cpx p-l, when p > ~ and x < xp, 

u4(x) = 1, when p = 2 '  (2.3) 

1 p2 _ 1/4 
x2 , otherwise. 

For v(x), the positive value is chosen. The choice of constants (w.r. to x) Cp = (p + 1/2) -2p and 
Xp = p + 1/2 will be explained below. 

Since both Jp(x) and Yp(x) are solutions of equation (1.1), the equations for the phases do not 
differ and can be derived from (1.1): 

p 2 _ 1 / 4 ~  cos 2¢ v2 (v2)' sin 
0' = 1 x2 ] - - 7 -  + sin 2 ¢ - v2 ¢ cos ¢ - 1. (2.4) 

Equations (1.1) and (2.4) imply the equation for the amplitude 

- ( v )  1 
T/= h(x)~], h(x) = ~ 1 x2 v 4 ~ + cos 2¢~ (2.5) 

Here and later on we omit the indices J and Y when the formula is valid for 0, ¢, ~1 or h with 
both indices. Remark that  the chosen values of Cp and Xp ensure the continuity of the right-hand 
side of (2.4) and (2.5) w.r. to both x and p at any x • (0, o¢) and p • [0, c~). 

3. THE BEHAVIOUR OF 
THE AUXILIARY F U N C T I O N S ,  

A S Y M P T O T I C  PROPERTIES 

STATEMENT 3.1. When x --* 0% the functions ~l(x) and O(x) have limits. 

REMARK 3.1. lim~-~oo U(x) is uniquely defined up to its sign. If the positive value is chosen, 
then, 

r - : - _  

lim ~j (z )= lim ~]y(X)= ~/2.  (3.1) 
X--~OO X--~OO V T r  

REMARK 3.2. If the sign of limx-.oo ~(x) is fixed, then limx-.oo O(x) is uniquely defined up to 
a 2m~r term, where m is an integer. If Oj(x) is a solution of (2.4), corresponding to Jp(x), then, 
for Yp(x) one may choose the solution of (2.4), for which 

7~ 
lim 0 y ( X ) •  lim O J ( X ) - -  (3.2) 

X--~OO ~--4OO 2 

holds (limx-.oo Oj(x) = 2mlr). 

PROOF. Since lim~-~oo v(x) = 1, the statement and the remarks are consequences of the well- 
known asymptotic behaviour of the functions Jp(x), Yp(X) at infinity [1,2]. 

STATEMENT 3.2. When x --* c~, then h(x) = O(1/x 3) and 8'(x) = O(1/x2). 
PROOF. The statement follows from (2.3), (2.4) and (2.5) immediately. 

STATEMENT 3.3. For any x • (0,o¢), 

2 
~?y(x)7?j(x) sin(Oj(x) - Oy (x) ) = - - .  (3.3) 

7r 

PROOF. The Wronskian determinant W(x) of the pair Jp(x), Yp(x) is known [2]: 

2 
W(x) = Jp(x)Y;(x) - J~(x)Yp(x) = - - .  

7rx 

Substituting the formulae (2.1) and (2.2), one obtains the following statement. 
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STATEMENT 3.4. For any sufficiently sma/l x, 

7r ~g(x) = ~(2p + 1) - x - arctan ~(x) + 1/2 xv2(x) , where (3.4) 

oo  

= Z  kz2k' 
k=O 

k-1 

~ 0 : P ,  ~1-- 2 ( l ÷ p ) '  j3k= 2(k+p)  , k = 2 , . . . .  

PROOF. Apply [1, Theorem 2.2] and take (2.1) into account. We recall that x should be small 
enough to have the series defining 13(x) convergent. 

STATEMENT 3 . 5 .  W h e n  x --4 O, the function ~tj(x) has a limit. 

PROOf. Simply take (2.3) and Statement 3.4 into account and evaluate the limit(s) of r.h.s. 
in (2.4). The result is 

-1 ,  w h e n p ¢ ~ ,  
lim ~ (x )  -- 1 
x~0 0, when p = 2" 

Moreover, for p = 1/2, OJ(X) ~ O. 

STATEMENT 3.6. When x -~ O, the function x h j ( x )  has a limit. 

PROOF. Due to (2.5) and Statement 3.4, one has 

p, when p < 1, 

lim x h j ( x )  1) 
~ - , when p > 2" 

For p = 1/2, hg(x) - O. 

