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The non-structural protein 4B (NS4B) from Hepatitis C virus (HCV) plays a pivotal role in the remodelling of the
host cell's membranes, required for the formation of the viral replication complex where genome synthesis
occurs. NS4B is an integral membrane protein that possesses a number of domains vital for viral replication.
Structural and biophysical studies have revealed that one of these, the second amphipathic N-terminal helix
(AH2), plays a key role in these remodelling events. However, there is still limited understanding of the mecha-
nism through which AH2 promotes these changes. Here we report on solid-state NMR and molecular dynamics
studies that demonstrate that AH2 promotes the clustering of negatively charged lipids within the bilayer, a
process that reduces the strain within the bilayer facilitating the remodelling of the lipid bilayer. Furthermore,
the presence of negatively charged lipids within the bilayer appears to promote the disassociation of AH2 oligo-
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mers, highlighting a potential role for lipid recruitment in regulating NS protein interactions.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Hepatitis C Virus (HCV) is a major human pathogen infecting an es-
timated 170 million people globally. HCV, a member of the Flaviviridae
family, is a positive sense, single stranded RNA virus with a genome of
9.6 kb containing a single open reading frame (ORF) flanked by 5’-
and 3’-untranslated regions [1]. The ORF codes for a single polyprotein
of approximately 3000 residues that cellular and viral proteases cleave
into four structural proteins (core, E1, E2 and P7) and six non-
structural proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B) [2-5]. To-
gether with a number of cellular factors, the non-structural proteins
contained within the NS3-5B polyprotein precursor facilitate replication
of the viral genome within a membrane-associated complex, originally
described as a membranous web [6,7]. Whilst this terminology is still
used, more recent electron microscopy studies suggest that the
membranous web likely consists of a collection of double and single

Abbreviations: POPC, 1-palmitoyl-2-oleoyl-sn-gylcero-3-phosphatidylcholine; POPG,
1-palmitoyl-2-oleoyl-sn-glycero-3-[ phospho-rac-( 1-glycerol)]; ?H-POPC, 1-palmitoyl-
(d31)-2-oleoyl-sn-glycero-3-phosphatidylcholine; 2H-POPG, 1-palmitoyl-(d31)-2-
oleoyl-sn-glycero-3-[phospho-rac-( 1-glycerol)]
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membrane vesicles derived from the endoplasmic reticulum (ER),
with replication restricted to the former structures [8-10].

Formation of structures resembling the membranous web can be
achieved by expression of the NS3-5B polyprotein in the absence of
viral replication [6], and whilst each viral protein contributes to the re-
modelling activity, NS4B appears to play a major role. NS4B is a 27 kDa
integral membrane protein possessing NTPase activity [11,12]. Its cen-
tral domain is composed of four transmembrane segments flanked at
the N-terminus by two amphipathic helices (AH1 and AH2), and two
helical regions (H1 and H2) at the C-terminus [11-17] (See Fig. 1).
Mutations throughout NS4B have been shown to disrupt its ability to
cluster itself and other components of the NS3-5B polyprotein into dis-
tinct intracellular foci [15,18,19], a property linked to membranous web
formation. Whilst NS4B-dependent remodelling events partly depend
on interactions with both host proteins [20] and other viral NS proteins
[21], certain attributes of the second amphipathic helix (AH2) suggest
that NS4B also has a direct physical role in driving remodelling events.
The first of these is that AH2 experiences a dual topology, lying both
on the cytoplasmic surface of the ER membrane, as well as being able
to transition across the bilayer to the ER lumen [13,15,17], a feature
that would in theory allow the protein to drive membrane curvature
through a process of wedging. AH2 has also been shown to be a key de-
terminant of NS4B oligomerisation, consistent with the protein driving
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Fig. 1. Proposed topology of NS4B within the ER membrane with the relative positioning of
the two-amphipathic helices AH1 and AH2, the two C-terminal helices H1 and H2, the four
transmembrane domains (TMD) and the location of the nucleotide-binding domain
(NBD). During maturation, it is suggested that AH2 may traverse the bilayer, leading to
the translocation of AH1 to the opposite face of the membrane [13,15,17].

membrane curvature through a process of scaffolding [15]. Mutations in
AH2 that disrupt both these two features block viral replication and
affect the appearance of the membranous web/NS protein foci in cells.
A final feature of AH2 important for its role in membrane remodelling
is that it exhibits specific interactions with lipids present in the bilayer
including a range of anionic phosphatidylinositol phosphates [22], lipids
whose levels within the bilayer are important for the replication of HCV
and many other positive strand RNA viruses [23,24]. Recruitment/
retainment of phosphatidylinositol phosphates and other lipids within
the membranous web by NS4B could help modulate bilayer malleability
and alter local curvature.

Although the structure of NS4B has yet to be determined, NMR stud-
ies of AH2 have revealed that the peptide adopts a monomeric c-helical
conformation in detergent micelles [15]. Fluorescence-quenching stud-
ies have shown that upon reconstitution into lipid bilayers, the amphi-
pathic helix lies at a shallow location close to the bilayer surface,
consistent with at least one of its proposed topologies [22]. Whilst
these properties appear to be largely invariant with respect to the
lipid bilayer compositions studied to date, the effect of the AH2 domain
on lipid bilayers and its potential role in membrane remodelling
remains unclear. The addition of AH2 to vesicle suspensions has been
demonstrated to alter a number of bilayer properties, including
perturbing the phase transition properties and triggering vesicle aggre-
gation [25,26]. The presence of AH2 has also been shown to lead to ves-
icle leakage, the rates of which show a strong lipid dependence with
negatively charged bilayers significantly less perturbed than their neu-
tral counterparts [22]. Complementary >'P-NMR studies of lipid bilayers
in the presence of AH2 have been conducted and revealed no significant
changes in the bilayer structure and integrity, however these studies
have focussed primarily on neutral bilayers, largely ignoring the pres-
ence of anionic lipids such as those implicated in viral replication [22].

