A characterization of Riesz spaces which are Riesz isomorphic to C(X) for some completely regular space X

by Hong-Yun Xiong

Department of Mathematics, Tianjin University, Tianjin, People's Republic of China

Communicated by Prof. A.C. Zaanen at the meeting of June 20, 1988

ABSTRACT

Let *E* be an Archimedean Riesz space possessing a weak unit *e* and let Ω be the collection of all Riesz homomorphisms ϕ from *E* onto \mathbb{R} such that $\phi(e) = 1$. The Gelfand mapping $G: x \to x^{2}$ on *E* is defined by $x^{2}(\phi) = \phi(x)$ for all $\phi \in \Omega$. We endow Ω with the topology induced by *E* (i.e., the weakest topology such that each x^{2} is continuous on Ω). The principal ideal in *E* generated by *e* is denoted by $I_{d}(e)$. The main theorem in this paper says that the following statements (A) and (B) are equivalent.

(A) There exists a completely regular space X such that E is Riesz isomorphic to the space C(X) of all real continuous functions on X.

(B) The following conditions for the Riesz space E hold: (1) E is Archimedean and has a weak unit e; (2) Ω separates the points of E; (3) E is uniformly complete; (4) $G(I_d(e))$ is norm dense in the space $C_b(\Omega)$ of all real bounded continuous functions on Ω ; (5) E is 2-universally complete with carrier space Ω .

Some other conditions are mentioned and an example is given to show that condition (5) is necessary for $(B) \Rightarrow (A)$.

1. INTRODUCTION

Let X be a completely regular Hausdorff space. The constant function 1_X on X is defined by $1_X(x) = 1$ for all $x \in X$. The Riesz space of all real continuous functions on X is denoted by C(X) and the order ideal of all bounded functions in C(X) is denoted by $C_b(X)$.

Let *E* be an Archimedean Riesz space having a weak unit *e*. The principal (order) ideal generated by *e* is denoted by $I_d(e)$. For terminology and notations used in this paper we refer to [1] and [2]. A well-known theorem says that a

Riesz space E is Riesz isomorphic to C(X) for X Hausdorff and compact if and only if E is uniformly complete and has a strong order unit (see Corollary 13.29 of [1] or Theorem 45.4 of [2]). In the present paper we establish a similar theorem. More precisely, we shall characterize Riesz spaces that are Riesz isomorphic to C(X) for some completely regular space X. It is obvious that if the Riesz space E is Riesz isomorphic to C(X) for some completely regular space X, then E has a weak unit.

For any completely regular topological space X, its Stone-Čech compactification will be denoted by βX (as usual). It is well-known that $C_b(X)$ and $C(\beta X)$ are Riesz isomorphic and ring isomorphic. We observe here that in $C_b(X)$ maximal order ideals and maximal ring ideals are the same (see for example Theorem 8.4 of [3]), so that it does not matter whether we take maximal order ideals or maximal ring ideals for the points of βX .

The author wishes to thank Professor A.C.M. van Rooij for helpful discussions while the author stayed at the Catholic University in Nijmegen, the Netherlands.

2. GELFAND MAPPING

Let *E* be a Riesz space (Archimedean without further mention) possessing a weak unit *e* and let Ω be the collection of all Riesz homomorphisms ϕ from *E* onto \mathbb{R} such that $\phi(e) = 1$. The *Gelfand mapping* $G: x \to x^{\hat{}}$ on *E* is defined by $x^{\hat{}}(\phi) = \phi(x)$ for all $\phi \in \Omega$. Observe that $e^{\hat{}} = 1_{\Omega}$ on account of $e^{\hat{}}(\phi) = \phi(e) = 1 = 1_{\Omega}(\phi)$ for every $\phi \in \Omega$. The set $\{x^{\hat{}}: x \in E\}$ will be denoted by $E^{\hat{}}$. We endow Ω with the topology induced by *E* (i.e., the weakest topology such that each $x^{\hat{}}$ is a real continuous function on Ω). It is well-known that Ω is now a completely regular space (see for example Theorem 3.7 of [4] or Ch. 7 of [5]). The proof of the following lemma is now easy.

