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Historians have documented the main development of the calculus of variations in the 
18th century. Although we have a clear overall picture of this subject there is in the literature 
no connected historical account of the more specialized research carried out during the 
period on problems of extremization under constraint. Concentrating on the work of 
Leonhard Euler and Joseph Louis Lagrange between 1738 and 1806, the present study 
attempts to identify and draw together the different threads that make up this story. o 1992 
Academic Press, Inc. 

Les historiens ont deja d&it les developpements centraux du calcul des variations au dix- 
huititme sibcle. Quoique nous ayons une vue d’ensemble, il nous manque encore une 
histoire du ddveloppement durant cette periode des recherches spCcialis6es sur les pro- 
blemes d’extremahsation sous constrainte. En nous focalisant sur les travaux de Leonhard 
Euler et Joseph-Louis Lagrange entre 1738 et 1806, la presente etude cherche a identifier et a 
ramener ensemble les differents elements de cette histoire. o 1992 Academic P~CSS. IN. 

Historiker haben die Hauptentwicklung der Variationsrechnung im lS.Jahrhundert doku- 
mentiert. Zwar haben wir eine Mare Vorstellung llber dieses Thema, doch gibt es in der 
Literatur keine zusammenhflngende historische Beschreibung der eingehenderen For- 
schung, die in dieser Zeit zu Problemen der Extremalisierung unter Einbeziehung von Ne- 
benbedingungen betrieben wurde. Die vorliegende Untersuchung konzentriert sich auf die 
Arbeit von Leonhard Euler und Joseph Louis Lagrange, die zwischen 1738 und 1806 durch- 
geflihrt wurde, und stellt einen Versuch dar, die unterschiedlichen Gedankengiinge dieses 
Problembereichs herauszuarbeiten und zusammenzuffihren. D 1992 Academic PESS. tnc. 
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1. INTRODUCTION 
Historical writers beginning with Lagrange [1806] have documented the devel- 

opment of the calculus of variations in the 18th century. Although we have a clear 
outline of the major stages in this development, there is in the literature no 
connected historical account of the more specialized research carried out during 
the period on problems of extremization under constraint.i Concentrating on the 
work of Leonhard Euler and Joseph Louis Lagrange between 1738 and 1806, the 
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present study attempts to identify and draw together the different threads that 
make up this story. 

In addition to their historical importance for the early variational calculus the 
researches discussed here illuminate more generally the question of theory change 
in mathematics. They provide an example of how a mathematical theory comes to 
be formed, how its character changes in the course of its development, and how it 
incorporates and adapts to new ideas. They indicate the degree of theoretical 
sophistication achieved within analysis by 1800 and point to the increasing inter- 
nalization that would characterize this subject in the nineteenth century. 

2. MATHEMATICAL BACKGROUND 
The most basic problem of the calculus of variations requires finding the func- 

tion y = y(x) from among a class of functions that renders a given definite integral 
of the form 

I :f(x, Y, Y’bfx (y’ = 2) 

a maximum or minimum. Perhaps the simplest example of this problem is to find 
the shortest curve joining two points in the plane (a straight line). A necessary 
condition that must be satisfied by the extremizing function is the so-called Euler 
or Euler-Lagrange equation 

af da --= 
z - dx ay (3 

o 
(2) 

first derived by Euler [ 17411 in a memoir published in the Commentaries of the St. 
Petersburg Academy of Sciences. 

The basic problem may be modified by demanding that the class of potential 
extremizing functions also satisfy a side condition of the form 

I b 

g(x, y, y’)du = constant, (I (3) 

One thereby obtains the so-called isoperimetric problems that figured prominently 
in the early history of the subject2 The classic example is to find the curve of 
given perimeter which bounds the greatest area (a circle). The solution of these 
problems involves an application of “Euler’s rule”, first presented by Euler [ 17381 
in a St. Petersburg memoir. This rule stipulates that the extremization of (1) 
relative to (3) leads to the same equation as the problem of extremizing the integral 

I .” (f + w)k 
where K is a constant (sometimes called an “undetermined coefficient”) and 
where there is now no side condition. The extremizing function y = y(x), and with 
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it the precise value of K, will be determined jointly from (3) and the condition that 
(4) be an extremum. 

The basic problem may be modified in another way by considering a variational 
integral of the form 

I obf(x, Y, Y’, ddx, (5) 

where the variable z in the integrand is itself expressed in terms of an integral 

Z= I ~g(x, Y, YW. (6) 

One may wish more generally to suppose that g contains z: 

Z= I ,x g(x, Y, Y’, zw. (7) 

An example is the problem of the brachistochrone in a resisting medium, in which 
the time of descent is proportional to sf: (l/u)X&$%x. The speed u in this case 
satisfies an auxiliary relation of the form u(duldr) = g - R(u)-, where g is 
the acceleration due to gravity and R is some function of u that measures the 
resistance. (The variable u here takes the place of z in (7).) In the modem subject 
this type of example is an instance of the theory associated with the very general 
“problem of Lagrange.” Euler first considered the problem in 1741, and provided 
a fuller analysis in his Methodus inueniendi cwuus lineas [ 17441, where the prob- 
lem achieved a certain prominence. He showed for example that the extremiza- 
tion of (5) with z given by (6) leads to the equation 

This last example may also be viewed as one of extremizing the integral ltf(x, 
y, y’, z)dx subject to the differential side condition g(x, y, y’) - z’ = 0. It may then 
be exhibited as an instance of a more general multiplier rule. Lagrange [1806] in 
his Legons SW le calcul desfonctions was the first to envisage the theory in this 
way. He began with a formulation of the original unconditional problem that 
results when more than one dependent variable is introduced into the integrandf. 
Thus the problem of extremizing 

I :f(x, Y, Y’, z, z’)dx 

leads to the two Euler equations 

af 
ay 

d af o af --- hay'=' ( 1 
d af 0 --- 

a2 draz'=' ( ) 

(9) 

(10) 

Assume now that there is a differential side condition of the form 
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h(x, y, y’, z, z’) = 0. (11) 

The extremization of (9) subject to (11) leads to the same equations as the problem 
of extremizing 

(12) 

where A = h(x) is a function of x (a “Lagrange multiplier”) and where there is now 
no side condition.3 In the example from Euler above h(x, y, y’, z, z’) = g(x, y, y’) 
- z’ . Equations (11) become 

af A ag -- --- 
ay 

d (af-&J=o, 
ay dr ay’ $ + g (A(x)) = 0, (13) 

which for A(b) = 0 reduce to equation (8). 
The present study is concerned with the early history of the isoperimetric 

problem and the “problem of Lagrange”. We examine how these problems were 
first formulated in the writings of Euler, how relative interest in them on the part 
of researchers shifted as the subject developed, and how they became unified in 
Lagrange’s theory of 1806. We document the achievement apparent in Lagrange’s 
method of multipliers and consider its precise character as an advance over earlier 
methods and results. 