Here we report on a series of studies that investigate how the surface
charge of the lipid bilayer influences the oligomeric state of AH2, and
how these interactions modulate lipid bilayer morphology, to deter-
mine how these effects may influence membranous web formation.
Coarse grain molecular dynamics studies have revealed that AH2 associ-
ation with the surface of negatively charged lipid vesicles containing
either the anionic lipids phosphatidylinositol-4,5-bisphosphate (PIP2)
or phosphatidylglycerol result in the clustering of anionic lipids around
the peptide. Chemical cross-linking studies show that the association of
AH2 with the negatively charged lipid bilayer results in the disassocia-
tion of AH2 oligomers into smaller species when compared with neutral
bilayers. The recruitment of the negatively charged lipids to AH2 and its
disassociation into smaller oligomeric species results in a notable reduc-
tion in bilayer stress as evidenced by the enhanced bilayer deformation
observed in the 3'P NMR studies. These findings highlight the important
role that the recruitment of negatively charged lipids by the AH2 do-
main of NS4B to the reaction centre play in determining both the oligo-
meric state of NS4B and the underlying remodelling of the ER to form
membranous webs.

2. Materials and methods
2.1. Reagents

A peptide composed of the sequence NH3 -WPKVEQFWARHMWN
FISGIQYLAG-COO™ was prepared using conventional FMOC chemistry
by PeptideSynthetics (Fareham, UK). The peptide was used as supplied
at >70% purity and gave rise to a single species at 2965 Da when
analysed by mass spectrometry. The peptide corresponds to the second
amphipathic helix in the non-structural protein NS4B (residues 1758
to 1781 of the polyprotein from the JFH1 genotype 2a, residues 43 to
66 of NS4B). All lipids used in these studies were purchased from
Avanti Polar Lipids (Alabaster, USA) and used without further purifi-
cation. All other reagents were purchased from Sigma, unless stated
otherwise.

2.2. Chemical cross-linking with TCA precipitation

To reconstitute the AH2 peptide into POPC and POPC/POPG (ratio
2:1) vesicles the lipids (10 mg/ml stock solutions in methanol) were
mixed with 40 pg of peptide (2 mg/ml stock solution in methanol) at
a L/P ratio of 100:1. The samples were dried under vacuum overnight
to remove the methanol. The resulting lipid-peptide film was re-
suspended in 100 pl of 5 mM sodium phosphate buffer, pH 7.4. The
rehydrated samples were then sonicated to clarity for 20 min, using a
bath sonicator (Ultrawave U100) to form small unilamellar vesicles
(SUVs). The use of SUVs increases the bilayer curvature compared to
the multilamellar vesicles (MLVs) employed in NMR studies but allows
the effect of surface charge on peptide aggregation to be determined
whilst reducing the possibility of cross-linking between peptides
bound to adjacent bilayers which may potentially occur in MLVs. Chem-
ical cross-linking was performed using DSS (Disuccinimidyl suberate,
Sigma Aldrich) at a ratio of 18 pg DSS (stock solution of 90 pg/ul in
DMSO) per pg of reconstituted peptide and the reaction was allowed
to proceed for 1 h at room temperature as described by Marius et al.
2012 [27].

The protein was subsequently precipitated through the addition of
100% w/v stock solution of TCA at a ratio of 1 to 4 with respect to the
sample volume. The samples were incubated on ice for 10 min and
pelleted at 13,000 rpm in a bench top centrifuge. The supernatant was
removed and the pellet was washed twice with 200 pL of ice-cold
acetone. The pellet was then dried at 95 °C, for 10 min, to drive off any
remaining acetone and subsequently dissolved in 20 pL of loading buffer
and boiled for 10 min at 95 °C. The samples were analysed by SDS-PAGE
(16% tricine gel) and stained with InstantBlue (Expedeon).

2.3. Preparation of samples for solid-state NMR

Lipid vesicles in the absence and presence of AH2 were prepared by
dissolving POPC or a mixture of POPC/POPG at a molar ratio of 2:1 in
chloroform/methanol. Typically, 10 mg of total phospholipid were
prepared for each sample. For samples containing AH2, the peptide
was added from a stock solution in methanol to achieve the desired
lipid to protein ratio. Samples were subsequently dried under high
vacuum overnight to remove any residual solvent and subsequently
rehydrated (30% w/v) in low salt buffer (10 mM Tris, 1 mM EDTA,
10 mM NaCl; pH 7.4). The samples were then subjected to five cycles
of freeze thawing resulting in a homogeneous suspension of multi-
lamellar vesicles (MLVs). For deuterium NMR the appropriate lipid
was replaced with its deuterated counterpart.

2.4. Static >'P-NMR
Static >'P-NMR spectra were acquired at 161 MHz on a Chemagnetics

Infinity 400 MHz NMR spectrometer using a Chemagnetics double-
resonance 4 mm magic-angle spinning (MAS) probe without spinning.
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Static measurements were performed using a Hahn-echo pulse
sequence. Spectra were excited with a 90° pulse of 4.5 psec, with
an inter-pulse spacing of 30 psec. Continuous wave (CW) proton
decoupling (50 kHz) was applied during acquisition, with a 2.5-sec-
ond recycle delay, to ensure the sample was not heated. Typically,
512 scans were accumulated for each temperature step. Chemical
shifts were externally referenced to H3PO,4 (85%). Prior to Fourier
Transform, data were left shifted to the top of the echo, zero filled
to 4096 points and 75 Hz line broadening applied.