4. T H E  N U M E R I C A L  A L G O R I T H M  

Based on the qualitative properties listed in Section 3, one obtains a set of problems for 
equations (2.4) and (2.5) on the interval (0, c~) with prescribed ("initial") values at singular 
points of the equations. 

Namely, for the pair 0j, ~g, we have 

{ 4 ( 2 p + l ) - a r c t a n  ~ 2 + P  0_<P<21-, 
lim ~j(x) = - p (4.1) 

x - - * 0  

and 

lim 7]J(X) = ~/2 .  (4.2) 
X---~ OO y T r  

(Case p = 1/2 is trivial, and from now on we omit it.) Thus, the solution of the boundary value 
problem (2.4), (2.5), (4.1) and (4.2) defines the Bessel function of first kind (and its derivative) 
if (2.1) is applied. When limx-~c~ ~g(x) is found, Bessel function of second kind is defined by the 
solution pair ~y(x), r/y (x) of the boundary value problem formed of equations (2.4) and (2.5) and 
the boundary conditions 

7r 
lim By(x)---- lim 8 j ( x ) - - ,  (4.3) 

X--*OO X--~OO 2 

lim ~?y(x)= ~/2,  (4.4) 
X - - 4 ~  y T r  
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and the consequent application of formula (2.2). Unfortunately, solutions of these boundary value 
problems are not available numerically, one cannot integrate on infinite intervals, and x = 0 is a 
singulax point of the equations. We show now how to avoid this situation. 

Let x = x0 be small. Then, by Statement 3.4, ~J(Xo) is well defined by formula (3.4). From 
now on let us denote this value by ~J0. If one has this value, then, for x >_ x0, equation (2.4) and 
initial condition 8j(xo) = 8jo define the same values 0j(x)  as (2.4) and (4.1) would do. Notice 
that  the singular point x = 0 is passed by now. 

Consider the function wj(x) defined by the equation 

! wj = -h j (x)wg,  (4.5) 

and by condition 

wj(:~) = 1, (4.6) 

where ~ is arbitrary. Due to (2.5), (4.5) and (4.2), wj(x)~]j(x) - const and limx-~c~ wg(x) exists. 
Assume that  at an arbitrary point x = x ~  solution 7]j(x) of (2.5),(4.2) is known. Let us denote 
it by ~ j ~ .  Then, if wj(x) has been obtained, the formula 

~j(x) = n j ~ j ( z ~ )  
wj(x) (4.7) 

yields the same value ~j(x) as (2.5) and (4.2) would do. 
I f 2  = x0 is taken and x ~  > x0, then, on the interval [x0, x~],  equations (2.4) and (4.5) may be 

integrated together: for hj(x) in (4.5) the values of 8j(x) become available by the simultaneous 
integration of (2.4). This was not the case with (2.5) and (4.2). Moreover, as Statement 3.6 
claimed, for small x, hj(x) is positive (when p # 1/2), and thus, the stable direction of integration 
is chosen for (4.5). Meanwhile, by Statement 3.5, Oj(x) is an almost linear function. The two 
features allow simple numerical procedures to be applied. 

In order to construct a numerical algorithm that  computes Jp(x), Xo <_ x < x~ ,  two more 
questions have to be answered. The first one concerns the value 8j0. It cannot be computed 
exactly by (3.4). Instead of 8j0, we can get only an approximation ~J0. As a result, integration 
of (2.4) and (4.5) yields functions Oj(x), &j(x). The stability of the equations for small x ensures 
tha t  the error caused by an error in the initial value does not grow during integration. In the 
next section we return to the choice of x0 and ~J0. We will also prove there that  one may find a 
lower bound xloo for Xoo such that  the value 

~j~ doj ~ (4.8) 

becomes a good approximation of the value ~]Joo when x ~  _> XZoo. All we fix here is tha t  x ~  is 
large. As a consequence of this approximation error and those in Oj(x), &j(x), instead of (4.7), 
we will have only approximate values 

~j(x)-  ~ j ~ j ( x ~ )  
~j(x) (4.9) 

Analogously, if we knew the exact values 

def  ~ t ~ def  
Oyc~ = ¢Ty(xoo), r]yoo = rW(x~), (4.10) 

then, integration of (2.4) and (2.5) to the left with these initial values would give exact function 
values By(x), ~?y(x) for x _< x~ .  In the next section we return to the approximation errors and 
show that  there exists a lower bound x t~  for Xoo such that  

~Yoo de f ~/2 ,  (4.11) 

~Yoo def  ~, ~ ~ 7r 
= .JtXooj - ~ (4.12) 
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become good approximations when xc~ _> xLoo. The result of integration will be the approximate 
function values ~y(x) and By(x). It is worth noticing again Statement 3.2 which ensures that,  
for large x, the approximation errors given have small influence. 