3. ISOPERIMETRIC PROBLEM 1738-1766 

The basis of Euler’s theory was established in his St. Petersburg memoir of 
1738, an investigation that began from the earlier researches of Jakob and Johann 
Bemoulli.4 His approach was based on the idea of disturbing the curve at a single 
ordinate, evaluating the resulting change in the variational integral, and setting the 
expression obtained equal to zero. Consider a comparison arc obtained from the 
proposed extremizing curve by increasing the ordinate y by the small quantity b/3. 
Euler showed that the difference between the integral (1) along the given and 
comparison curves is an expression of the form P(bp)dx. Since the given curve is 
assumed to be the one that extremizes (1) we have P(b@ = 0 or simple P = 0 as its 
equation. 

Euler [1738] proceeded in the memoir to consider isoperimetric problems. As- 
sume that there is an integral side condition present of the form (3). Let R(bp)dx 
be the variation of the integral in (3) when the ordinate y is increased by b/L 
Because the comparison arc must now satisfy (3) it is no longer possible to obtain 
it from the given curve by varying a single ordinate. To analyze the problem of 
extremizing (1) subject to (3) Euler [1738, Sect. 181 therefore supposed that two 
“consecutive” ordinates are varied by the amounts b/3 and cy. The variational 
problem leads in this case to the relations 

P(b/3) + (P + dP) (cy) = 0 

R(bP) + (R + dR) (cy) = 0. (14) 
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By eliminating b/3 and cy from (14) he obtained the differential equation 

RdP = PdR, WI 

whose integral is P + aR = 0, a being a constant. This is precisely “Euler’s rule.” 
Later in the 1738 memoir (Sects. 32-33) he considered the case in which there 

are two integral side conditions: 

I ab gk Y, Y ‘)dr = (const=th 

I .” h(x, y, y ‘jdx = (COnstanEh. (3)’ 

Let P(&Q&, p@jQdx, and ~r(b@Mx denote the variations in j~j&, pt g&x and 
Ji: Mx respectively when y is increased by BP. In order to obtain a comparison arc 
that satisfies (3)’ Euler varied three “consecutive*’ ordinates by the small amounts 
b& -cy, and da. His variational procedure leads in this case to 

P-b/3--(P+dPjcy+(P+2dP+ddP)d&=O 

p-b~-(p+dprCy+o3+2dp+d~~=O 

u . bfl - (T + &jcy + (TC + 2d-rr + d&)&i = 0. 

@Me: The symbol ‘d’ in ‘dS’ is purely designatory and is unrelated to the differen- 
tial characteristic d as it appears in ‘dP’, ‘ddu’ and so on.) By eliminating the 
quantities &S, cy, and d6 he o&mined the differential equation 

p&rddP - m&&P + ?rdPddp - Pdwddp + Pdpddw - p&ddm = 0. (17) 

Euler concluded “Ex qua integrata reperitur P + mp + n?r = 0, in qua FII et n 
quantitates quascu*ue cot&antes designant.” 

While it is certainIy true that P f mp + ntr = 0 satisfks (17), Eder had not in 
fact shown that the integration of (17) leads to such a relation. In this respect his 
analysis is essentially incomplete, a situation that stands. in contrast to the earlier 
case of a single side condition, where P + aR = 0 followed immediately from RdP 
- PdR = 0 by the quotient rule. In his subsequent study of isoperimetric problems 
in 1741 and 1744 he never improved upon his analysis here; thus in his najot 
treatise of 1744 he simply noted that P + mp + mr = 0 satisfks (17j.S Although the 
requisite demonstration would appear to have been available by contemporary 
principles of the calculus, he was either unable or, more likely, disinclined to 
supply the necessary detak6 

Euler’s later variational writings did contain extremely important analytical 
advances. In a given problem it would be necessary ta calculate the e-xpressions 
P, p, and TT above in order to derive the variational di&rentiaI equations. For this 
purpose Euler in the 1738 memoir prepared tables giving these expressions for 
vtis intms. His efforts cons&ti an imp&ant step in a synthesis of the 
theory, which he achieved more f&y in his paper of 174 1, ’ Given an expression 2 
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composed of x, y, and p = dylak he considered the relation dZ = Mdx + Ndy -t 
Pdp. This relation provided an expression for the variation in terms of the differ- 
ential Coemcients (what would later be called partial derivatives) N (= &Yay) and 
P (= &?/~y’).8 He showed that the problem of extremizing the integral It 2(x, y, 
p)dx leads to the general equational form N - dPldx = 0, i.e., the Euler equation 
&‘ay - d@flay’)ldx = 0 (2) above. He extended this result to the case where there 
are higher-order derivatives in the integrand. 

Euler’s Methodus inveniendi 117443 provided an extensive and systematic de- 
velopment of the results of the earlier memoirs. The topic of isoperimetric prob- 
lems was itself separated from the main investigation and presented in the final 
two chapters. Although several examples involving integral side conditions are 
worked in detail the theory advanced little beyond the state it had reached in 1738. 

It should be noted that much of this final part of Euler’s treatise is open to 
serious criticism. He seemed to have been suggesting possible approaches and 
trying out tentative lines of development, rather than presenting mature and con- 
sidered theory. The theorem that opens Chapter Six is a case in point. Euler’s 
stated intention is to provide an approach to isoperimetrie problems that provides 
an alternative to his established practice of working wih differentials. We are 
given the expression aA + BP, where (Y and p are constants and A and B denote 
formula specifying properties of a curve. (In the usual variational problem A and B 
would be definite integrals of the form fif(x. y, y’)dx.) The theorem asserts that if 
for a given curve &he expression aA + #3B is a maximum or minimum then the 
same curve will extremize B with respect to the class of curves that possess 
property A. Euler demonstrates this result for the case where the curve Q in 
question renders aA + /?B a maximum. Let R be any other curve along which A 
has the same value as it has along Q. Since the value of aA + $I3 along Q is greater 
than along R it follows that the value of B along Q is greater than along R (p being 
impIicitly assumed to be positive). 

