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a b s t r a c t

In this paper the variational Lyapunov method is developed for Caputo fractional
differential equations. Further, the comparison theorems are proved with a relaxed
hypothesis: the assumption of local Holder continuity is relaxed to Cp continuity of
the functions involved in the Riemann–Liouville fractional differential equations. In this
process theGrünwald–Letnikov derivative is used to defineDini derivatives. Also, a relation
between ordinary and fractional differential equations is given.

© 2012 Published by Elsevier Ltd

1. Introduction

The Variational LyapunovMethod (VLM) [1] is a technique in perturbation theory that combines the method of variation
of parameters and the method of Lyapunov to provide a mechanism for studying the effect of perturbations on differential
systems. The main advantage of this method is its flexibility, in the sense that it does not necessitate that the perturbations
be measured by means of a norm. Instead, it uses Lyapunov-like functions to connect the solutions of the perturbed and the
unperturbed systems in terms of the maximal solution of a comparison problem. The main contribution of this paper is the
development of an analogous result for fractional differential equations.

To that end, we begin by providing comparison results for fractional differential equations where the assumption that
functions be locally Holder continuous is weakened to Cp continuity. This weaker condition yields comparison theorems
that extend the applicability of iterative techniques, such as the monotone iterative technique [2–5] and the method
of quasilinearization [6–8]. Next, using the relation between the Grünwald–Letnikov and Caputo derivatives, the Caputo
fractional Dini derivative is defined. Also, the relation between ordinary and fractional derivatives is obtained. Finally, we
present the VLM for fractional differential equations and, as an application of the main result, we state and prove a stability
result.

2. Comparison theorems

As observed above, the comparison theorems [9–11] in the fractional differential equation set-up require Holder
continuity. Although this requirement is used to develop iterative techniques such as the monotone iterative technique and
the method of quasilinearization, there is no feasible way to check whether the functions involved are Holder continuous.
To avoid this situation, we prove, in this section, comparison results under the weaker condition of continuity. Since
Lemma 2.3.1 in [11] is essential in establishing the comparison theorems, we provide a detailed proof of this result under
the weaker hypothesis. The basic differential inequality theorems and required comparison theorems are also stated.
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We begin with the definition of the class Cp[[t0, T ], R].

Definition 2.1. m ∈ Cp[[t0, T ], R] means thatm ∈ [(t0, T ], R] and (t − t0)pm(t) ∈ C[[t0, T ], R] with p + q = 1.

Definition 2.2. Form ∈ Cp[[t0, T ], R], the Riemann–Liouville derivative ofm(t) is defined as

Dqm(t) =
1

Γ (p)
d
dt

 t

t0
(t − s)p−1 f (s, x(s))ds. (2.1)

Lemma 2.3. Let m ∈ Cp[[t0, T ], R]. Suppose that for any t1 ∈ [t0, T ], we have m(t1) = 0 and m(t) < 0 for t0 ≤ t < t1, then it
follows that

Dqm(t1) ≥ 0.

Proof. Consider m ∈ Cp[[t0, T ], R], such that m(t1) = 0 and m(t) < 0 for t0 < t ≤ t1. Then, m(t) is continuous on (t0, T ]

and m(t)(t − t0)p is continuous on [t0, T ].
Sincem(t) is continuous on (to, T ], given any t1 such that to < t1 < T , there exists a k(t1) > 0 and h > 0 such that

− k(t1)(t1 − s) ≤ m(t) − m(s) ≤ k(t1)(t1 − s) (2.2)

for to < t1 − h ≤ s ≤ t1 + h < T . Because we have Dqm(t) =
1

Γ (p)
d
dt

 t
t0

(t − s)p−1 m(s)ds, set H(t) =
 t
t0

(t − s)p−1 m(s)ds

and consider H(t1) − H(t1 − h) =
 t1−h
t0

[(t1 − s)p−1
− (t1 − h − s)p−1

]m(s)ds +
 t1
t1−h (t1 − s)p−1 m(s)ds.