Let us summarize the numerical algorithm. 

PREPARATORY STEP. Find the appropriate values x0, xoo and compute ~J0 by approximation of 
formula (3.4). (We leave the details of this step to the next section.) 

FORWARD STEP. Solve the system formed of the differential equation (2.4) and (4.5) on the 
interval [x0, xoo] with initial values ~g0 and 1 given at x = x0 to get the functions ~g(X),~JJ(X). 
During integration, preserve the values of ~j(x), &j(x) at the points where the values Jp(x) are 
of interest. 

BACKWARD STEP. Integrate the system of equations (2.4) and (2.5) with initial values (4.11), 
(4.12) at x = xoo up to x0, i.e., from the right to the left to obtain the values ~y(x), By(x). 

Parallel to this integration, at the points where the values ~j(x), &g(x) were preserved, recon- 
struct the values ~g(x) by (4.8). 

The Bessel function values Jp(x) become available during the backward step. At the points 
where ~j(x) was preserved and ~]j(x) is reconstructed, one may get Jp(x) (and Jp(z)) by means 
of formula (2.1) with obvious change of exact values in (2.1) for their approximation. 

The backward step provides values ~y (x) and ~y (X). Thus, Yp(x) (and Yp(x)) can be computed 
by formula (2.2) where exact values are replaced by their approximations. 

When only Jp(x) is needed, then the backward step consists only of reconstruction by (4.9) 
and (2.1). In the opposite case, when one is interested only in values Yp(x), then, the integra- 
tion of (4.5) and the preservation of values in the forward step may be omitted; only the final 
value ~(xoo) is used. Also notice that  it is not necessary that  the sets of points where Jp(x) and 
Yp(x) are evaluated be the same. 

5. T H E  A P P R O X I M A T I O N  E R R O R S  

In [1] it was shown that  the first approximation problem concerning the difference Ojo and ~J0, 
i.e., the question how to choose the value of x0 (or, in other words, how to approximate the 
function/~(x) in (3.4)) may be reduced to the problem investigated in [3]. Here we recall only the 
conclusion: whatever a partial sum of the power series representation of ~(x) is chosen, the value 
of x0 depending on the required accuracy of j3(x0), either absolute or relative, can be evaluated 
easily. 

Keeping the notations (4.8), (4.10)-(4.12), now we will deal with the choice of x ~  to fulfill 

- vJo l < (5 .1)  

provided that  el is a prescribed (small) value. Inequality (5.1) was considered in [1], as well. 
Here we use a deeper analysis of the function h(x). As a result, we are allowed to integrate the 
system on a much shorter interval. 

At the end of this section we will show that  the ideas applied to (5.1) may be used for defin- 
ing xco to have 

J~Ye~ - -  0Yc~J ___~ g2 and [7)y~ --  ~ ] y ~ J  <( e3 ,  (5.2) 

if ¢2, ca are given (small) values. 
Although the arguments are much more complicated than those in [1], it turns out that  the 

numerical procedure furnishing us with xc~ for prescribed ¢+, i = 1, 2, 3, does not require more 
numerical effort than that  of [i]. 

The behaviour of the function ¢(x) for large x will play a basic role in the derivation of the 
estimates. More precisely, the oscillation of functions cos 2¢(x) and sin 2¢(x) will be taken into 
account. 

31-415-H 
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STATEMENT 5.1. There exists a pair of constants x*, d (depending on p) such that for x >_ x* 

¢'(z) >_ d > 0. 

PROOF. For p < 1/2 we show that for any z. C (0, 2), the pair 

x * = m a x  1, , d -  2 ( 1 + z , ) '  

satisfies the statement. 
By (2.3) and (2.4), we have 

(1 + 1/4 - p2)3/2  1/4 - p2 1/4 - p2 Y4(X)¢I(X) 
x----y--- + 2x------ 5 -  sin 2¢ :> 1 2x 3 

If x* is as indicated, then, 
2 -- z .  