An evident limitation on this result is that in the usual isoperimetric problem of 
extremizing (1) subject to (3) the constant in (3) is given in advance. There is 
nothing in Euler’s theorem concerning the range of values assumed by A as the 
constants (r and p change in value. The interest of his theorem is therefore limited. 
The converse, given as Corollary One, although more directly applicable to &he 
isoperimetric variational problem, is even more problematic. It asserts that if B is 
a maximum or minimum along a given curve among all those curves for which A 
has a specified value then aA + /3B is a maximum or minimum along the said 
curve, no restriction now being placed on the comparison class of curves. The 
questionable character of this reasoning is evident. 

Lagrange’s early variational calculus based on his famous b-algorithm was pre- 
sented in a letter to Euler of 1755 and in two memoirs published in the Mscefianea 
of the Turin Society in I762 and 1773. One of the most striking features of these 
writings was the absence of any mention of isoperimetric problems. Lagrange’s 
siIen.c.e indicates that be was primarily concerned at this stage with presenting his 
Ei-algurithm as a sign&cant mathematical method, rather than in systematically 
devebping the subject on the proposed new basis. Problems with integral side- 
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conditions, although they posed no major challenge to this theory, were not 
particulary compelling examples in support of it either. 

Lagrange’s neglect of isoperimetric problems may also have been connected to 
the mathematical philosophy implicit in his writings. A very strong algorithmic 
and algebraic sense guided his understanding of the calculus of variations. To 
reproduce Euler’s derivation of the isoperimetric rule would have required explic- 
itly regarding the integral $ Zdx as a sum of the form . . . +Z, dx + Zdz + 
Z’dx+. . . . That such a conception was mathematically consistent with the 
adoption of the &method is evident in the subsequent work of Euler and other 
researchers of the period.9 Although these authors accepted Lagrange’s innova- 
tion and indeed emphasized the analytical character of the new calculus they 
continued to regard the integral as a sum. For them the procedures of the subject 
were not-as they were for Lagrange-understood exclusively in term of al- 
gorithmic relationships.‘O 

Euler in his memoir Elementa calculi uariationum of 1766, his first writing 
employing the &algorithm, provided at the end a brief discussion of isoperimetric 
problems. He considered [1766, 91-931 the problem of finding among all relations 
between x and y (note that he now writes of relations rather than curves) the one 
that renders the integral sz Udx a maximum or minimum, subject to the side 
condition si Vdx = constant. By means of the &process he established the two 
equations 

(V)6y + (V)%y ’ + (V)‘%y” + (V)“Y3y”’ + . . . = 0 (18) 

(A)Sy + (A)‘ay’ + (A)‘%y” + (A)‘%y”’ + . . . = 0, (19) 

where (lettingp = dyldx) (V) = aV/ay - d(aVlap)ldx, (A) = aU/ay - d(aU/ap)l 
dx, and (V)‘, (V)“, (V)“‘, . . . , (A)‘, (A)“, (A)“’ . . . are the values of (V) and (A) 
respectively at the ordinates y’, y”, y”‘. . . . He proceeded to reason as follows. 
(Our discussion is somewhat more explicit than Euler’s original account.) It is 
clear that the class of permissible variations must satisfy equation (18). If y = y(x) 
is such that the differential equation (A) = n(V) (n a constant) is valid then it is 
apparent that (19) will also be satisfied, and it follows that the given y = y(x) is an 
extremizing function. But the condition on y = y(x) that (A) = n(V) be valid is 
precisely the one which obtains in the unconditional variational problem of ex- 
tremizing si (U - nV)dx. 

19th-century writers cited similar arguments in order to make Euler’s rule plau- 
sible.” Let the notation [f] denote aflay - d(af/ay’)ldx (y’ = dyldx). Consider 
the usual isoperimetric problem of extremizing 

subject to the integral side-condition 

I b 
g(x, y, y’)aTx = constant. (1 
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By means of the rule G(dyl&) = d@y)ldr, an integration by parts, and the assump- 
tion of unvaried endpoints we obtain 

I f [.mY~ = 0, j-,” WY~ = 0. 

If y = y(x) satisfies [fl = ~[g] (K a constant) then the second of these equations 
implies the first, and y(x) is consequently an extremizing function. But the condi- 
tion that [f] = K[g] (or, equivalently, [f - ~g] = 0) is precisely the one which 
obtains in the unconditional problem of extremizing si (f - Kg)& (A similar 
argument applies when there is a second integral side condition, say of the form 
sn” hk y, Y ‘) dx = constant. If the differential equation [f] = K[g] + ~[h] is valid 
for y = y(x) then the conditions st [slay = 0 and Jab [h]Sy = 0 imply si [flay = 0, 
and the given y(x) is consequently an extremizing function. But the validity of [f] 
= K[g] + ~[h] will obtain in the unconditional problem of extremizing jt (f- Kg - 

/-4dx.) 

In this argument the isoperimetric rule fails to emerge as a necessary condition 
of the variational problem; it is logically possible that the solution y = y(x) is one 
for which the equation [f] = K[g] does not hold. The reasoning in question is 
therefore less than entirely satisfying. It is perhaps not surprising that it appears 
nowhere in Lagrange’s writings, where formalistic considerations and the presen- 
tation of results take precedence over discursive discussions of plausibility. 

It is worth emphasizing the very marginal attention that isoperimetric problems 
receive in those researches of Euler that employ the &algorithm. In the memoir 
discussed above the subject is relegated to the final few sections. It is only briefly 
mentioned in his subsequent variational writings and does not appear at all in his 
longer treatise De calculo uariationum of 1770. 