2.5. Deuterium NMR

Deuterium NMR spectra were acquired at 61.5 MHz on a
Chemagnetics Infinity 400 NMR spectrometer, using a Chemagnetics
double-resonance 4 mm MAS probe without spinning. Static mea-
surements were made using a quadrupolar echo pulse sequence
with a 90°-pulse of 4 psec, an inter-pulse delay of 50 pisec and a recy-
cle time of 500 msec. Typically, 32,768 acquisitions were accumulat-
ed for each temperature step. Prior to Fourier Transform the data
was left shifted to the top of the echo, zero filled to 4096 points,
and 100 Hz linebroadening was applied.

The spectra were Depaked using a weighted Fast Fourier Transform
algorithm [28] using custom written routines in Matlab (Mathworks
Inc.). The observed quadrupolar splittings (v') were used to calculate
the order parameters (Stp) directly as described previously:

i 4 AVQ
3 Av_atatic

where 1§ is the static quadrupolar coupling constant (e?qQ/h), which
is 167 kHz for a paraffinic C-D bond [29]. The order parameter profiles
were constructed based on previously published assignments [30].

2.6. Coarse-grain models

All CG simulations were performed using GROMACS 4.5.5 (www.
gromacs.org) [31-33] with the MARTINI CG 2.0 force field [34]. The pa-
rameters for the PIP2 lipids were as described by Stansfeld et al. 2009
[35]. All simulations involved self-assembly of a lipid bilayer from a ran-
dom configuration of lipids, ions and water as described in [36-38].
Varying numbers of peptides, 3, 5 or 10 (PDB code = 2JXF) were then
added to the system in the bulk water region, details of the simulation
systems are given in Table 1. The integrity of the HCV helix was retained
through the implementation of an elastic network model.

2.7. Simulation parameters

For all CG simulations, Lennard-Jones interactions were smoothly
shifted to zero between 9 A and 12 A, and electrostatics were smoothly
shifted to zero between 0 A and 12 A, with a relative dielectric constant
of 20 used for explicit screening. The nonbonded neighbour list was

Table 1
Summary of the coarse grain molecular dynamics simulations performed and summary of
the oligomeric states formed.

Simulations Number Membrane Length of Multimers
(3 independent  of peptides  composition simulation /ns  formed
runs of each)

PG_HCV3 3 3:1 POPC:POPG 50 2
PG_HCV5 5 3:1 POPC:POPG 50 2,3,5
PG_HCV10 10 3:1 POPC:POPG 50 2,3,4,6
PIP2_HCV3 3 2:1 POPC:PIP2 50 2,3
PIP2_HCV5 5 2:1 POPC:PIP2 50 2,3,4
PIP2_HCV10 10 2:1 POPC:PIP2 50 3,4,5,8
PC_HCV 3 100% POPC 50 2,3
PC_HCV 5 100% POPC 50 3,5
PC-HCV 10 100% POPC 50 2,6,7,10

updated every 10 steps. All simulations were performed at constant
temperature, pressure, and number of particles. The temperatures of
the protein, POPC, POPG, PIP2, and solvent were each coupled separate-
ly using the Berendsen algorithm [39] at 300 K, with a coupling constant
7T = 1 ps. The system pressure was anisotropically coupled using the
Berendsen algorithm at 1 bar with a coupling constant TP = 1 ps and
a compressibility of 5 x 107° bar~!. The time step for integration was
10 fs. Analyses of the CG simulations were performed using GROMACS
tools and locally written code and visualization used VMD [40].

3. Results
3.1. Solid state phosphorus NMR

To assess how AH2 affects integrity of the lipid bilayer, 3!P static
NMR spectra were recorded in the presence and absence of AH2. The
static >'P spectra of multilamellar vesicles in the absence and presence
of AH2, at a lipid/protein ratio of 100:1, are shown in Fig. 2. In the ab-
sence of AH2, the static >'P spectra of POPC multilamellar vesicles exhib-
it a classical axially symmetric powder pattern, characterised by a
chemical shielding anisotropy of 30.8 ppm (Fig. 2A). A similar axially
symmetric powder pattern is observed upon the addition of AH2 to
POPC multilamellar vesicles, indicating that no significant disruption
of these neutral bilayers occurs in the presence of AH2 (Fig. 2B). Al-
though a slight broadening of the powder pattern is observed, consis-
tent with a small change in T, resulting from small changes in
headgroup dynamics, there is no significant change in the chemical
shielding anisotropy in the presence of AH2 , suggesting that the lipids
are not immobilized. These findings support those by Palomares—Jerez
etal.[22], who reported that bilayer integrity remained intact in neutral
lipid bilayers composed of egg phosphatidylcholine and egg
sphingomyelin that were studied at lower lipid/protein ratios.

To investigate the effect of bilayer charge on the interaction of AH2
with the lipid bilayer and to assess its effect on bilayer integrity, >'P stat-
ic NMR spectra were recorded from multilamellar vesicles composed of
POPC and POPG at a molar ratio of 2:1 (Fig. 3). In the absence of AH2, the
lineshapes observed are consistent with the superimposition of
the POPC and POPG lineshape, with the m/2 edges of the powder
lineshapes at —11.3 ppm and —13.3 ppm for POPG and POPC, respec-
tively (Fig. 3A). Samples of POPC/POPG vesicles with AH2 were

A)

50 25 0 ~25 ~50
B)