LEMMA 1. Let E be a Riesz space having a weak unit e. If Ω separates the points of E, then

- the Gelfand mapping G is a Riesz isomorphism from E onto the Riesz subspace E[^] of C(Ω),
- (2) $G(I_d(e)) \subset C_b(\Omega)$. Precisely, the restriction $G|_{I_d(e)}$ is a Riesz isomorphism from $I_d(e)$ onto the Riesz subspace $G(I_d(e))$ of $C_b(\Omega)$.

Under the hypotheses of Lemma 1, we shall identify E with its image $E^{\hat{}}$ in $C(\Omega)$ and refer to E as a function lattice with carrier space Ω . We recall a definition introduced by W.A. Feldman and J.F. Porter in [6]. Let L be a function lattice with carrier space M such that $1_M \in L$. The sequence $\{f_n : n \in \mathbb{N}\}$ in L is said to be 2-disjoint if for each n we have $|f_n| \wedge |f_k| \neq 0$ for at most two indices k distinct from n and if for each $a \in M$ there exists an f_n such that $f_n(a) \neq 0$. The space L is said to be 2-universally complete if each 2-disjoint sequence has a supremum in L.

3. RIESZ HOMOMORPHISMS AND RING HOMOMORPHISMS

Let X be a completely regular space. It is obvious that if $\phi: C(X) \to \mathbb{R}$ is a ring homomorphism such that $\phi(1_X) = 1$, then ϕ is a nonzero surjection. Also, if $\phi: C(X) \to \mathbb{R}$ is a nonzero ring homomorphism, then ϕ is surjective and $\phi(1_X) = 1$. Furthermore, X is realcompact if and only if, for each nonzero ring homomorphism ϕ from C(X) onto \mathbb{R} , there exists a unique $x \in X$ such that $\phi(f) = f(x)$ for all $f \in C(X)$. The following theorem is a particular case of a more general result dealing with homomorphisms from one f-algebra into another one (see Corollary 5.5 of [7]). The proof for this particular case is much simpler since the homomorphism is now onto \mathbb{R} .

THEOREM 2. Let X be a set and let A be a Riesz subspace of the space of all real functions on X such that A satisfies the following conditions: (1) A contains the constant function 1_X ; (2) A is also an algebra (under pointwise multiplication); (3) if $f \in A^+$ then $f^{\frac{1}{2}} \in A^+$. Let $\phi: A \to \mathbb{R}$ and $\phi \neq 0$. Then the following conditions (a) and (b) are equivalent.

- (a) ϕ is a ring homomorphism.
- (b) ϕ is a Riesz homomorphism such that $\phi(1_X) = 1$.

PROOF. (a) \Rightarrow (b) Let ϕ be a ring homomorphism such that $\phi \neq 0$. For any $f \in A^+$ we have $\phi(f) = \phi(f^{\frac{1}{2}}f^{\frac{1}{2}}) = (\phi(f^{\frac{1}{2}}))^2 \ge 0$, which implies that ϕ maps A^+ into \mathbb{R}^+ , i.e., ϕ is a positive mapping. Also, since ϕ is an additive mapping, it follows immediately that $\phi(\alpha f) = \alpha \phi(f)$ for any $f \in A$ and any rational α . Then the same holds for irrational α (assume $f \ge 0$ and let $\alpha_n \uparrow \alpha$ and $\alpha'_n \downarrow \alpha$ with α_n and α'_n rational). To show that ϕ is a Riesz homomorphism, let $f \land g = 0$. Then fg = 0, and so $\phi(f)\phi(g) = \phi(fg) = 0$. Since $\phi(f) \ge 0$ and $\phi(g) \ge 0$, it follows that one at least of $\phi(f)$ and $\phi(g)$ vanishes, so $\phi(f) \land \phi(g) = 0$.

(b) \Rightarrow (a) Let ϕ be a Riesz homomorphism such that $\phi(1_X) = 1$. If $g \in A$ and $\phi(g) = 0$ (so $\phi(|g|) = 0$), it follows for every $n \in \mathbb{N}$ from $0 \le g^2 \le n|g| + n^{-1}|g|^3$ that

$$0 \le \phi(g^2) \le n\varphi(|g|) + n^{-1}\phi(|g|^3) = n^{-1}\phi(|g|^3),$$

so $\phi(g^2) = 0$ (let $n \to \infty$). Now, let $f \in A$ be arbitrary and let $g = f - \phi(f) \mathbf{1}_X$. Then $\phi(g) = 0$, so

$$0 = \phi(g^2) = \phi(f^2 - 2\phi(f)f + \phi(f)^2 \mathbf{1}_X)$$

= $\phi(f^2) - 2\phi(f)\phi(f) + \phi(f)^2\phi(\mathbf{1}_X) = \phi(f^2) - \phi(f)^2,$

and hence $\phi(f^2) = \phi(f)^2$. Since $2pq = (p+q)^2 - p^2 - q^2$ for all $p, q \in A$, it follows immediately that $\phi(pq) = \phi(p)\phi(q)$, i.e., ϕ is a ring homomorphism.