¢'(x) > 2(1 + z.-----~ - d. 

In the case p > 1/2, the function f ( z )  = (1 - z) 3/2 - z /2x  v is decreasing on [0, 1], f(0)  = 1, 
f(1)  = -1/2Xp. Choose any z. 6 (0, 1) such that f ( z . )  > 0. The pair 

x* = max (xp,  ~ )  , d = f ( z , ) ,  

satisfies the statement. 
Indeed, if x > Xp, then, 

( p2 p2 _ 1/4  ( p2--1/4~ 3/2 p2 - 1 /4  :-1/4"~ 3/2 sin2¢ > 1 
v4(x)¢'(x) = 1 x2 ) 2x 3 _ z2 ] 2z 3 

and v4(x) < 1. Thus, with the choice of x* as indicated, we have 

p2_1/4 3/2 p2-1/4 z. 
¢'(x) k 1 x2 ] 2x 3 > _ (1 - z.) 3/2 - 2x--~ = f ( z . ) .  

For p > 1/2, beginning from Statement 5.4, a smaller interval than indicated above will contain 
the admissible values z.. The interval will be closer specified there. 

STATEMENT 5.2. On the interval Ix*, x* + ~d] functions ]cos 2¢(x)t and I sin 2¢(x)] attain ali the 
v~flues of the interval [0, 1]. 

PROOF. ¢ (x* + ~d) = ¢(Z*)+ f ~ + ~  ¢'(U)du k ¢(x*)+ ~. Since 2¢(x) is  continuous, it attains 
any values between 2¢(x*) and 2¢(x*) + lr. 

STATEMENT 5.3. / f  X. > X* iS a root of the equation cos 2¢(x) = 0 (respectively, sin 2¢(x) = 0), 
then the next root belongs to the interval (x. ,  x .  + ~d]" 

PROOf. Apply the above argument to the interval Ix., x.  + ~] .  

COROLLARY 5,1. The functions cos 2¢(x) and sin 2¢(x) have infinitely many zeros on [x,, oo). 

REMARK 5.1. We might formulate a precise statement and give the proof for the range and 
subsequent roots of cos ¢(x). Namely, on the interval Ix*, x* + ~], the function I cos ¢(x)l attains 
all the values of [0, 1]. Thus, we got an interval where there exists a root of (both) Jp(x) and Yp(x). 
This interval does not furnish us with the smallest roots. Sometimes it is enough, however, to 
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have an easily available upper estimate for them. The value x* + ~ may serve for this purpose. 
The length of the interval between subsequent zeros turns out to be shorter than ~. This value 
is of special interest. When z. --* 0, then d ~ 1 and x* ~ cx~ in both cases. We obtain that  the 
upper bound for the distance between subsequent zeros tends to lr when the subsequent zeros 
themselves tend to co. This corollary may be obtained applying Schur's comparison theorem, as 
well (see, e.g., [4, Section 38, Problem 1]). If one is concerned with getting (sharper) classical 
statements on the zeros of Bessel functions, then instead of Statement 5.1 one has to give lower 
and upper estimates for ¢'(x) of different types. In this paper, our aim is different and in our 
considerations this weak form is sufficient. 

From now on we assume that  in Statement 5.1 when p :> 1/2, 

( z. C 0, min 5 1 / 2 '  4p ~ -  1 ' f ( z . )  > O, 

is chosen. This yields z* >_ max(xp ,  ( 2 / r ) ( p  2 - 1/4)). 
Let x0,z, l = 0, 1 , . . .  denote the subsequent zeros of cos2¢(x) such that  x0,0 _> x*. Let Ck(x), 

k = 1 , . . .  be monotone increasing functions, mapping the interval [x0,k-1, Xo,k] onto [Xo,k, X0,k+l] 
such that  ¢(¢k(x)) = ¢(z) + ~. Since both Ck and ¢ are monotone, there exists only one such 
•k. Moreover, cos 2¢(x) -- - cos 2¢(¢k(x)) if x c [X0,k-1, Xo,k]. For brevity, let 

g(x)  - -  (V4(X))' and ~(x) = ]g(z)]. 
. 4 ( x )  

STATEMENT 5.4. For any x l , x 2  C [xO,k-l,xO,k], xl < x2, the inequality 

~(x0(x2 - x l  ) >_ ~( ¢ k ( x l  ) )( ¢k(x2)  -- Ck(xl)) (5.3) 

holds. 