Given the prominent place of isoperimetric problems in the writings of Jakob 
and Johann Bernoulli, their increasingly subordinate role in the midcentury theory 
is remarkable. The mathematical substance of the Bernoullis’ investigation was 
centered in the detailed analysis of individual problems. Although specific exam- 
ples continued to occupy an important place in Euler’s researches we also see in 
his work the emergence of a theoretical structure for the subject. A shift had 
begun to take place away from problems as such to a study of the theory that they 
generate. The reorientation of the subject that occurred with the establishment of 
Lagrange’s 6-calculus reinforced the prevailing emphasis on analytical generality. 
At this level of development the question of integral side conditions was not one of 
major interest or mathematical complexity. 

4. THE “PROBLEM OF LAGRANGE” 1741-1773 

In his memoir of 1741 Euler first grappled with the problem of extremizing inte- 
grals of the form Jif(x, y, y’, z)dx (5) where z = si g(x, y, y’)dx (6). The essay is 
indeed something of a work-in-progress with respect to this type of problem. In 
the opening sections he failed to realize that if the integrand of the variational 
integral contains terms of the form z = & g(x, y, y ‘)dx then it is necessary to take 
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account of the variation at all values of x that exceed the value corresponding to 
the given altered ordinate. (Thus the equation at the end of his Section 6 must be 
supplemented by an additional term of the form -(ft (aflas)d~)d(dylds)ldr.) His 
later analysis of motion in a resisting medium (Sects. 16-18) is in consequence in 
error. Similar difficulties recur in subsequent sections (Sects. 22, 23, 25, and 27). 
Finally, at the end he returned to the initial subject of the memoir and provided a 
correct analysis, including a derivation of the correct form of the equation that had 
appeared (Sect. 6) earlier. The final sections of the memoir would become the 
starting-point for the investigations presented in Merhodus inueniendi, the entire 
Chapter Three of which is devoted to the “problem of Lagrange.“r2 

Euler’s most notable achievement in Chapter Three of Methodus inueniendi 
was to obtain a complete solution in terms of differential equations for two prob- 
lems involving the motion of a body in a resisting medium. In the first, it is 
required to find the curve joining two points in a vertical plane along which a 
heavy body should be constrained to move in order to achieve maximal terminal 
speed. In the second, the problem of the brachistochrone, it is required to find the 
curve along which the body will descend in the least time. With Euler’s treatise 
the “problem of Lagrange” became a central part of variational mathematics, 
occupying indeed a considerably more prominent place than the historically ven- 
erable isoperimetric problems. 

Euler’s theory was based on the idea of disturbing the curve y = y(x) at a single 
ordinate, evaluating the resulting change in the variational integral, and setting the 
expression obtained equal to zero. When the integrand was of the formf(x, y, y’) 
the entire change could be calculated locally in the neighborhood of the given 
altered ordinate. When the integrand was of the formf(x, y, y’, z) with z = sz g(x, 
y, y’)dx it became necessary to consider the change in the variational integral over 
the entire range of values from x to b. 

Euler’s procedure was notationally and computationally very complicated, es- 
pecially when applied to examples with higher-order derivatives y”, yf3), yc4), . . . 
in the integrand. Lagrange’s &algorithm effected an immediate and dramatic sim- 
plification of the theory. Based on a technique in which all of the ordinates are 
varied simultaneously, it used integration by parts to arrive at a global variational 
process that was particularly suited to handle the examples of Chapter Three of 
the Merhodus inueniendi.‘3 The interest and evident superiority of his algorithm 
was based to a very considerable degree on its effectiveness in dealing with this 
type of problem. 

It is important to note that neither Euler nor Lagrange in his early researches 
treated the “problem of Lagrange” mathematically as one of extremization under 
constraint. The new variable z in the integrand was regarded as a function of x, y, 
and y’ and the variational process was extended to calculate the additional varia- 
tion introduced by it into the integral. In the more general examples that these 
authors considered the differential equations were always obtained by means of 
direct computation of the requisite variations. 

Euler used the adjective “absolute” for problems in which there was no isoperi- 
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metric condition and the adjective “‘relative” for ones in which such a condition 
was present. Variational integrals where expressions of the form (6) or (7) appear 
in the integrand were ahvays regarded by him as instances of an absohrte problem. 

In none of his writings did Euler derive the isoperimetric ruie of his 1738 
memoir from the theory associated with the “problem of Lagrange.“r4 In the 
modern subject the expression lxb (&‘&Mx that appears in an equation such as (8) 
is recognizable as a multiplier function (evident from Eqs. (13) above). On this 
basis several historians have suggested that the method of muhipliers should be 
credited to Euler [1744j.15 Such an attribution is however mistaken. Possession of 
the method would require at the very least some development of the variational 
theory for the case of two dependent variables and their derivatives in the inte- 
grand of the variational integral. Nowhere in the Methodus inveniendi does Euler 
introduce multiple dependent variables into his general formulation of the varia- 
tional problem. (This circumstance may be exphtined in part by certain character- 
istics of his approach in that treatise. Although he recognized that the anaIytical 
core of the subject was independent of any particular geometrical interpretation, 
its contents were nevertheless motivated thraughuut by geometrical examples and 
applications, and none of these suggested introducing multiple dependent vari- 
ables .) 

The situation is less clear in EuIer’s post-2755 writings, in which he consciously 
emphasized the development of analytical aspects of the theory. In his treatise De 
calculo variationurn, pubfished in 1770 as an appendix to the third vohnne of his 
Znstitutiones calculi integralis, he introduced [17X4 549-5641 variational integrals 
of the form (9) and derived Eqs. (IQ)). He never, however, considered examples in 
which the second dependent variable z is given by a relation of the form (6), (Z), or 
(I I). Instead he investigated such integrals as pif(~, y, y’, z, z’, v)dx in which the 
new variable u is given by v = 1: g(x, y, y’, z, z’)dx. The resulting variational 
equations were obtained in an exactly analogous manner to his eat-her derivation 
of (8). 

Although Euler was the creator of the caicuius of variations his conception of 
this subject was ultimately a limited one. His synthetic sense and feeling for 
generality were iargely confined to a study of the general forms that appear in the 
derivation of the differential equations of individual problems. The sort of consid- 
erations that wouId have motivated a unified treatment of the different problems 
of the Methodus inueniendi required at once new ideas as well as a more devel- 
oped theoretical sense than he possessed. 