Let I1 =
 t1−h
t0

[(t1 − s)p−1
− (t1 −h− s)p−1

]m(s)ds and I2 =
 t1
t1−h (t1 − s)p−1 m(s)ds. Since t1 − s > t1 −h− s and p−1 < 0,

we have (t1 − s)p−1 < (t1 − h − s)p−1. This, coupled with the fact that m(t) ≤ 0, t0 < t ≤ t1, implies that I1 ≥ 0. Now,
consider I2 =

 t1
t1−h (t1 − s)p−1 m(s)ds. Using (2.2) and the fact thatm(t1) = 0, for s ∈ (t1 − h, t1 + h) we obtain,

m(s) ≥ −k(t1)(t1 − s),

and I2 ≥ −k(t1)
 t1
t1−h (t1 − s)pds = −k(t1) hp+1

p+1 . Thus, we have

H(t1) − H(t1 − h) ≥ −
k(t1)(hp+1)

p + 1
.

Then dividing through by h and taking limits as h → 0, we have

lim
h→0


H(t1) − H(t1 − h)

h
+

k(t1)(hp+1)

h(p + 1)


≥ 0.

Since p ∈ (0, 1), we conclude that dH(t1)
dt ≥ 0, which implies that Dqm(t1) ≥ 0. �

We next state the fundamental fractional differential inequality result in the set up of Riemann–Liouville fractional
derivative, which is Theorem 2.3.1 in [11], with a weaker hypothesis.

Theorem 2.4. Let v, w ∈ Cp[[t0, T ], R], f ∈ C[[t0, T ] × R, R] and

(i) Dqv(t) ≤ f (t, v(t))

and

(ii) Dqw(t) ≥ f (t, w(t)),

t0 < t ≤ T , with one of the inequalities (i) or (ii) being strict. Then v0 < w0, where v0
= v(t)(t − t0)1−q

|t=t0 and
w0

= w(t)(t − t0)1−q
|t=t0 implies

v(t) < w(t), t0 ≤ t ≤ T . (2.3)

Proof. Suppose that relation (2.3) is false. Then, since v0 < w0 and v(t)(t − t0)1−q and w(t)(t − t0)1−q are continuous
functions, there exists a t1 such that t0 < t1 ≤ T with v(t1) = w(t1) and v(t) ≤ w(t), t0 < t ≤ t1. Set m(t) = v(t) − w(t).
Then, m(t1) = 0 and m(t) < 0, t ∈ [t0, t1), with m ∈ Cp[[t0, T ], R]. Hence, the hypothesis of Lemma 2.3 holds and we
conclude that Dqm(t1) ≥ 0, which means that

Dqv(t1) ≥ Dqw(t1).

The above inequalities along with relations (i) and (ii), with one inequality being strict gives f (t1, v(t1)) ≥ Dqv(t1) ≥

Dqw(t1) ≥ f (t1, w(t1)), which is a contradiction. Thus the conclusion of the theorem holds and the proof is complete. �
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The next result deals with the inequality theorem for nonstrict inequalities. We state the theorem without proof, as it is
similar to Theorem 2.3.3 in [11].

Theorem 2.5. Let v, w ∈ Cp[[t0, T ], R], f ∈ C[[t0, T ] × R, R] and

(i) Dqv(t) ≤ f (t, v(t))

and

(ii) Dqw(t) ≥ f (t, w(t)),

t0 < t ≤ T . Assume f satisfies the Lipschitz condition

f (t, x) − f (t, y) ≤ L(x − y), x ≥ y, L > 0. (2.4)

Then, v0 < w0, where v0
= v(t)(t − t0)1−q

|t=t0 and w0
= w(t)(t − t0)1−q

|t=t0 , implies v(t) ≤ w(t), t ∈ [t0, T ].

As we plan to develop the Variational Lyapunov Method for Caputo fractional differential equations, at this stage, we
define the Caputo fractional derivatives.