50 25 0 ~25 -50

1P Chemical Shift /ppm

Fig. 2. Effect on bilayer morphology of the addition of AH2 to neutral vesicles. Pure POPC
vesicles (A) and POPC vesicles with AH2 present at a lipid/protein ratio of 100:1 (B). Data
acquired at 25 °C.
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prepared at lipid/protein ratios of 50:1, 100:1 and 200:1 (Fig. 3B, C and
D, respectively). In contrast to the pure POPC/POPG vesicles, the pres-
ence of AH2 appears to disrupt the bilayer, evidenced by the disappear-
ance of the classical axially symmetric powder pattern, resulting in
resonances close to the /2 edges of the powder lineshapes. The posi-
tions of these peaks show a downfield shift with increasing peptide con-
centration, moving from —11.3 ppm and —13.3 ppm at a lipid to
protein ratio of 200:1 (Fig. 3D), to —9.9 ppm and —11.9 ppm at a
lipid to protein of ratio of 50:1 (Fig. 3B). We note that the sensitivity
in the POPC/POPG spectra in the presence of AH2 are typically less
than observed for the POPC samples. To assess if this was due changes
in relaxation resulting from changes in dynamics in the sample exten-
sive relaxation studies were performed (data not shown). No significant
differences were observed in T; or T, relaxation rates that can account
for the reduced spectral intensity. Magic-angle spinning >'P-NMR spec-
tra were also acquired (data not shown), to assess if the changes ob-
served in the chemical shielding anisotropy arose from charge
compensation on the surface of the bilayer upon binding of AH2 [41].
In keeping with earlier findings, no perturbations were observed in
the isotropic chemical shifts of either POPC or POPG [22]. This suggests
that the small differences in chemical shielding anisotropy detected in
these measurements reflect a slight increase in headgroup mobility in
the presence of AH2. Nevertheless, the disappearance of the downfield

A)
50 25 ' 25 -50
B)
50 25 0 25 ~50
C)

MV

50 25 0 ~25 ~50
D)

5 0 -25 -50
1P Chemical Shift /ppm

W | A
50 2

Fig. 3. Effect on bilayer morphology of the addition of AH2 to negatively charged vesicles
composed of POPC/POPG (2:1). Pure POPC/POPG vesicles (A), with AH2 added at a 50:1
lipid/protein ratio (B), 100:1 lipid/protein ratio (C) and 200:1 lipid/protein ratio (D).
Data acquired at 25 °C.

intensity in the powder lineshape is indicative of a change in the orien-
tational distribution of the lipids within the sample, and is consistent
with a deformation of the multilamellar vesicles in the sample. This de-
formation is due to the lipids aligning perpendicular to the magnetic
field, caused by their negative diamagnetic anisotropy, and is inconsis-
tent with the solubilisation of the bilayer [42-44]. This observation sug-
gests that AH2 has reduced the energy required for bilayer deformation,
as has previously been observed for a number of other surfactant-like
proteins, including antimicrobial peptides such as melittin, and anti-
freeze proteins [45-48].

3.2. Deuterium NMR

To assess the effect of AH2 on the phase behaviour of the lipid chains
and their mobility within the bilayer, deuterium NMR spectra were re-
corded with each of the individual lipids deuterated on the palmitoyl
chain (Fig. 4). The deuterium spectrum of POPC in the absence of AH2
exhibits a classical powder lineshape with the characteristic Pake pat-
tern, with resolvable splittings corresponding to the 9 CD, groups
closest to the methyl group of the acyl chain (Fig. 4A). Upon addition
of AH2 at a lipid to protein ratio of 100:1, a slight reduction in the
quadrupolar splittings is observed. Analysis of the order parameter
profile (Fig. 4D) shows a small (2.8%) but reproducible reduction in
the order parameter (Scp) along the length of the POPC acyl chain,
consistent with AH2 increasing the mobility within the lipid bilayer,
mirroring the effects observed in the 3'P spectra.

To test if AH2 interacts specifically with POPC or POPG in mixed
POPC/POPG bilayers, deuterium spectra were acquired for samples la-
belled with either d3;-POPC or d3;-POPG. In contrast to pure d3;-POPC
bilayers, the addition of AH2 to POPC/POPG bilayers resulted in no
significant perturbations to the deuterium spectra of d3;-POPC or d3-
POPG (Fig. 4B and C, respectively). Accordingly, analysis of the order
parameter profiles (Fig. 4E and F) revealed no significant changes in
the mobility of the lipid chains through the addition of AH2.

3.3. Effect of bilayer composition on oligomer formation

The above data highlights that bilayer composition, in particular its
charge, appears to play an important role in understanding how AH2
modulates local bilayer morphology. However, it is unclear if alterations
in bilayer morphology are brought about by changes in the properties of
AH2. A number of studies have suggested that membranous web forma-
tion may be brought about by the formation of higher order oligomers
of NS4B, which have been proposed to form through interactions
between multiple AH2 helices [26]. To address whether bilayer compo-
sition influences the oligomeric state of AH2, we have undertaken a
series of cross-linking experiments, with AH2 in the presence of neutral
lipid vesicles composed of POPC and negatively charged lipid vesicles
composed of POPC and POPG (Fig. 5). In the absence of the membrane
permeable amine cross-linker DSS, AH2 runs as a monomeric species
on the denaturing SDS-PAGE gel, close to its predicted molecular weight
of 2965 Da. In neutral bilayers composed of POPC, the presence of the
cross-linker results in the formation of a ‘ladder’, indicating the presence
of higher oligomeric species within the bilayer, with hexameric com-
plexes readily observable. In contrast, in the presence of negatively
charged lipids the degree of cross-linking is significantly curtailed
with a trimeric complex being the largest readily observed.

3.4. Coarse-grained molecular dynamics (CGMD) studies of the interaction
of AH2 with lipid bilayers

In all simulations containing anionic lipids, the AH2 peptides were
observed to diffuse from the bulk water towards the bilayer such that
they formed surface-interactions with the model membrane. We did
not observe peptide insertion into the hydrophobic core region of the
lipid bilayer in any of our simulations. A typical scenario is described
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Fig. 4. Deuterium NMR spectra of vesicles in the absence (black) and presence of AH2 at a lipid/protein ratio of 100:1 (red). Pure d3;-POPC vesicles (A), d3;-POPC/POPG (2:1) (B) and POPC/
d31-POPG (2:1) (C). Corresponding order parameter profiles for d3;-POPC vesicles (D), d3;-POPC/POPG (2:1) (E) and POPC/d3,-POPG (2:1) (F) in the presence (red) and absence (black) of

AH2. Data acquired at 25 °C.