Combining this result with the result about realcompact spaces mentioned above, we obtain the following theorem.

THEOREM 3. Let X be a completely regular space. Then the following statements are equivalent. (1) X is realcompact.

- (2) For each ring homomorphism $\phi: C(X) \to \mathbb{R}$ such that $\phi(1_X) = 1$, there exists a unique $x \in X$ such that $\phi(f) = f(x)$ for all $f \in C(X)$.
- (3) For each Riesz homomorphism $\phi: C(X) \to \mathbb{R}$ such that $\phi(1_X) = 1$, there exists a unique $x \in X$ such that $\phi(f) = f(x)$ for all $f \in C(X)$.

Let X be a realcompact space and let Ω_c be the collection of all Riesz homomorphisms ϕ from C(X) onto \mathbb{R} such that $\phi(1_X) = 1$. By Theorem 3, for every $\phi \in \Omega_c$ there exists a unique $x \in X$ such that $\phi = \phi_x$ where ϕ_x is defined by $\phi_x(f) = f(x)$ for all $f \in C(X)$. This implies $\Omega_c = \{\phi_x : x \in X\}$. The same as in Section 2, the Gelfand mapping $G: f \to f$ on C(X) is defined by

$$f^{\hat{}}(\phi_x) = \phi_x(f) = f(x)$$

for all $\phi_x \in \Omega_c$. Also, we endow Ω_c with the topology induced by C(X). Then we have the following theorem.

THEOREM 4. Let X be a realcompact space and let Ω_c be the collection of all Riesz homomorphisms ϕ from C(X) onto \mathbb{R} such that $\phi(1_X) = 1$. If we endow Ω_c with the topology induced by C(X), then Ω_c is homeomorphic to X. Furthermore, Ω_c is realcompact, and the Gelfand mapping G is a Riesz isomorphism and ring isomorphism from C(X) onto $C(\Omega_c)$.

PROOF. We proceed to prove that the mapping $\Phi: x \to \phi_x$ is a homeomorphism from X onto Ω_c . Since the topology for X coincides with the weakest topology such that f is continuous for each $f \in C(X)$, the family

 $S = \{ f^{-1}(U) : f \in C(X), U \text{ is open in } \mathbb{R} \}$

is a subbase for X. By the definition of the topology for Ω_c , the family

 $S^{\widehat{}} = \{f^{\widehat{}}(U) : f \in C(X), U \text{ is open in } \mathbb{R}\}$

is a subbase for Ω_c . Note that Φ is bijective and $f(x) = \hat{f}(\phi_x)$. It is easy to verify that $\Phi(f^{-1}(U)) = \hat{f}^{-1}(U)$ for every $f^{-1}(U) \in S$ and $\Phi^{-1}(\hat{f}^{-1}(U)) = f^{-1}(U)$ for every $\hat{f}^{-1}(U) \in S$. This implies that Φ and Φ^{-1} are continuous. Therefore, Φ is a homeomorphism from X onto Ω_c .

Furthermore, it will be sufficient to prove for the rest that the Gelfand mapping G is surjective. For any $h \in C(\Omega_c)$, we define f by $f(x) = h(\phi_x)$ for all $x \in X$. Since $\Phi: x \to \phi_x$ is a homeomorphism from X onto Ω_c , we have $f \in C(X)$ and hence $f^{2} = h$.

4. ON THE RIESZ ISOMORPHISM FROM C(X) INTO C(Y) FOR COMPACT HAUSDORFF SPACES X AND Y

In this section, let X and Y be compact Hausdorff spaces. We recall the following well-known conclusions. If Φ is a Riesz homomorphism from C(X) into C(Y) such that $\Phi(1_X) = 1_Y$, then there exists a unique continuous mapping $\phi: Y \to X$ such that $\Phi f = f\phi$ for all $f \in C(X)$ (see Corollary 12.3 of [1]). We call this mapping ϕ the associate mapping of Φ . A well-known theorem (Banach-

Stone) says that if C(X) and C(Y) are Riesz isomorphic then X and Y are homeomorphic (see Corollary 12.4 of [1]).