Definition 2.6. u ∈ Cq
[[t0, T ], R] iff the Caputo derivative denoted by cDqu exists and satisfies

cDqu(t) =
1

Γ (1 − q)

 t

t0
(t − s)−qu′(s)ds. (2.5)

We observe that the Caputo and Riemann–Liouville derivatives are related as follows.
cDqx(t) = Dq

[x(t) − x(t0)]. (2.6)

We prefer toworkwith the Caputo derivative, since the initial conditions for fractional differential equations are of the same
form as those of ordinary differential equations. Further, the Caputo derivative of a constant is zero, which is useful in our
work. Consider the IVP for the Caputo differential equation given by

cDqx = f (t, x), x(t0) = x0, (2.7)

for 0 < q < 1, f ∈ Cq
[[t0, T ] × Rn, Rn

].
If x ∈ Cq

[[t0, T ], R] satisfies (2.7), then it also satisfies the Volterra fractional integral

x(t) = x0 +
1

Γ (q)

 t

t0
(t − s)q−1 f (s, x(s))ds, (2.8)

for t0 ≤ t ≤ T .
Parallel to Theorem 2.4.3 in [11], we state the comparison theorem for the Caputo fractional differential equation using

the same weaker hypothesis. As the proof is similar to that of Theorem 2.4.3 in [11], we omit it.

Theorem 2.7. Assume that m ∈ Cq
[[t0, T ], R] and

cDqm(t) ≤ g(t,m(t)), t0 ≤ t ≤ T ,

where g ∈ C[[t0, T ] × R, R]. Let r(t) be the maximal solution of the IVP

cDqu = g(t, u), u(t0) = u0, (2.9)

existing on [t0, T ] such that m(t0) ≤ u0. Then we have m(t) ≤ r(t), t0 ≤ t ≤ T .

3. Fractional Dini derivatives

In this section, we begin with the definition of the Grünwald–Letnikov fractional derivative and use it to define the
corresponding Dini derivative. Then, using the relation between the Caputo derivative and the above fractional derivative,
we define the Caputo fractional Dini derivative. Later, we extend this definition to the Lyapunov function.

We begin with the following definition.

Definition 3.1. The Grünwald–Letnikov fractional (GLF) derivative is defined as

Dq
0x(t) = lim

h→0+nh=t−t0

1
hq

Σn
r=0(−1)rqCr x(t − rh) (3.1)
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or

Dqx(t) = lim
h→0+

1
hq

xqh(t),

where

xqh(t) =
1
hq

Σn
r=0(−1)rqCr x(t − rh)

=
1
hq

[x(t) − S(x, h, r, q)], (3.2)

with

S(x, h, r, q) = Σn
r=1(−1)r+1qCr x(t − rh). (3.3)

Now, using (3.1) we define the Grünwald–Letnikov fractional Dini derivative by

Dq
0+

x(t) = lim sup
h→0+

1
hq

Σn
r=0(−1)rqCr x(t − rh). (3.4)

Since the Caputo fractional derivative and GLF derivative are related by the equation

cDqx(t) = Dq
0[x(t) − x(t0)],

we define the Caputo fractional Dini derivative by

cDq
+x(t) = Dq

0+[x(t) − x(t0)]. (3.5)

Now suppose the IVP of the Caputo differential equation is given by

cDqx = f (t, x), x(t0) = x0. (3.6)

Then, from relations (3.5) and (3.6) we get,

f (t, x) = lim sup
h→0+

1
hq

Σn
r=0(−1)rqCr [x(t − rh) − x0]

= lim sup
h→0+

1
hq

[x(t) − x0 − S(x, h, r, q)]

where S(x, h, r, q) = Σn
r=1(−1)r+1qCr [x(t − rh) − x0]. This yields

S(x, h, r, q) = [x(t) − x(t0) − hqf (t, x) − ϵ(hq)], (3.7)

where ϵ(hq)
hq → 0 as h → 0. With this definition in mind, we proceed to define the Caputo fractional Dini derivative of the

Lyapunov function.