POPC/POPG/AH2 + DSS
POPC/POPG/AH2 control
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Fig. 5. SDS-PAGE of chemically cross-linked AH2 in POPC and POPC/POPG (molar ratio
2:1) vesicles, at a lipid to protein ratio of 100:1. Cross-linking was carried out using DSS,
followed by TCA precipitation for removal of lipids. Samples were run on a 16% tricine
SDS-PAGE gel, and visualised using InstantBlue stain. Uncross-linked samples show a
single band at the expected size with a molecular weight between 2 and 3.5 kDa,
corresponding to monomeric AH2 peptide.

below for a system containing 10 peptides with the bilayer composed of
a 3:1 ratio of POPC:POPG phospholipids. After only 3 ns of simulation, a
single peptide became associated with the surface of the membrane. It
quickly adopted an orientation parallel to the plane of the membrane.
Higher oligomers, a tetramer, trimer and dimer begin to form in solution
after ~ 4 ns with the tetramer becoming surface-associated to the mem-
brane by ~ 7 ns. After ~ 22 ns, the dimer is also surface-associated and
aggregates with the already surface-associated tetramer forming a
hexameric structure (Fig. 6A). During this time, the trimer becomes
surface-associated with the other leaflet of the lipid bilayer. Thus none
of the peptides remain detached from the membrane after about
~22 ns. Interestingly, the aggregates do not appear to be ordered in any-
way, with the peptides arranging in random orientations. Analysis of
lipid-protein interactions (where interaction is defined as r < 6 A)
revealed a marked preference for PG lipids over PC lipids (Fig. 6B). For
example when all ten peptides are surface associated, there are ~ 450-
500 lipid-protein contacts (counting all the lipid and protein particles)
with PG lipids but only ~ 400-420 with PC lipids, despite there being a
3:1 excess of the latter. When only two peptides are surface associated
then, the number of contacts is ~50 for PG lipids and <10 for PC lipids.

Simulations of the AH2 peptides in 2:1 PC:PIP2 lipid bilayers were
also performed as previous studies have revealed a strong association
between AH2 and PIP2 [22]. Simulations again revealed that peptide ag-
gregation and bilayer surface association occurred within the first 10 ns
primarily through positively charged residues towards the N-terminus
of the peptide (Fig. 6B). Analysis of the lipid protein interactions again
revealed a stronger preference for the PIP2 lipid than PC with ~280
lipid-protein contacts with PIP2 but only ~120 with PC lipids, despite
a 2:1 excess of the latter (Fig. 6D). The binding of the AH2 to both
POPC/POPG and POPC/PIP2 bilayers suggests that binding is mediated
by the surface charge on the bilayer, rather than interacting with a specific
binding site on AH2. Binding of AH2 to the bilayer surface does however
result in the clustering, in both cases, of the negatively charged lipids
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Fig. 6. Snapshot of a coarse grain molecular dynamics simulation of 10 AH2 interacting with a POPC/POPG (A) and POPC/PIP2 (B). POPC lipids (yellow) POPG/PIP2 (red). Comparison of
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around the peptide (Fig. 6A and C), a property that could contribute to the
deformation of the bilayer necessary for membrane remodelling.

In contrast to these findings, CGMD simulations of AH2 in the pres-
ence of neutral POPC bilayers revealed a significantly lower affinity for
the bilayer. Although association with the bilayer occurred in these sim-
ulations, it was mediated by a small number of AH2 molecules, with
aggregation occurring extensively in the aqueous phase and largely
through protein/protein interactions (See Supplementary Fig. 1). We re-
frain from making direct comparison between the aggregation observed
in CGMD simulations and cross-linking studies as the concentrations of
peptides and lipids differ significantly between the two systems, whilst
the limited number and length of simulations precludes an accurate de-
termination of the statistical distribution of the oligomers. The CGMD
simulations do however suggest that in the absence of anionic lipids,
protein/protein rather than protein/lipid contacts are favoured, which
may account for the reduction in size of oligomers observed in cross-
linking studies in the presence of anionic lipids.

4. Discussion

Our findings reveal that upon reconstitution into neutral lipid bilayers,
the AH2 domain from NS4B has a propensity to form higher oligomeric
species, which, although slightly increasing the mobility within the centre
of the bilayer, appear to have little effect on the integrity of the bilayer.
The presence of the anionic lipid POPG within the bilayer reduces the
size of the AH2 oligomers forming, as seen in our cross-linking studies.
This reduction in oligomeric state is accompanied by significant changes
in bilayer properties. Although the order within the headgroup and
chain regions for both POPC and POPG remain constant, the bilayers ap-
pear to have a reduced rigidity, as evidenced by the bilayer's ability to
adopt an aligned phase in the magnetic field, which is seen in the >'P

static NMR spectra. Molecular dynamics studies suggest that this, in
part, may be attributable to the preferred interaction of AH2 with nega-
tively charged lipids within the bilayer, which appears to drive the
clustering of the lipids, potentially driving the deformation of the bilayer.