5. SYNTHESIS IN LAGRANGE‘S LECONS SUR LE CALCUL DES 
FONCTIONS (1806) 

Lagrange’s early variational writings consisted of research papers intended to 
reveal the power of his &algorithm and the possibilities of his abstract formal 
conception of variational calcuIus. In his two late treatises Tht%rie des fonctions 
analytiques (1797) and Lecons SW le calcul des fonctions (2nd ed., 1806) he 
embarked on a discursive, systematic formulation of the differential, integral, and 
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variational calculus. These writings were characterized by the distinctive notation 
he adopted as well as by the way in which formal patterns were identified and 
employed in the deductive development of the subject. The guiding principle 
throughout was to avoid infinitesimals by defining the processes of the subject in 
terms of algebraic procedures and algorithms. 

The The’orie [ 1797,200-2203 contained a brief indication of results in variational 
calculus, which were developed much more fully in the twenty-first and twenty- 
second Leqons [1806, 401-5011, offered by Lagrange as a “trait6 complet du 
calcul des variations.” The twenty-first lesson included a discussion of the inte- 
grability of functions, the derivation of the basic variational equations, and a 
survey of the history of the subject. In the twenty-second lesson Lagrange pre- 
sented his method of variations “deduite de la consideration des Fonctions.” His 
definition of the variation and the notation he employs are described in [Fraser 
19851. In terms of the notational conventions of the present essay his approach to 
problems with side conditions proceeds as follows.r6 

Lagrange first considered the case in which there is more than one dependent 
variable y in the integrand of the variational integral, as in (9) above. He derived 
by means of his variational process the relation 

where the notations [f], and [f], here denote aflay - d(W/ay’)/dr and c$‘az - 
d(aflaz’)ldx. In the variational problem the “primitive” of 6fbetween a and b is 
by assumption zero, i.e., $t Sfdx = 0. He inferred from this fact and (20) the 
equations 

Lfl,~Y + Lmz = 0 (21) 

If no relation is assumed between y and z (21) reduces to 

[fly = 0, u-1, = 0. (10) 

Equations (10) allow one to determine the extremizing functions y = y(x) and z = 
z(x), while (22) provides the conditions that must be satisfied at the endpoints. 
(The reasoning by which Lagrange passed from ri Sfdx = 0 and (20) to (21) is 
rather curious. He writes [1806, 4601 in reference to (20): “Les termes [f]$y + 
[f],sz, qui ne sauraient Ctre des fonctions derivees exactes, tant que Sy et 6z ont 
des valeurs arbitraires, doivent Ctre detruits, ce qui donnera d’abord l’equation 
g&t&ale [f]$y + [f&s = 0. . . .” Thus he assumes that the expression for Sf 
given by (20) must be an exact differential, and hence that the part [f],ay + [f],6z 
itself must be an exact differential. Since Sy and 6z are arbitrary this can only 
happen (he suggests) if(20) holds. This style of reasoning, which he had employed 
extensively earlier in the treatise, is analyzed in [Fraser 1985, 181-1851.) 
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Consider now the case where the variables y and z are connected by a relation 
of the form F(x, y, z) = 0. Lagrange set 6F = (dF/dy)Gy + (8Fldz)Gz = 0 and used 
this equation to eliminate Sy and 6z from (21): 

[fly(g) = VIZ($) * (23) 

Equation (23) and F = 0 are the equations of the variational problem. 
Assume further that the side relation F = 0 contains the derivatives of y and z 

with respect to x: F(x, y, z, y’, z’) = 0. It would in principle be possible to follow 
the same procedure here as in the derivation of (23). Lagrange suggested that it 
would be simpler to use the method of multipliers, first introduced by him in his 
Me’chanique analitique [1788, 44-581, to investigate problems of static equilib- 
rium. His procedure may be illustrated by the case of the equilibrium of a single 
particle (with spatial coordinates x, y, and z) acted upon by an external force (with 
components X, Y, and Z). Lagrange took as a condition for equilibrium the rela- 
tion X6x + Y6y + Z6z = 0, where 6x, 6y, and 6z are virtual displacements of the 
particle consistent with the constraints that are present. If the particle is uncon- 
strained then 6x, 6y, and 6z are independent and we obtain the equations of 
equilibrium X = Y = Z = 0. Assume now the particle is constrained to lie on the 
surface F(x, y, z) = 0. We take the equation 6F = (dF/dx)Gx + (13Fl8y)Gy + (dF/ 
az)6z = 0, multiply it by the constant A, and add the result to XSy + Y6y + Z6z = 
0: 

X6.x + A g 6x + Y8y + A g sy + Z6z + g 6z = 0. (24) 

The introduction of the multiplier allows us to assume that 6x, 6y, and 6z are 
independent. The equations of equilibrium are therefore F = 0 and 

Y+A$=O 

The method of multipliers would prove to be an important tool of variational 
analysis. In understanding how Lagrange arrived at the method it is significant to 
note that the underlying idea originated in mechanics. In the static problem the 
terms A(aF/ax), A(aF/ay), and A(dF/az) in (25) have a natural physical interpreta- 
tion as forces of constraint. Equations (25) assert that in equilibrium the total 
constraint force acts normally to the surface and exactly balances the applied 
force. Given that the constraint is given mathematically by an equation of the form 
F = 0 it would in fact be reasonable to consider an analytical expression for this 
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force in terms of F. In this way one would be led to a solving procedure different 
from the usual direct one involving the elimination of unknown variables.‘7 

In the The’orie [1797, 197-198) Lagrange indicated how the method of multipli- 
ers could be used in ordinary calculus to handle problems of extremization under 
constraint. His procedure is the one that is common today in multivariable calcu- 
lus. He followed an analogous approach in the Lqons [1806,462-469] to varia- 
tional problems with side conditions of the form F(x, y, y’, z, z’) = 0. He took the 
variation 6F(x, y, y’, z, z’), multiplied it by the multiplier A(x) (now a function of 
x), and expressed the result in the form 

h8F = [AFlySy + bFl& + dr .Lt (~“8~) + $ (+z). ayr (26) 

Adding together If: Sfdx = 0 and sf: h6Fd.x = 0 we obtain st (6fi- ASF)dx = 0. On 
the basis of this relation and (20) and (26) he arrived at the equations 

[f+ hFl,Gy + [f+ AFJ,Gz = 0 (27) 

He asserted that by virtue of the introduction of the multiplier we may now 
suppose that Sy and 6z are independent. Hence the variational equations of the 
problem are F(x, y, y’, z, z’) = 0 and 

[f+ AF], = 0 

[f+ AF], = 0. (29) 
Equations F = 0 and (29) suffice to determine the multiplier function A(x) and the 
extremizing functions y = y(x) and z = z(x). Lagrange noted that the procedure is 
generalizable to the case where there is more than one constraint equation present 
by introducing additional multipliers. 