Definition 3.2. Let V ∈ C[R+ × S(ρ), R+] where S(ρ) = {x: ∥x∥ < ρ}. Let V (t, x) be locally Lipschitzian in x. The
Grünwald–Letnikov fractional Dini derivative of V (t, x) is defined by

Dq
0+V (t, x) = lim sup

h→0+

1
hq

[V (t, x) − Σn
r=1(−1)r+1qCrV (t − rh, S(x, h, r, q))],

where S(x, h, r, q) = x(t) − hqf (t, x) − ϵ(hq) with ϵ(hq)
hq → 0 as h → 0.

Then, the Caputo fractional Dini derivative of V (t, x) is defined by

cDq
+V (t, x) = lim sup

h→0+

1
hq

[V (t, x) − V (t − h, x − hqf (t, x)) − V (t0, x0)],

with ϵ(hq)
hq → 0 as h → 0 and V (t − h, x − hqf (t, x)) = Σn

r=1V (t − rh, x − hqf (t, x)).
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4. Relation between fractional and ordinary differential equations

It is well-known that the Method of Variation of Parameters provides a useful tool for the study of the qualitative
properties of solutions of differential systems, as it provides a link between the unknown solutions of a nonlinear system and
the known solutions of another nonlinear system. In this section, we illustrate yet another use of this method in the context
of fractional differential systems [11]. We first obtain a relation between fractional and ordinary differential systems, and
then use the formula for variation of parameters to link the solutions of the two systems.

Using this relation and the properties of the solutions of the corresponding ordinary differential equations, which are
comparatively easy to find, one can investigate the properties of the solutions of the corresponding fractional differential
equations. In this context, consider the IVP

Dqx = f (t, x), x0 = x(t)(t − t0)q|t=t0 , (4.1)

where f ∈ C([t0, T ] × Rn, Rn), x ∈ Cp([t0, T ], Rn), Dqx is the Riemann–Liouville fractional differential operator of order q,
0 < q < 1 and 1 − q = p.

We shall assume the existence and uniqueness of solutions x(t) = x(t, t0, x0) of (4.1). In order to obtain a relation
between fractional and ordinary differential equations, we tentatively write

x(t) = x(s) + φ(t − s), t0 ≤ s ≤ T , (4.2)

with the function φ(t − s) to be determined. Substituting this expression in the Riemann–Liouville fractional differential
equation, we get

Dqx(t) =
1

Γ (p)
d
dt

 t

t0
(t − s)p−1

[x(t) + φ(t − s)]ds (4.3)

=
1

Γ (1 + p)
d
dt

[x(t)(t − t0)p] − η(t, p, φ), (4.4)

where

η(t, p, φ) =
1

Γ (p)
d
dt

 t

t0
(t − s)p−1φ(t − s)ds


. (4.5)

Setting y(t) =
x(t)(t−t0)p

Γ (1+p) , where x(t) is any solution of IVP (4.1), we arrive at the IVP for ordinary differential equation namely

y′(t) =
dy
dt

= F(t, y(t)) + η(t, p, φ), y(t0) = x0, (4.6)

where

F(t, y) = f (t, Γ (1 + p)y(t)(t − t0)−p). (4.7)

We can consider the unperturbed system

y′(t) = F(t, y(t)), y(t0) = x0, (4.8)

and the perturbed system (4.6) and utilize perturbation theory to obtain the estimates on |y(t)|.
In order to use the well established perturbation theory for ordinary differential equation, we shall obtain the formula for
nonlinear variation of parameters. For this purpose, suppose Fy(t, y) exists and is continuous on [t0, T ] × Rn.