Since C(X) has a strong (order) unit 1_X , we define a Riesz norm ρ on C(X) by

 $\varrho(f) = \inf\{s: s \ge 0, |f| \le s \mathbb{1}_X\} \quad (f \in C(X))$

(see 13.27 of [1] or Theorem 62.4 of [2]). It is easy to see that ρ is also the supremum norm on C(X). Thus the following lemma is now obvious.

LEMMA 5. Let Φ be a Riesz isomorphism from C(X) into C(Y) such that $\Phi(1_X) = 1_Y$. Then Φ is an isometric Riesz isomorphism from C(X) onto the Riesz subspace $\Phi(C(X))$ of C(Y).

THEOREM 6. Let Φ be a Riesz isomorphism from C(X) into C(Y) such that $\Phi(1_X) = 1_Y$. Then the associate mapping ϕ of Φ is surjective.

PROOF. Take any $x \in X$. For every $f \in \Phi(C(X))$, the mapping $\psi_x: f \to (\Phi^{-1}f)(x)$ is a Riesz homomorphism from $\Phi(C(X))$ onto \mathbb{R} . For every $g \in C(Y)$ there exists an $\alpha \ge 0$ such that $|g| \le \alpha 1_Y$. But $\alpha 1_Y = \Phi(\alpha 1_X) \in \Phi(C(X))$, hence $\Phi(C(X))$ is a majorizing Riesz subspace of C(Y). By the extension theorem for Riesz homomorphism (see [8] or [9], ψ_x can be extended to a Riesz homomorphism Ψ from C(Y) onto \mathbb{R} . It follows that there exists a unique $y \in Y$ such that $\Psi(g) = g(y)$ for all $g \in C(Y)$ (see for example Theorem 12.2 of [1]). Thus every $f \in \Phi(C(X))$ satisfies

$$f(y) = \Psi(f) = \psi_x(f) = (\Phi^{-1}f)(x).$$

We now prove that $\phi(y) = x$. Let $h \in C(X)$ be arbitrary. It follows from the above formula that

$$h(\phi(y)) = (\Phi h)(y) = (\Phi^{-1}(\Phi h))(x) = h(x).$$

Since X is a compact Hausdorff space it follows from Urysohn's lemma that $\phi(y) = x$. Therefore ϕ is surjective.

In the following theorem, except for the well-known equivalence of statements (1) and (2) and the obviously equivalent statement (4), we present some more equivalent statements.

THEOREM 7. Let Φ be a Riesz isomorphism from C(X) into C(Y) such that $\Phi(1_X) = 1_Y$ and let $\phi: Y \to X$ be the associate mapping of Φ . Then the following statements are equivalent.

- (1) Φ is a Riesz isomorphism from C(X) onto C(Y).
- (2) $\phi: Y \rightarrow X$ is a homeomorphism.
- (3) $\phi: Y \rightarrow X$ is injective.
- (4) $\Phi(C(X))$ is a norm dense Riesz subspace of C(Y).
- (5) For Riesz homomorphism $H_i: C(Y) \to \mathbb{R}$ such that $H_i(1_Y) = 1$ (i = 1, 2), $H_1|_{\Phi(C(X))} = H_2|_{\Phi(C(X))}$ implies $H_1 = H_2$.

PROOF. (1) \Rightarrow (2) See Corollary 12.4 of [1] and its proof.

(2) \Rightarrow (3) This is obvious.

(3) \Rightarrow (4) We know that $\Phi(C(X))$ is a Riesz subspace of C(Y). Let $y_1, y_2 \in Y$ and $y_1 \neq y_2$. Since ϕ is injective, we have $\phi(y_1) \neq \phi(y_2)$ in X. By Urysohn's lemma there exists an $h \in C(X)$ such that $h(\phi(y_1)) \neq h(\phi(y_2))$. Hence, $\Phi h \in \Phi(C(X))$ satisfies $(\Phi h)(y_1) \neq (\Phi h)(y_2)$. By the Stone-Weierstrass Theorem (see Theorem 13.12 of [1]), we obtain thus that $\Phi(C(X))$ is norm dense in C(Y).