PROOF. Due to Lagrange's Theorem, there exist ~, ~' such that  

¢ ( z 2 )  - ¢ ( Z l )  = - X l ) ,  - ¢ ( ¢ k ( X l ) )  = ¢ ' ( ( ) ( ¢ k ( x 2 )  - 

E Ix1, z2], ~' E Ck(xl), Ck(x2)]. Subtraction yields 

- x l )  = - C k ( x l ) ) .  

Using the notation x~ = Ck(Xl), the inequality (5.3) may be rewritten as 

x~3/24(x~)(~l(~l) ~_ x3/]4(Xl)¢l(~). 

Verification of this inequality requires some subsequent (not quite easily found) rearrangements 
and simplification of the expressions. First, for p < 1/2, 

v4(~ ') - 1 1/4 - p2 u2(~ ' ) = l + ( u 2 ( ~  ' ) - 1 )  > l + ( u 2 ( ~  ' ) - 1 )  p2 (~ , )+ l  > 1 +  - 1 +  
- -  /]4(~,) + 1 -- 2/z4(~ ') 2~'2u4(~') ' 

and thus, 

1 / 4 - p  2 1 / 4 - p  2 1 / 4 - p 2  ( 1 )  
¢'(~') = u2(~ ') + 2~,3u4(~,) sin2¢(~') > u2(~ ') 2~,3u4(~,) > 1 + 2~,2u4(~,) 1 - ~7 :> 1, 

since ~' _> x* >_ 1. On the other hand, 

/ / 2 ( ~ )  < 1 -}- 1 / 4 ( ~ )  ----- 1 -J- 1 / 4  - -  p _ _ _ _  2 

- 2 2 ~  2 ' 
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and therefore, 

1/4 - p2 1/4- p2 1/4- p2 
¢'(4) < ~(4) + 243~4(4-----~ < 1 + 24 - - - - 3 -  + 24 - - - - - V -  = ~4(~) < v4(Zl). 

Now we show that  even the sharper inequality x 1/3u4 (Xl), >_ x 3 u S ( x l )  holds. Rearranged, it has 
the form 

( , ) (x~ - z l )  x7  + xlx~ + ~ + ~ _ _ p2 . 4 ( ~ )  

Instead of this inequality, we verify that  even the inequality 3(x~ - Xl )X  2 > (5/16)xl is valid. 
The latter one is obtained by decreasing the left-hand side and by increasing the right-hand side, 
since xt _> x* _> 1. By definition of the pair Zl , Z~ ,  we have ¢'(T)(Z~ -- Xl) = ~ for some T. So, 

7rXl ~rXl rXl 2r  5 
(x~ - X l ) X t  -- 2¢'(7) > 2U4(T) > 2~4(1--------) > 5 -  > ~ "  

Now consider p > 1/2. Then, 

p2 _ 1/4 p2 _ 1/4 
¢'(~') _> //2(~ ') 2~,3V4(~,) ---- 1 -- (1 -- V2(~')) 2~,3V4(~,) 

= 1 - (1 - u2(¢'))~ + V2(~ 1) p2 1/4 
+ V2(4 ') 2~'3U4 (~ ') 

1 -/]4(~,) p2 __ i/4 
=I 

i + ~(C) 2C3~4(C) 

= 1 1 + u2((') + 2('u-i((') ' " 

The expression in brackets is positive and decreasing in ('. Checking the value at Xp, we get that  
it does not exceed 1. Thus, ¢'(( ')  >_ u4( ( ' )  >_ v 4 ( x l ) .  On the other hand, 

p 2 _  1/4 1 + u4(~) p 2 _  1/4 p 2 _  1/4 [ 1 ] 
¢'(¢) <_ ~ ( 4 )  + 2¢~4(~-----j -< 2 + ~43~4(~------ j = 1 ~ .1 + ~ < 1. 

Now it is enough to verify the sharper inequality x 1'3us (xl), >_ x 3 u 4 ( x l ) .  A sufficient condition 
for this to hold is x l ( x ' l  - x l )  >_ p2 _ 1/4. Due to the above estimate of ¢', x~ - Xl _> {, and 
therefore, we arrive at the condition Xl _> 2(p 2 - 1/4)/7c. For the indicated choice of x*, this 
condition holds. 