It is known (see Theorem 2.1.2 in [11]) that the solution y(t, t0, x0) of IVP (4.8) satisfies the identity

∂

∂t0
y(t, t0, x0) +

∂

∂x0
y(t, t0, x0)F(t0, x0) ≡ 0, (4.9)

where d
dt0

y(t, t0, x0) and d
dx0

y(t, t0, x0)F(t0, x0) are the solutions of the IVP of the linear system

z ′
= Fy(t, y(t, t0, x0))z,

with the corresponding initial conditions z(t0) = −F(t0, x0) and z(t0) = I , the identitymatrix, such that identity (4.9) holds.
Using this information, we can find the formula for nonlinear variation of parameters for the solutions of IVP (4.6) as follows.
Setting p(s) = y(t, s, z(s)), where z(t, t0, x0) is the solution of the perturbed IVP (4.6), and using (4.8) we see that

d
ds

p(s) =
∂

∂t0
y(t, s, z(s)) +

∂

∂x0
y(t, s, z(s))[F(s, z(s)) + η(s, t0, φ0)]

=
∂

∂x0
y(t, s, z(s))η(s, t0, φ0).
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Integrating from t0 to t , we arrive at

p(t) = p(t0) +

 t

t0

∂

∂x0
y(t, s, z(s))η(s, t0, φ0)ds,

which implies the desired formula for nonlinear variation of parameters

z(t, t0, x0) = y(t, t0, x0) +

 t

t0

∂

∂x0
y(t, s, z(s))η(s, t0, φ0)ds,

which, in turn, gives a link between the solutions of the fractional differential equation and the solutions of the generated
ordinary differential equation.

5. Variational Lyapunov method

In this section, we develop our main result, which is a comparison theorem relating the solutions of a perturbed system
to the known solutions of an unperturbed system in terms of the solution of a comparison scalar fractional differential
equation.

Consider the two fractional differential systems given by
cDqy = f (t, y), y(t0) = y0, (5.1)
cDqx = F(t, x), x(t0) = x0, (5.2)

where f , F ∈ C[R+ × S(ρ), Rn
]. To proceed further, we assume the following assumption relative to the system (5.1).

(H) The solutions y(t, t0, x0) of (5.1) exist for all t ≥ t0, are unique and continuous w.r.t the initial data, and ∥y(t, t0, x0)∥ is
locally Lipschitzian in x0.

Let ∥x0∥ < ρ and suppose that ∥y(t, t0, x0)∥ < ρ for t0 ≤ t ≤ T . For any V ∈ C[R+ × S(ρ), R+] and for any fixed
t ∈ [t0, T ], we define the Grünwald–Letnikov fractional (GLF) Dini derivative of V by

Dq
0+V (s, y(t, s, x)) = lim sup

h→0+

1
hq

{V (s, y(t, s, x)) − Σn
r=1(−1)r+1 qCr V (s − rh, x − hqF(s, x))}.

Definition 5.1. The Caputo fractional Dini derivative of the Lyapunov function V (s, y(t, s, x)), for any fixed t ∈ [t0, T ], any
arbitrary point s ∈ [t0, T ] and x ∈ Rn, is given by

cDq
+V (s, y(t, s, x)) = lim sup

h→0+

1
hq

{V (s, y(t, s, x)) − V (s − h, y(t, s − h, x − hqF(s, x)))},

where
V (s − h, y(t, s − h, x − hqF(s, x))) = Σn

r=1(−1)r+1 qCr V (s − rh, y(t, s − rh, x − hqF(s, x))).

We now state the following comparison theorem.

Theorem 5.2. Assume that assumption (H) holds. Suppose that
(i) V ∈ C[R+ × S(ρ), R+], V (t, x) is locally Lipschitzian in x with Lipschitz constant L > 0 and for t0 ≤ s ≤ t, x ∈ S(ρ),

cDq
+V (s, y(t, s, x)) ≤ g(s, V (s, y(t, s, x))) (5.3)

(ii) g ∈ C[R2
+
, R] and the maximal solution r(t, t0, u0) of

cDqu = g(t, u), u(t0) = u0 ≥ 0 (5.4)

exists for t0 ≤ t ≤ T . Then, if x(t) = x(t, t0, x0) is any solution of (5.2), we have V (t, x(t, t0, x0)) ≤ r(t, t0, u0), t0 ≤ t ≤ T ,
provided V (t0, y(t, t0, x0)) ≤ u0.