Viral replication has been linked to the need for activation or recruit-
ment of PI4 kinase to the membranous web, although there is some
controversy as to whether this is to drive phosphorylation of phos-
phatidylinositol or NS5A [49]. Nonetheless, the presence of the anionic
lipid PI4P at the sites of viral genome replication would be expected to
influence the overall charge of the bilayer. It was therefore unexpected
that the presence of the anionic lipid POPG in vesicles, designed to
mimic the change in charge experienced as NS proteins move from
the site of synthesis (ER) to the membranous web, reduced AH2 oligo-
merization. One explanation may be that it is not charge alone that
dictates AH2 behaviour, and that specific interactions of AH2 with the
PI4P head group modulate its activity so as to maintain an oligomeric
state. In this way, it is possible that AH2 has adapted to overcome the
problems that head group acidification through PI4 kinase activity
would otherwise bring about. However, the fact that a reduction in
AH?2 oligomeric status coincides with the peptide's ability to enable
lipid bilayer deformation, a property likely to be desirable for mem-
brane remodelling events, suggests that an alternative explanation is
likely. As molecular dynamics simulations of both POPG and PIP2 exhibit
similar AH2 surface association and clustering of anionic lipids, our pre-
ferred model is one where the lipid head group composition regulates
the activity of AH2. We envisage that AH2 oligomerisation is essential
during early stages of membranous web formation, perhaps contributing
to the formation of a higher ordered structure during polyprotein matura-
tion, which serves as a scaffold for initial remodelling events. In later
stages, enrichment of the membrane with anionic lipids through the ac-
tion of PI kinases and/or their clustering and recruitment of anionic lipids
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around AH2 triggers the disassociation of AH2 resulting in a weakening of
the bilayer's tensile strength, facilitating a remodelling event driven by
other NS proteins such as NS5A.

Acknowledgements

NMR and Biophysical Studies were conducted at the University of
Southampton's Integrated Centre for NMR and Biophysics Facility, re-
spectively. Instrumentation used during these investigations was
funded by the Wellcome Trust (Grant ref. 090658/Z/09/Z) to PTFW.
RGBG would like to acknowledge his Scholarship from CAPES - Proc
No. 9173/13-7. Computational studies were made possible through
access to the University of Southampton IRIDIS4 supercomputer.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbamem.2015.04.015.

References

[1] Q.L. Choo, G. Kuo, AJ. Weiner, L.R. Overby, D.W. Bradley, M. Houghton, Isolation of a
cDNA clone derived from a blood-borne non-A, non-B viral-hepatitis genome,
Science 244 (1989) 359-362.

C. Lin, B.D. Lindenbach, B.M. Pragai, D.W. Mccourt, C.M. Rice, Processing in the

hepatitis-C virus E2-2 region — identification of p7 and 2 distinct e2-specific

products with different c-termini, J. Virol. 68 (1994) 5063-5073.

H. Mizushima, M. Hijikata, S.I. Asabe, M. Hirota, K. Kimura, K. Shimotohno, 2

hepatitis-C virus glycoprotein E2 products with different c-termini, J. Virol. 68

(1994) 6215-6222.

P. Hussy, H. Langen, J. Mous, H. Jacobsen, Hepatitis C virus core protein: Carboxy-

terminal boundaries of two processed species suggest cleavage by a signal peptide

peptidase, Virology 224 (1996) 93-104.

M. Hijikata, N. Kato, Y. Ootsuyama, M. Nakagawa, K. Shimotohno, Gene-mapping of

the putative structural region of the hepatitis-C virus genome by invitro processing

analysis, Proc. Natl. Acad. Sci. U. S. A. 88 (1991) 5547-5551.

D. Egger, B. Wolk, R. Gosert, L. Bianchi, H.E. Blum, D. Moradpour, K. Bienz, Expression

of hepatitis C virus proteins induces distinct membrane alterations including a

candidate viral replication complex, ]. Virol. 76 (2002) 5974-5984.

R. Gosert, D. Egger, V. Lohmann, R. Bartenschlager, H.E. Blum, K. Bienz, D.

Moradpour, Identification of the hepatitis C virus RNA replication complex in

Huh-7 cells harboring subgenomic replicons, J. Virol. 77 (2003) 5487-5492.

P. Ferraris, E. Blanchard, P. Roingeard, Ultrastructural and biochemical analyses of hep-

atitis C virus-associated host cell membranes, J. Gen. Virol. 91 (2010) 2230-2237.

I. Romero-Brey, A. Merz, A. Chiramel, J.Y. Lee, P. Chlanda, U. Haselman, R. Santarella-

Mellwig, A. Habermann, S. Hoppe, S. Kallis, P. Walther, C. Antony, J. Krijnse-Locker,

R. Bartenschlager, Three-dimensional architecture and biogenesis of membrane

structures associated with hepatitis C virus replication, PLoS Pathog. 8 (2012).

[10] D. Paul, S. Hoppe, G. Saher, ]. Krijnse-Locker, R. Bartenschlager, Morphological and
biochemical characterization of the membranous hepatitis C virus replication com-
partment, J. Virol. 87 (2013) 10612-10627.

[11] S. Einav, M. Elazar, T. Danieli, ].S. Glenn, A nucleotide binding motif in hepatitis C
virus (HCV) NS4B mediates HCV RNA replication, J. Virol. 78 (2004) 11288-11295.

[12] A.A. Thompson, A.H. Zou, J.L. Yan, R. Duggal, W.D. Hao, D. Molina, C.N. Cronin, P.A.
Wells, Biochemical characterization of recombinant hepatitis C virus nonstructural
protein 4B: evidence for atp/gtp hydrolysis and adenylate kinase activity, Biochem-
istry 48 (2009) 906-916.

[13] M. Lundin, M. Monne, A. Widell, G. Von Heijne, M.A. Persson, Topology of the
membrane-associated hepatitis C virus protein NS4B, J. Virol. 77 (2003) 5428-5438.

[14] M. Elazar, P. Liu, C.M. Rice, ].S. Glenn, An N-terminal amphipathic helix in hepatitis C
virus (HCV) NS4B mediates membrane association, correct localization of replica-
tion complex proteins, and HCV RNA replication, J. Virol. 78 (2004) 11393-11400.

[15] ]. Gouttenoire, V. Castet, R. Montserret, N. Arora, V. Raussens, .M. Ruysschaert, E.
Diesis, H.E. Blum, F. Penin, D. Moradpour, Identification of a novel determinant for
membrane association in hepatitis C virus nonstructural protein 4B, ]. Virol. 83
(2009) 6257-6268.