REMARK 5.2. The bounds of ¢'(x) above may be used to derive statements on the rate of 
convergence of the distance between subsequent zeros of Bessel functions to ~r. 

Let I ( a , b )  = f :  g ( x )  c o s 2 ¢ ( x ) d x ,  Ik  = I (Xo ,k - l ,XO,k ) ,  k = 1 , . . . .  

STATEMENT 5.5. T h e  series ~':~k°°=t Ik is O[ L e ibn i z  t ype .  

PROOF. Let xo ,k -1  = x ° < x 1 < " "  < x n = xo,k be a partition of the interval [xo ,k - l , xo ,k] .  

Using Statement 5.4 and the equality cos2¢(x) -- -cos2¢(¢k(x)) ,  x E [xo,k-1,  x0,k], we arrive 
at 

n 

~-~. ~ ( ~ - 1 ) ( ~ i  _ z ,-1)l  cos 2¢(~,-1)1 
i=1 

n 

---~ ~ g (~)k(Xi-1)) (~)k(xi) -- ~)k(Xi-1))ICOS2¢ (¢~(e-b)l. (5.4) 
i= l  

The function cos2¢(x) does not change its sign except at x0,k, while g(x )  is sign preserving 
when x > x* (p is fixed). If one takes the limit n --* oo with maxi=l ..... n(x i - x ~-1) --* 0, this 
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yields maxi=l ..... n(¢k(x i) - Ck(xi-1)) -~ 0. Thus, if the limit of (5.4) has been taken and the 
proper signs are taken into account, we get that  Ilal _> tlk+ll and the sequence Ik is of alternating 
sign. 

COROLLARY 5.2. II(Xo,k-l,O0)l ~_ Ilkl and I(Zo,k-l,co)Ik > O. 

STATEMENT 5.6. If  x • [XO,k-l,XO,k], then, II(x, oo)l <~ I.[kl. 

PROOF. Assume g(x)cos2¢(x) > 0 on [x0,k-1, X0,k]. Then, Ik _> 0 and 

Ik >_ I(x0,k-1, co) >_ I(x, co) > I(ZO,k, co) >_ Ik+l, (5.5) 

i.e., II(x, co)l < max(tIkl, lIk+ll) = Ik. When g(x)cos2¢(x) < 0 on [zo,k-l,xo,k], we obtain 

II(x, )l _< -Ik. 
One may wish not to find the roots for getting an estimate for II(x, co)l. Since any interval 

located to the right from x* of the length ~ contains at least two roots and ~(x) is monotonically 
decreasing, in practice the following inequality may replace Statement 5.6. For any pair x, • with 
x >.~ > x*, 

]I(x,co)] < ~(x)]cos2¢(x)]dz < g(~)d" (5.6) 
d ~  

Now, we are ready to turn directly to (5.1) and (5.2). Due to the linearity of equation (2.5), 
one easily checks that  estimate (5.1) holds if 

[ I (x~,co)[  _< 4min ( ln (1 + e l V ~ ) , - I n  ( I - s I V a ) )  . 

For small el, the r.h.s, is approximately 2 e l x / ~ .  So, the simplest a priori upper estimate 
def ( 0 -1 ( 2 d e 1 X / ~ ) }  which depends providing an appropriate Xoo will be xoo _> Xhoo = max x*, 

obviously on an (arbitrary) admissible z*. Since ~(x) is monotone, this value is easily available 
numerically. 

Next, consider the first inequality in (5.2). Subtract equation (2.4) for Or(x) from that  of 
for Oj(x) and get 

[Oj (x) - Oy (x)]' -- 4g(x ) [sin 2¢y (x) - sin 2¢j (x)], 

for x >_ x*. Due to (3.2), after integration one has 

Oj(x) - Oy(x) = 7 + "4 g(u)[sin2¢g(u) - sin 2¢j(u)] du. (5.7) 