Proof. Let x(t) = x(t, t0, x0) be any solution of (5.2) such that ∥x0∥ < ρ. Set m(s) = V (s, y(t, s, x)), t0 ≤ s ≤ t, so that
m(t0) = V (t0, y(t, t0, x0)).
Consider

m(s) − Σn
r=1(−1)r+1 qCr m(s − rh) = V (s, y(t, s, x)) − Σn

r=1(−1)r+1 qCr V (s − rh, y(t, s − rh, S(x, h, r, q)))

= V (s, y(t, s, x)) − Σn
r=1(−1)r+1 qCr V (s − rh, y(t, s − rh, x − hqF(s, x)))

+ Σn
r=1(−1)r+1 qCr V (s − rh, y(t, s − rh, x − hqF(s, x)))

− Σn
r=1(−1)r+1 qCr V (s − rh, y(t, s − rh, S(x, h, r, q)))
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≤ V (s, y(t, s, x)) − Σn
r=1(−1)r+1 qCr V (s − rh, y(t, s − rh, x − hqF(s, x)))

+ LΣn
r=1 qCr ∥y(t, s − rh, x − hqF(s, x)) − y(t, s − rh, S(x, h, r, q))∥

≤ V (s, y(t, s, x)) − Σn
r=1(−1)r+1 qCr V (s − rh, y(t, s − rh, x − hqF(s, x)))

+ LMΣn
r=1 qCr ϵ(hq),

where L, M > 0. Dividing through by hq and taking limits as h → 0+, we get

cDq
+m(s) ≤

cDq
+V (s, y(t, s, x)) + LM lim

h→0+

Σn
r=1 qCr

ϵ(hq)

hq
.

The above series goes to 0 as h → 0+ and hence
cDq

+m(s) ≤
cDq

+V (s, y(t, s, x))
≤ g(s, V (s, y(t, s, x)))
≤ g(s,m(s)),

where u0 ≥ V (t0, y(t, t0, x0)). By applying Theorem 2.4.3 in [11], with appropriate modifications, we obtain

m(s) ≤ r(s, t0, u0)

and

V (s, y(t, s, x)) ≤ r(s, t0, u0).

Set s = t . Then,

V (t, y(t, t, x)) ≤ r(t, t0, u0),

and

V (t, x(t, t0, x0)) ≤ r(t, t0, u0).

If u0 = V (t0, y(t, t0, x0)), then we have

V (t, x(t, t0, x0)) ≤ r(t, t0, y(t, t0, x0)),

for t0 ≤ t ≤ T , which shows the connection between the solutions of system (5.1) and those of system (5.2) in terms of the
maximal solution of the comparison scalar fractional differential equation (5.4). �

The following special cases are admissible in Theorem 5.2.
(1) Set f (t, y) ≡ 0 in Theorem 5.2, then we obtain the estimate V (t, x(t, t0, x0)) ≤ r(t, t0, y(t, t0, x0)) provided V (t0, x0)
≤ u0.

In this case, y(t, t0, x0) = x0 and hypothesis (H) is trivially verified. Since y(t, s, x) = x, the definition of the Caputo
fractional Dini derivative reduces to

cDq
+V (s, x) = lim sup

h→0+

1
hq

[V (s, x) − V (s − h, x − hqF(s, x))].

(2) Suppose f (t, y) = λy, where λ is any constant. Then from [12,13]

y(t, t0, x0) = x0Eq(λ(t − t0)q), t ∈ [t0, T ],

where Eq(tq) = Σ∞

k=0
tqk

Γ (qk+1) , q > 0, is the Mittag-Leffler function.
Further, the solution of system (5.2) exists and is unique, and continuously depends on the initial values. Also, since

| ∥y(t, t0, y0)∥ − ∥y(t, t0, x0)∥ | ≤ ∥y(t, t0, y0) − y(t, t0, x0)∥
≤ Eq(λ(t − t0)q)∥x0 − y0∥,

we conclude that ∥y(t, t0, x0)∥ is locally Lipschitzian in x0.
In addition, if g(t, u) ≡ 0, then

V (t, x(t, t0, x0)) ≤ V (t0, y(t, t0, y0)).