(4) \Rightarrow (1) By Lemma 1, it is easy to see that $\Phi(C(X))$ is a norm complete subspace of C(Y), and hence $\Phi(C(X))$ is closed in C(Y). Since $\Phi(C(X))$ is norm dense in C(Y), we obtain $\Phi(C(X)) = C(Y)$.

- (1) \Rightarrow (5) This is obvious.
- (5) \Rightarrow (3) Let $y_1, y_2 \in Y$ and $\phi(y_1) = \phi(y_2)$. For any $f \in C(X)$ we have

 $(\Phi f)(y_1) = f(\phi(y_1)) = f(\phi(y_2)) = (\Phi f)(y_2).$

For each y_i (i=1,2), there exists a Riesz homomorphism $H_i: C(Y) \to \mathbb{R}$ such that $H_i(g) = g(y_i)$ for all $g \in C(Y)$. Thus we have $H_i(1_Y) = 1$ (i=1,2) and for any $f \in C(X)$

$$H_1(\Phi f) = (\Phi f)(y_1) = (\Phi f)(y_2) = H_2(\Phi f).$$

By hypothesis we obtain $H_1 = H_2$, and hence for all $g \in C(Y)$

 $g(y_1) = H_1(g) = H_2(g) = g(y_2).$

Since Y is a compact Hausdorff space it follows from Urysohn's lemma that $y_1 = y_2$. Hence ϕ is injective.

We now present an example to show that the associate mapping ϕ may fail to be injective in case Φ is a Riesz isomorphism (into).

EXAMPLE 1. Let X be the closed interval [0,1] and let Y be the closed interval [-1,1]. We define the mapping $\Phi: C(X) \to C(Y)$ by

$$(\Phi f)(y) = \begin{cases} f(y) & \text{if } y \in [0,1] \\ f(-y) & \text{if } y \in [-1,0] \\ \end{cases} (f \in C(X)).$$

Then Φ is a Riesz isomorphism from C(X) into C(Y) and $\Phi(1_X) = 1_Y$. It is obvious that the associate mapping $\phi: Y \to X$ of Φ satisfies

 $\phi(y) = |y| \quad (y \in Y).$

Hence ϕ is not injective.

5. MAIN RESULT

The main theorem in the present paper is the following theorem.

THEOREM 8. Let E be a Riesz space. The following statements (A) and (B) are equivalent.

- (A) There exists a completely regular space X such that E is Riesz isomorphic to C(X).
- (B) The following conditions for the Riesz space E hold:
- (1) E is Archimedean and has a weak unit e;
- (2) Ω separates the points of E (where Ω is the collection of all Riesz homomorphisms ϕ from E onto \mathbb{R} such that $\phi(e) = 1$);
- (3) one of the following (α) and (β)holds: (α) E is uniformly complete, (β) E is e-uniformly complete;
- (4) one of the following (a), (b) and (c) holds: (a) $G(I_d(e)) = C_b(\Omega)$, (b) $G(I_d(e))$ is norm dense in $C_b(\Omega)$, (c) for Riesz homomorphism $H_i: C_b(\Omega) \rightarrow \mathbb{R}$ such that $H_i(1_\Omega) = 1$ (i = 1, 2), $H_1|_{G(I_d(e))} = H_2|_{G(I_d(e))}$ implies $H_1 = H_2$;
- (5) E is 2-universally complete with carrier space Ω .

PROOF. If (1) and (3) hold, by Corollary 13.29 of [1] or Theorem 45.4 of [2], there exists a compact Hausdorff space Y such that $I_d(e)$ is Riesz isomorphic to C(Y). Let the mapping $f \rightarrow f^{\beta}$ be the Riesz isomorphism and ring isomorphism from $C_b(\Omega)$ onto $C(\beta\Omega)$. We identify $I_d(e)$ with C(Y) and $C_b(\Omega)$ with $C(\beta\Omega)$. By Theorem 7, if (1), (2) and (3) hold, then (a), (b) and (c) in condition (4) are equivalent.