[16] ]. Gouttenoire, R. Montserret, A. Kennel, F. Penin, D. Moradpour, An amphipathic
alpha-helix at the ¢ terminus of hepatitis C virus nonstructural protein 4B mediates
membrane association, J. Virol. 83 (2009) 11378-11384.

[17] J. Gouttenoire, R. Montserret, D. Paul, R. Castillo, S. Meister, R. Bartenschlager, F.
Penin, D. Moradpour, Aminoterminal amphipathic alpha-helix AH1 of hepatitis C
virus nonstructural protein 4B possesses a dual role in RNA replication and virus
production, PLoS Pathog. 10 (2014) e1004501.

[18] D.M. Jones, A.H. Patel, P. Targett-Adams, J. Mclauchlan, The hepatitis C virus NS4B
Protein can trans-complement viral RNA replication and modulates production of
infectious virus, J. Virol. 83 (2009) 2163-2177.

[19] Q.X. Han, J. Aligo, D. Manna, K. Belton, S.V. Chintapalli, Y.J. Hong, R.L. Patterson, D.B.
Van Rossum, K.\V. Konan, Conserved GXXXG- and S/T-like motifs in the

2

i3

[4

[5

6

17

[8

[

transmembrane domains of NS4B protein are required for hepatitis C virus replica-
tion, J. Virol. 85 (2011) 6464-6479.

[20] D.Manna, J. Aligo, CJ. Xu, W.S. Park, H. Koc, W.D. Heo, K.V. Konan, Endocytic rab pro-
teins are required for hepatitis C virus replication complex formation, Virology 398
(2010) 21-37.

[21] D. Paul, I. Romero-Brey, J. Gouttenoire, S. Stoitsova, J. Krijnse-Locker, D. Moradpour,
R. Bartenschlager, NS4B self-interaction through conserved C-terminal elements is
required for the establishment of functional hepatitis C virus replication complexes,
J. Virol. 85 (2011) 6963-6976.

[22] M.F. Palomares-Jerez, H. Nemesio, H.G. Franquelim, M.A. Castanho, J. Villalain, N-
terminal AH2 segment of protein NS4B from hepatitis C virus. Binding to and inter-
action with model biomembranes, Biochimica Et Biophysica Acta 1828 (2013)
1938-1952.

[23] N.Y.Hsu, O. Ilnytska, G. Belov, M. Santiana, Y.H. Chen, P.M. Takvorian, C. Pau, H. Van
Der Schaar, N. Kaushik-Basu, T. Balla, C.E. Cameron, E. Ehrenfeld, F.J.M. Van
Kuppeveld, N. Altan-Bonnet, Viral reorganization of the secretory pathway gener-
ates distinct organelles for RNA replication, Cell 141 (2010) 799-811.

[24] NJ. Cho, C. Lee, P.S. Pang, E.A. Pham, B. Fram, K. Nguyen, A. Xiong, E.H. Sklan, M.
Elazar, E.S. Koytak, C. Kersten, K.K. Kanazawa, C.W. Frank, J.S. Glenn, Phos-
phatidylinositol 4,5-bisphosphate is an HCV NS5A ligand and mediates replication
of the viral genome, Gastroenterology 148 (2014) 616-625.

[25] H. Dvory-Sobol, P.S. Pang, ].S. Glenn, The future of HCV therapy: NS4B as an antiviral
target, Viruses-Basel 2 (2010) 2481-2492.

[26] N.J. Cho, H. Dvory-Sobol, C. Lee, SJ. Cho, P. Bryson, M. Masek, M. Elazar, CW. Frank,
J.S. Glenn, Identification of a class of HCV inhibitors directed against the nonstruc-
tural protein NS4B, Sci. Transl. Med. 2 (2010) 15ral6.

[27] P. Marius, Y.M. Leung, TJ. Piggot, S. Khalid, P.T. Williamson, Probing the oligomeric
state and interaction surfaces of Fukutin-I in dilauroylphosphatidylcholine bilayers,
Eur. Biophys. J. 41 (2012) 199-207.

[28] M.A. Mccabe, S.R. Wassall, Rapid deconvolution of NMR powder spectra by weight-
ed fast Fourier transformation, Solid State Nucl. Magn. Reson. 10 (1997) 53-61.

[29] LJ. Burnett, B.H. Muller, Deuteron quadrupole coupling constants in three solid
deuterated paraffin hydrocarbons: C2D6, C4D10, C6D14, J. Chem. Phys. 55 (1971)
5829-5832.

[30] J. Seelig, A. Seelig, Lipid conformation in model membranes and biological-
membranes, Q. Rev. Biophys. 13 (1980) 19-61.

[31] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, HJ.C. Berendsen,
Gromacs: fast, flexible, and free, J. Comput. Chem. 26 (2005) 1701-1718.

[32] HJ.C.Berendsen, D. Vanderspoel, R. Vandrunen, Gromacs — a message-passing parallel
molecular-dynamics implementation, Comput. Phys. Commun. 91 (1995) 43-56.

[33] B.Hess, C. Kutzner, D. Van Der Spoel, E. Lindahl, GROMACS 4: algorithms for highly
efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput.
4 (2008) 435-447.

[34] SJ. Marrink, HJ. Risselada, S. Yefimov, D.P. Tieleman, A.H. De Vries, The MARTINI
force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B
111 (2007) 7812-7824.

[35] PJ. Stansfeld, R. Hopkinson, F.M. Ashcroft, M.S. Sansom, PIP(2)-binding site in Kir
channels: definition by multiscale biomolecular simulations, Biochemistry 48
(2009) 10926-10933.