The multiplier rule presented here by Lagrange afforded a powerful and versa- 
tile tool of variational analysis. We encountered an example of the method at the 
end of Section 2 above. Lagrange himself illustrated it with a more general version 
of a result that had figured prominently in Chapter Three of Euler’s Methodus 
inueniendi [1744, 120, Corollary 51 as well as in his own early writings [1762, 
Problem 31. Given an equation of the form F(x, y, y’, z, z’) = 0 the problem is to 
find the relation between y, z, and x that maximizes or minimizes z evaluated 
between specified values of x. The variational problem then becomes that of 
extremizing lf: z’dx subject to the side condition F = 0. (l&z classic example is to 
find the curve joining two points in a vertical plane along which a heavy particle 
moving through a resisting medium should be constrained to follow in order to 
achieve maximal terminal speed U. It is assumed that the resistance is a function of 
the velocity. In this example z = 4u2 and the side relation F = 0 is Z’ = g - 
R(z)gl + y ‘*, where g is the acceleration due to gravity and R(z) is the function of 
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z that measures the resistance.‘*) Following the multiplier rule we consider the 
variational integral st (z’ + AF)dx. Then a(z’ + XF)/ay = ahFldy, tJ(z’ + hF)lily’ 
= ahFlay’, a(z’ + AF)Iaz = aAF/az, a(z’ + AF)/az’ = 1 + aAFlaz’, and equations 
(29) become 

The preceding derivation is more general and much simpler than the ones that 
had appeared in Euler’s and the early Lagrange’s writings.i9 In the latter a particu- 
lar case of the relation F = 0 was used in integrated form in order to obtain an 
expression for the variable z which appeared in the integrand of the variational 
integral; the variation of this integral was then obtained by direct calculation. In 
the present investigation, by contrast, the equations are derived by taking an 
auxiliary differential relation, multiplying it by an unknown multiplier function, 
and adding the product to the integrand in the variational problem. The use of 
multipliers represented a new mathematical method involving the introduction of 
a novel and fertile idea into the calculus of variations.20 

Lagrange [1806,469-4701 proceeded in the twenty-second LeGon to the classic 
isoperimetric problem of extremizing J,bf(~, y, y’)dx (1) subject to sf: g(x, y, y’)dx 
= constant (3). He showed here that his method of multipliers leads to Euler’s 
rule. He let z = sc g(lc, y, y’) (6) and treated this as a differential side condition of 
the form z’ - g(x, y, y’) = 0 in the extremization of (1). According to the multiplier 
rule the variational integral under consideration is 

I b (f + A(z’ - Ax, Y, Y’NMx. a 

The total variation of (30) is 

(30) 

I ([ b $-A$-$(-$-A-$)]sy+[--$(A+z)dx 0 

+ af - A $$y 1: + ADZ 1; 
w 

Equations (29) in this case are 

af 
ay- - $ (A) = 0. 

The second of these equations implies that A is a constant. The isoperimetric 
condition implies that az(b) - &r(a) = 0. Hence (31) is identical with the total 
variation of st (f - Ag)dr (4), where A is a constant and where no auxiliary 
condition is now being assumed. The extremization of (1) subject to (3) is there- 
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fore shown to be equivalent to the unconditional problem of extremizing (4). This 
is precisely Euler’s rule for isoperimetric problems. It is evident that the rule may 
be extended to problems with more than one side condition by introducing addi- 
tional multipliers. 

By introducing the side condition z’ - g(x, y, y’) = 0 into the variational 
problem S st f(x, y, y’)dr = 0 and deducing that the multiplier function h(x) is 
constant Lagrange had shown that Euler’s rule may be obtained as a special 
instance of the “problem of Lagrange.” His theory therefore afforded a natural 
unification of two classes of problems -the isoperimetric problem and the “prob- 
lem of Lagrange”-that had hitherto been unconnected in variational mathemat- 
ics. 

At the end of the Lecons Lagrange considered several problems in which the 
endpoints of the extremalizing curve are allowed to vary. (This subject had since 
1773 occupied an important place in his variational calculus.) Although these 
investigations were not directly related to the question of extremization under 
constraint, it is noteworthy that he used his method of multipliers here to derive 
the differential equations for the problem of the brachistochrone in a resisting 
medium. 

6. CONCLUSION 

The multiplier rule introduced into the calculus of variations a theoretical orien- 
tation absent in Lagrange’s earlier writings. It afforded a unification of the isoperi- 
metric problem and the “problem of Lagrange” and provided the basis for an 
integrated theory of considerable deductive power. 

The idea of a multiplier was suggested to Lagrange by his work in mechanics. 
His subsequent variational researches, carried out when he was seventy years 
old, illustrated how an external source could stimulate and reorient the develop- 
ment of a mathematical theory. These researchers also displayed a sensitivity to 
questions concerning the internal constitution of the theory itself. The calculus of 
variations had evolved in his writings to the point where it had acquired its own 
structure and identity. It had become meaningful to consider the deductive organi- 
zation of the subject and to explore links connecting its different parts. 