For the estimation of an integral fx =¢ g(u) sin 2¢(u) du, we may use the same arguments as above. 
Statements 5.4-5.6 remain valid if function cos 2¢(x) is replaced by sin 2¢(x) everywhere (in- 
cluding the definition of sequence x0,z and that of integral I(a, b)). Now, the a priori estimate 
becomes available as a consequence of inequality 

f g(u)[sin2 y(u)-sin2 j(u)leu _< 
where ~ • Ix*, x]. Due to (4.12) and (5.7), the above inequality involves 

1 7r x*. Oy(xoo) -- Oy(x~) <_ Oj(xc¢) -- 0 j ( x ~ )  + ~ ( ~ ) ~ ,  for Xoo > & > 

The first term on the right-hand side is originated by the error in 0J0 and the numerical integration 
of (2.4). Assuming that this term is e and e < e2, ~(x) _< 2d(e2 - e)/~r should hold. This means 

that  the proper choice will be x ~  >_ x~2c¢ ~ max (x*, ~-1 ((2d(e2 - e ) ) / r )} .  
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In order to get the second inequality in (5.2), the considerations leading to (5.1) may be 
repeated for this case, too. On the one hand, value ~Y~o is fixed by (4.11). On the other hand, 
the statements concerning function ¢(x) in this section are equally valid when ¢(x) is supplied 

d-----el m a x  { .q- 1 (2dg3 V ~ )  } with index J or Y. Thus, we get xo¢ >_ xl3c¢ x*, . 

Both (5.1) and (5.2) will hold if xoo > x l~  def ----- maxi=l,2,3 xl~oo. In (5.1) and (5.2) the absolute 
errors of initial values appear. In order to get the relative errors smaller than some prescribed 
values, we recall Statement 3.1 and make use of the fact that  the limits in question are different 
from zero. Thus, when a high relative accuracy is requested, then in practice direct relations 
between absolute and relative errors may be used. 

When one is interested only in values of Jp(x), then, the estimate (5.6) may be used during 
the integration of the system (2.4), (2.5) in the forward step adaptively, as follows. Choose an 
admissible z. and evaluate x*, d. Having the system integrated up to x*, continue the integration 
up to x* + ~. Parallel to this step compute the integral in the middle of (5.6) with ~ = x* 

and compare its value with 2~1x/~-~. If the value of the integral is the greater one, then, let 
* : X* 71" * Xnew q- 7" For this Xne w find the corresponding z. and d and repeat the step. Otherwise, 

" is an appropriate value. 

6 .  A S P E C T S  O F  

I M P L E M E N T A T I O N  

In the previous sections we posed initial value problems which behave sufficiently well during 
numerical integration. We showed also that  the initial values themselves may be approximated 
sufficiently well. There are additional tools to keep the error small. 

If necessary, one may prevent the growth of wj(x) (and its approximation) by partitioning the 
interval Ix0, xoo]. Instead of the function wj(x), xo < x < xoo, on the ith subinterval its own 
function wg~(x) (defined by equation (4.5) and initial value 1 at the left end of the interval) is 
computed. This partitioning makes the reconstruction of ~j(x) in the backward step recursive. 
For details, we refer to [1]. 

When both Bessel functions are computed, then, in the backward integration the relation (3.3) 
may be used for controlling the accuracy of computation, too. At the points where function 
values were preserved in the forward step, one may verify identity (3.3). 

Finally, the accuracy of the Bessel function values depends on the integration methods and 
their accuracy, as well. Since the problems themselves behave well, there is no need to apply 
sophisticated methods; both simple methods and large steps of integration are allowed. These 
expectations are confirmed by numerical experiments comparing the results obtained by the 
implementation of the algorithm described in the paper and by those in several standard libraries. 
We summarize the result of these experiments shortly by stating that  we could achieve any 
prescribed accuracy easily. 

As we indicated in [1], the advantages concerning time savings appear when the function 
values are requested at a very large set of points. A typical example where we suggested using 
our algorithm was given there. It was an improprius integral with an integrand containing Bessel 
function of the first kind. It turned out that  the integral may be computed during the forward 
step, parallel to the basic algorithm. The necessity to add further improvements to the basic 
version of the algorithm and to extend it to simultaneous computation of Bessel functions of 
both kinds arose when the authors were faced to a set of problems originating in geophysics and 
leading to improprius integrals with integrands containing combinations of Bessel functions of 
both kinds and some other functions depending on parameters, too. The numerical results of 
the application and details of implementation will be published separately. In this paper, we 
concentrated on the theoretical aspects of the algorithm. 
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