[36] SJ. Marrink, A.H. De Vries, A.E. Mark, Coarse grained model for semiquantitative
lipid simulations, J. Phys. Chem. B 108 (2004) 750-760.

[37] P.J. Bond, M.S. Sansom, Insertion and assembly of membrane proteins via simula-
tion, J. Am. Chem. Soc. 128 (2006) 2697-2704.

[38] T. Carpenter, P.J. Bond, S. Khalid, M.S.P. Sansom, Self-assembly of a simple mem-
brane protein: coarse-grained molecular dynamics simulations of the influenza
M2 channel, Biophys. J. 95 (2008) 3790-3801.

[39] HJ.C. Berendsen, J.P.M. Postma, W.F. Vangunsteren, A. Dinola, J.R. Haak, Molecular-
dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984) 3684-3690.

[40] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, ]. Mol. Graph.
14 (1996) 33.

[41] F. Lindstrom, P.T.F. Williamson, G. Grobner, Molecular insights into the electrostatic
membrane surface potential by 14 N/31P MAS NMR: nociceptin lipid association, J.
Am. Chem. Soc. 127 (2005) 6610-6616.

[42] ].B. Speyer, PK. Sripada, S.K. Das Gupta, G.G. Shipley, R.G. Griffin, Magnetic orienta-
tion of sphingomyelin-lecithin bilayers, Biophys. J. 51 (1987) 687-691.

[43] M. Jansson, R.L. Thurmond, T.P. Trouard, M.F. Brown, Magnetic alignment and
orientational order of dipalmitoylphosphatidylcholine bilayers containing
palmitoyllysophosphatidylcholine, Chem. Phys. Lipids 54 (1990) 157-170.

[44] ]. Seelig, F. Borle, T.A. Cross, Magnetic ordering of phospholipid membranes,
Biochimica Et Biophysica Acta 814 (1985) 195-198.

[45] J. Garner, S.R. Inglis, J. Hook, F. Separovic, M.M. Harding, A solid-state NMR study of
the interaction of fish antifreeze proteins with phospholipid membranes, Eur.
Biophys. J. 37 (2008) 1031-1038.

[46] M.S. Balla, J.H. Bowie, F. Separovic, Solid-state NMR study of antimicrobial peptides
from Australian frogs in phospholipid membranes, Eur. Biophys. . 33 (2004) 109-116.

[47] T. Pott, E.J. Dufourc, Action of melittin on the DPPC-cholesterol liquid-ordered
phase: a solid state 2H-and 31P-NMR study, Biophys. J. 68 (1995) 965-977.

[48] A. Naito, T. Nagao, K. Norisada, T. Mizuno, S. Tuzi, H. Saito, Conformation and
dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state
(31)P and (13)C NMR spectroscopy, Biophys. J. 78 (2000) 2405-2417.

[49] S. Reiss, I. Rebhan, P. Backes, I. Romero-Brey, H. Erfle, P. Matula, L. Kaderali, M.
Poenisch, H. Blankenburg, M.S. Hiet, T. Longerich, S. Diehl, F. Ramirez, T. Balla, K.
Rohr, A. Kaul, S. Buhler, R. Pepperkok, T. Lengauer, M. Albrecht, R. Eils, P.
Schirmacher, V. Lohmann, R. Bartenschlager, Recruitment and activation of a lipid
kinase by hepatitis C virus NS5A is essential for integrity of the membranous repli-
cation compartment, Cell Host Microbe 9 (2011) 32-45.


http://dx.doi.org/10.1016/j.bbamem.2015.04.015
http://dx.doi.org/10.1016/j.bbamem.2015.04.015
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0005
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0005
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0005
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0010
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0010
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0010
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0015
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0015
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0015
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0020
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0020
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0020
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0025
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0025
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0025
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0030
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0030
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0030
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0035
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0035
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0035
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0040
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0040
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0245
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0245
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0245
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0245
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0050
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0050
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0050
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0055
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0055
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0060
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0060
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0060
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0060
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0065
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0065
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0070
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0070
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0070
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0075
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0075
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0075
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0075
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0080
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0080
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0080
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0250
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0250
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0250
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0250
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0090
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0090
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0090
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0095
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0095
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0095
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0095
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0100
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0100
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0100
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0105
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0105
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0105
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0105
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0110
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0110
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0110
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0110
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0115
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0115
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0115
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0115
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0255
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0255
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0255
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0255
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf1015
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf1015
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0260
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0260
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0260
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0130
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0130
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0130
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0135
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0135
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0140
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0140
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0140
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0145
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0145
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0150
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0150
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0155
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0155
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0160
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0160
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0160
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0165
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0165
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0165
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0170
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0170
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0170
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0175
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0175
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0180
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0180
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0185
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0185
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0185
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0190
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0190
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0265
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0265
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0195
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0195
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0195
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0200
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0200
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0205
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0205
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0205
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0210
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0210
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0215
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0215
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0215
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0220
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0220
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0225
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0225
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0230
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0230
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0230
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0240
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0240
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0240
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0240
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0240
http://refhub.elsevier.com/S0005-2736(15)00138-8/rf0240

	Interaction between the NS4B amphipathic helix, AH2, and charged lipid headgroups alters membrane morphology and AH2 oligom...
	1. Introduction
	2. Materials and methods
	2.1. Reagents
	2.2. Chemical cross-linking with TCA precipitation
	2.3. Preparation of samples for solid-state NMR
	2.4. Static 31P-NMR
	2.5. Deuterium NMR
	2.6. Coarse-grain models
	2.7. Simulation parameters

	3. Results
	3.1. Solid state phosphorus NMR
	3.2. Deuterium NMR
	3.3. Effect of bilayer composition on oligomer formation
	3.4. Coarse-grained molecular dynamics (CGMD) studies of the interaction of AH2 with lipid bilayers

	4. Discussion
	Acknowledgements
	Appendix A. Supplementary data
	References