7. POSTSCRIPT: THE METHOD OF MULTIPLIERS IN LATER 
VARIATIONAL CALCULUS 

Lagrange’s research on problems of extremization under constraint was carried 
out from a larger foundational perspective that was distinctively algebraic in char- 
acter.*] The conceptual revolution in analysis initiated by Cauchy in the 1820s 
called into question his general outlook as well as many of the specific reasonings 
he had employed. Throughout the 19th century writers continued to understand 
variational mathematics in terms of the concepts and methods of operator and 
formal calcu1us.** Cauchy’s program, however, was eventually consolidated in 
the calcuhrs of variations, in the writings during the 1870s and 1880s of Karl 
Weierstrass, Paul Du Bois-Reymond, Adolph Mayer, and others. (A comparison 
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of the mean-value theorem of the ordinary calculus and the fundamental lemma of 
the calculus of variations illustrates clearly the slowness with which arithmetical 
conceptions entered variational mathematics. Although Cauchy [1823, Lecon 71 
presented his proof of the mean-value theorem in 1823 it was not until 1879 that 
Du Bois-Reymond first formulated and proved the fundamental lemma. (Various 
earlier versions of this lemma are described in [Huke 19301.) The relatively late 
date at which researchers became interested in an arithmetical foundation is a 
distinctive feature of the development of the calculus of variations in the 19th 
century.) 

Mayer [1886] was the first to attempt a general proof of the multiplier rule, 
although there are difficulties with his demonstration.23 The derivation of the rule 
that became generally accepted appears in [Bolza 1909, 551-5531. Consider the 
problem of extremizing Jtf(x, y, y’, z, z’)dx subject to the side relation F(x, y, y’, 
z, z’) = 0. Multiply F = 0 by the function h(x), integrate from a to b and take the 
variation of the resulting equation, 6 si AFdx = 0. Add this to 6 .ftfdx = 0 to get 6 
j-a” (f + hF)dx = 0. B y an integration by parts and the assumption of unvaried 
endpoints we arrive at st ([f + hF],Gy + [f + AF],Gz])dx = 0 (*). Let A(x) be a 
solution of the differential equation [f+ AF], = 0. The preceding integral equation 
becomes ss [f+ AF]$ydx = 0. Because the variation Sy is arbitrary we may now 
invoke the so-called “fundamental lemma of the calculus of variations” and con- 
clude that [f + AF], = 0. In this way we arrive at the variational equations (29). 
(This derivation is especially noteworthy in providing a mathematically clear 
explanation of the inference whereby we pass from (*) to Eqs. (29).) 

Although the techniques and conceptions of real analysis replaced Lagrange’s 
algebraic understanding of variational calculus modern authors continue to ac- 
knowledge the theoretical insight evident in his method of multipliers. Mayer 
[1886, 741 judged the method to be the veritable foundation of the subject, and 
Pars [1962, 2381 more recently has stressed its deductive power and versatility.24 
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NOTES 
1. Specific results are cited by Kneser [1904] and Bolza [1909] and selected work is described in 

detail by Woodhouse [1810], Caratheodory [1952], Goldstine [1980], and Fraser [1985]. Lagrange 
[1806] remains a good source for the 18th-century history. 

2. In the 18th century the term “isoperimetric problem” was sometimes used in a general manner to 
refer to the entire subject of what would be later called the calculus of variations. Thus the full title of 
[Euler 17441 is “Method of discovering curved lines which display some property of maximum or 
minimum, or the solution of the isoperimetric problem taken in its widest sense”. Lagrange [1806] 
writes of the “famous problem of isoperimeters . . . taken in all its extension” to refer to the calculus 
of variations. In the present study the term will be used more narrowly to refer to variational problems 
in which integral side conditions involving fixed limits of integration are present. 
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3. It is necessary to clarify here a point of terminology. Although there is a natural temptation to 
refer to the constant K that appears in Bq. (4) as a “multiplier”, in the classical literature on the 
calculus of variations (e.g., [Bolza 1909; Kneser 1900]) this term is reserved for the function A(x) that 
appears in Eq. (12). The rule whereby the extremization of (12) is postulated as yielding the extremum 
of (9) subject to the condition (11) is known as the “multiplier rule” or “multiplier method.” The 
constant K in Euler’s rule, by contrast, has no particular terminological status or name. In the present 
article we adhere to the conventions of the classical subject, employing the term “multiplier” for the 
function A(X) which appears in the solution of the “problem of Lagrange.” 

4. Selected papers of the Bemoullis are published in German translation with notes by St&ckel 
[MM]. An account of their researches is presented by Woodhouse [IS10 Chaps. 1 and 21 and Goldstine 
I1980 Chap. I]. 

5. Caratheodory 11952, xxvi] considers this point to be a substantial defect in Euler’s Methodus 
inueniendj. Lagrange [ 1%06,432] when he considers the question in his historical survey of the calculus 
of variations in the Lecons progresses little beyond Euler. He writes “cornme cette equation [P + aQ 
+ bR = 0 in his notation] contient deux constantes atbitraires (I et b, il s’ensuit qu’elle sera n&essaire- 
ment l’int&rale complete de l’eqtmtion du second ordre dont il s&it.” 

6. Eighteenth-century analysts tended to regard an nthorder ordinary differential equation as 
solved when a solution was exhibited containing R arbitrary constants (cf. the remark of Lagrange’s in 
the preceding note). Although the existence of singular solutions was recognized, these were regarded 
as anomalous or exceptional. By observing that P + mp + mr = 0 satisfied (17) Euler may have 
regarded the mathematical question in point as settled. 

The fact remains that it would be desirable to show by integration that (17) necessarily leads to P + 
mp + nn = 0. This integration may be effected as follows. (The proof was developed by the author.) 
We Srst rewrite (17) in the form 

&P(pdr - mfp) + ddp(adP - Pdw) + ddw(Pdp - pdP) = 0. 

Multiplying this equation by p and noting that 

pmdP - pPdn = P(mdp - pdw) + n@dP - Pdp) 

we obtain 

pddP(pdw - udp) + Pddp(mdp - pdn-) + uda@(pdP - Pdp) + pddmiPdp - pdP) = 0 

This equation may be rewritten 

pddP - P&P = pddm - ?rddp 

pdp-P4J pd?r - udp 

or 



f. [Etder 17#9,1741~ jmvide a slritisg study in the fomdum of a ctdmnati tkoq. C.hkhhe’s 

w& 681 calamcdsb r&renat to the Methoffus hoe&d aIs0 apply to these earlier writings: 
“ . . . EE~~c~d~ttte~~~the~d~specialusestoadiscussionof 
V~g!Wld-2lWSCSOf~S.. . ~hetoolKthefaklyspecialru&odsofJamea8ndJdmn~ 
andtraaaf~tbcseintaiaarhoIenewbwodc?f mathcaaaies.” A god -toftlleunitingsis 

mKcsentadbYw- par!@ tzkliap. 3,4]. 
& Thismaaraerd~~dcrivativeswas- dOFilgthpcriodinthCW~dtllC 

k3&zmasdE*(see 1!?&@. Woodhouse [MO, 3@] notes that Brook Taylor in his 
Metkodsrsi-8~m i&mhcedtheurpressiorr~=Rfi + Nj +ki(i,$,ihcre 
demteNewtoah~jinhiFsrodyof~prlcproblears.W~ txbserva that Enkr 
“s~a~d~oE~t~isasQde~~~.“~iow~~EhatsomeoPthe~ 
ideas in @ckder f7411: lJsgni&ed with Tayk 