Also, if V (t, x) = ∥x∥, then ∥x(t, t0, x0)∥ ≤ ∥x0∥Eq(λ(t − t0)q).
If on the other hand, we have g(t, u) = −αu, α > 0, then for t ≥ t0,

V (t, x(t, t0, x0)) ≤ V (t0, x0Eq(λ(t − t0)q)(Eq(α(t − t0)q))),

which is a better estimate. If, in addition, we set V (t, x) = ∥x∥, we get

∥x(t, t0, x0)∥ ≤ ∥x0∥Eq(λ(t − t0)q)(Eq(α(t − t0)q)),

which shows the interrelations between Eqs. (5.1), (5.2) and (5.4).
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As an application of Theorem 5.2, we prove the following stability result for the perturbed system. The proof of this
theorem is similar to the corresponding result for ordinary differential equation [1], but we include it for completeness.

Theorem 5.3. Assume that (H) holds and (i) of Theorem 5.2 is satisfied. Suppose that g ∈ C[R2, R], g(t, 0) ≡ 0, f (t, 0) ≡ 0,
F(t, 0) ≡ 0 and for (t, x) ∈ R+ × S(ρ),

b(∥x∥) ≤ V (t, X) ≤ a(∥X∥)

a, b ∈ K = {c ∈ C[[0, ρ), R+] : c(0) = 0 and c is monotonically increasing}. Further suppose that the trivial solution of (5.1) is
uniformly stable and u ≡ 0 of (5.4) is uniformly asymptotically stable. Then the trivial solution of (5.2) is uniformly asymptotically
stable.

Proof. Let 0 < ϵ < ρ, t0 ∈ R+ be given. Then, uniform stability of u ≡ 0 of (5.4) implies that given b(ϵ) > 0, t0 ∈ R+,
there exists a δ1 = δ1(ϵ) > 0 such that if u0 ≤ δ1 then

u(t, t0, u0) < b(ϵ), t ≥ t0.

Let δ2 = a−1(δ1). Since y = 0 of (5.1) is uniformly stable, given δ2 > 0, t0 ∈ R+, we can find a δ = δ(ϵ) > 0 such that
∥y(t, t0, x0)∥ < δ2, t ≥ t0, whenever ∥x0∥ < δ.

We now claim that with this δ, ∥x0∥ < δ implies that ∥x(t, t0, x0)∥ < ϵ, t ≥ t0, where x(t, t0, x0) is any solution of (5.2).
If this conclusion does not hold, then there exists a solution x(t, t0, x0) of (5.2) with ∥x0∥ < δ and t1 > t0, such that

∥x(t1, t0, x0)∥ = ϵ and ∥x(t, t0, x0)∥ < ϵ for t0 ≤ t < t1. Then, by Theorem 5.2, we have

b(ϵ) = V (t1, x(t1, t0, x0))
≤ r(t1, t0, V (t0, y(t1, t0, x0)))
≤ r(t1, t0, a∥y(t1, t0, x0)∥)
≤ r(t1, t0, a(δ2))
≤ r(t1, t0, δ1)
< b(ϵ).

This contradiction proves that x = 0 of (5.2) is uniformly stable. To show uniform asymptotic stability, we set ϵ = ρ and
δ(ρ) = δ0. Then from the earlier arguments, we deduce that

b(∥x(t, t0, x0))∥ ≤ V (t, x(t, t0, x0))
≤ r(t, t0, V (t0, y(t, t0, x0)))

for all t ≥ t0, if ∥x0∥ < δ0. From this, it follows that

b(∥x(t, t0, x0))∥ ≤ r(t, t0, δ(ρ)),

for t ≥ t0. Now, since u = 0 is uniformly asymptotically stable, we can now conclude that x = 0 of (5.2) is also uniformly
asymptotically stable. The proof is complete. �
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