8. IB aeldsm to @wer 1766a, ne&b] @IismEssed below) see ah [Barda E7701. 
10. tn~Bistoricat~eydOtae~~v~sinMeLeFwtP,~ ~m6,437yf~ed 

~~~En&edsiWet~~&~w~the~~ “M&lak-tkcmpQsitio~qrreE’mrtewy 
faitdesdifF6rentiellesetdeaint~Sdastsle s j3ridifs d&r&t la tzkaaisme de ce cahd, 
&kd~faitj?CdRSCS~~V~h Ia g&&a&S de son r&or&me.” 

&I. see for exampIe [Ca& 18!3fl, bI&1141;. 
12. Eraser tt!m, m450~ prcR&ks am acTlam& cd Elder’s &Jrigid .%ldysk. 

13. &gage’s en&id dam&mm dlkis i3-&aitb is described by G&s&e [198&l, Il@-129]. 
and Erases [l!BB, 160LF72j. 

14. k Propoh Y of Cm V ct# the Methfw imenieendi Euler [174‘4,2%&2%l5~ considers. the 
. . vm ihgcal gjyx, y, p’, z)& wit&k z = j-f g(x, y, )?‘)a!& where it is tl&ctlm ass4 that the 

~tric CA jt g&y, p’)& = am&a& holkls. Hwever, he .shpIy imwkes ‘*En&w’s rule” 
and did&~ a~ a se&t the eq@ion o&a&d t&n (8) by t-e&&g fi (a.flazW by ji faf/az)& + it, a 
being a constant. 

15. Qn the basis of EislSs derivation off@ Kneser /l9Okl, 58t& kka ~I!%!%, 4661, and Goldatiue 
[ 1980,74] credit a speciaI case ofthe mu&i&& rule for the “ga-oblein of Lagrange” to Et&r /1744]. 
Su~h~~~L~~in~~~~ahoEul~a~c~~eeandil~cal 
outi that he did not posse=* See EFsaser, W5, f6@ and note 2Q of this a-tide. 

16. h-Lagmge'~X we write1, fixf(y), - [f'(f)] we write aflay - d(aflayYdx,an$ so on. 
17. Tlic point Ime is that in the static problkm the analysis possesses a natural physical interpreta- 

tion w&h. would have Iird to the method of multipliers. Another possibility is that Lagrange in his 
~chaniml researches tecalled E&r’s kopmimeti ruk of the calculus of variations and that this 
inspired the idea of a madtilsliiar.. Since the mechanica problem was not directly related to the iaoperi- 
metric rule, and since in fact hagrange never mentions isoperimetric problems in his variational 
resemchm of the I76@s and 1;77%, the suggest&an of such a Iin& must remain speculative. 

18. Euler [1744, f22-I261 subjects this exampie to detailed, analysis.. For an account that cbseiy 
follows the origin& see [Goldstine, 79-821. Woodbouse QlHQ, 138-1411 derives the equations for this 
problem according to the metho& of [Lagrange 17621 and [Lagrange E8061. 

19. since E,agmgds tre of I762 was itself a radical revision and simplikation of ES&r’s 
fommI&on in the Merkx&.s kueaielpdi, we see in l&t that between 1744 and 1806 there were three 
mathematicd~y distinct sbtbns to this type of probIem. 

20. beset [lslolr, HO], wishes to credit Euler with the method of’multi~ers for problems witi side 
conditions i the form of dBerential equations. ETe suggests “Lagrange multipliers” should be re- 
named “Euler-Lagrange mulls,” a suggestion endorsed by Woka [l!HYJ, 5561 and Goldstine 
[j!ZJgtl, 741. Thek cwplsti is baaed on the following fkctz En the equations. which Eider derives in 
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while it my be c& ineeresr to mote that Euler’s variatinal process yields some of the rest&s usually 
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associated with the later subject, it does not follow that he in fact possessed the later methods. To 
attribute the method of multipliers, or even a special case of this method, to him would be to attribute 
to him something that he did not possess. The method (in the calculus of variations) is first mentioned 
in Lagrange’s Thkorie [1797] and is developed more fully in his &cons [1806] and the designation 
“Lagrange multiplier” is therefore accurate. 

21. For a discussion of Lagrange’s foundation see [Fraser 1987, 19891. 

22. See for example [Jellett 18501. 

23. Although Mayer [1886, 761 appears to have the demonstration in hand with his Eq. (8), he 
proceeds with an unusually complicated argument involving three pages of analysis and ten further 
equations before he reaches the desired conclusion. His derivation is described by Goldstine [1980, 
282-2851. 

24. Mayer [1886, 741 writes 
Es ist vielmehr nur kein Beispiel bekannt, in welchem das Lagrange’sche Verfahren zu einem 
falschen Resultate gefiihrt hltte, und alle diejenigen besonderen Regeln der Variations- 
rechnung die, wie die isoperimetrische, sich such noch auf anderem, directen Wege be- 
weisen lassen, gehen als blosse Anwendungen aus demselben hervor. Daher wurde die 
Lagrange’sche Methode von einem Theile der Mathematiker gewissermassen als Axiom 
acceptirt, wahrend ein anderer Theil es vorzog, alle diejenigen Aufgaben der Variationsrech- 
nung, zu deren Losung man keine anderen Methoden kennt, tiberhaupt einfach zu ignoriren. 

Im Anschlusse an Clebsch habe ich selbst mich immer zu dem ersten Theile gehalten und 
die Lagrange’sche Regel allen meinen Arbeiten iiber Variationsrechnung zu Grunde gelegt. 
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