(A) \Rightarrow (B) Assume that (A) holds. Since C(X) is Riesz isomorphic and ring isomorphic to C(vX) (where vX is the realcompactification of X), we conclude by Theorem 4 that Ω is homeomorphic to vX and the Gelfand mapping G is a Riesz isomorphism from E onto $C(\Omega)$. It follows immediately that (1), (2) and (4) hold. (3) holds by Theorem 43.1 of [2]. It was proved in Proposition 3 of [6] that C(X) is 2-universally complete. (Indeed, for any 2-disjoint sequence $\{f_n : n \in \mathbb{N}\}$ in C(X) and for any $a \in X$, there exists an f_n such that $|f_n(x)| > 0$ for all x in a neighborhood U of a. Let f be the pointwise supremum of the sequence $\{f_n : n \in \mathbb{N}\}$. Then the restriction $f|_U$ is equal to the pointwise supremum of at most three functions in $\{f_n|_U : n \in \mathbb{N}\}$. Hence we conclude $f \in C(X)$.) We may view Ω as a carrier space of E. Then (5) holds.

(B) \Rightarrow (A) By Lemma 1, it is sufficient to prove that the Gelfand mapping G is surjective. To this end, for any $f_0 \in C(\Omega)^+$ setting $f = f_0 + 1_{\Omega}$ and setting

$$\begin{split} F_n &= \{ \phi \in \Omega : n - 1 \le f(\phi) \le n \}, \\ V_n &= \{ \phi \in \Omega : n - \frac{4}{3} < f(\phi) < n + \frac{1}{3} \}, \\ F'_n &= \{ \phi \in \beta \Omega : n - 1 \le (f \land (n+1) \mathbf{1}_{\Omega})^{\beta}(\phi) \le n \}, \\ V'_n &= \{ \phi \in \beta \Omega : n - \frac{4}{3} < (f \land (n+1) \mathbf{1}_{\Omega})^{\beta}(\phi) < n + \frac{1}{3} \}, \end{split}$$

we have $F_n = F'_n \cap \Omega$, $V_n = V'_n \cap \Omega$, $F'_n \subset V'_n$, F'_n is closed in $\beta\Omega$ and V'_n is open in $\beta\Omega$. Since $\beta\Omega$ is a compact Hausdorff space, for each $n \in \mathbb{N}$ there exists a $g_n^{\beta} \in C(\beta\Omega)$, $0 \le g_n^{\beta} \le 1$ such that $g_n^{\beta}(F'_n) = 1$ and $g_n^{\beta}(\beta\Omega \setminus V'_n) = 0$. Hence $g_n = g_n^{\beta}|_{\Omega} \in C_b(\Omega)$, $0 \le g_n \le 1$, $g_n(F_n) = 1$ and $g_n(\Omega \setminus V_n) = 0$. It is easy to see that $\{fg_n : n \in \mathbb{N}\}$ is 2-disjoint and $f = \sup\{fg_n : n \in \mathbb{N}\}$. It follows from $G(I_d(e)) =$ $C_b(\Omega)$ that for each $n \in \mathbb{N}$ there exists an $x_n \in I_d(e)$ such that $x_n^n = fg_n$. Since E is 2-universally complete with carrier space Ω and $\{x_n : n \in \mathbb{N}\}$ is 2-disjoint, there exists an $x \in E$ such that $x = \sup\{x_n\}$. More precisely, we write $x = = E - \sup\{x_n\}$ as the supremum is taken in E. It follows that

$$x^{\hat{}} = E^{\hat{}} - \sup \{x_n^{\hat{}}\} \ge C(\Omega) - \sup \{x_n^{\hat{}}\} = C(\Omega) - \sup \{fg_n\} = f.$$

Now, we proceed to prove that x^{n} must be equal to f. Suppose $x^{n} > f$. Since $C_{b}(\Omega)$ is order dense in $C(\Omega)$ and $G(I_{d}(e)) = C_{b}(\Omega)$, there exists a $g \in I_{d}(e)$ such that $x^{n} - f \ge g^{n} > 0$, so g > 0 and $x^{n} \ge g^{n} + f > f$. Thus,

$$x^{\hat{}} = E^{\hat{}} - \sup \{x_n^{\hat{}}\} \ge g^{\hat{}} + C(\Omega) - \sup \{x_n^{\hat{}}\} = C(\Omega) - \sup \{g^{\hat{}} + x_n^{\hat{}}\}.$$

Then $x^2 \ge g^2 + x_n^2 = (g + x_n)^2$ for each $n \in \mathbb{N}$, and hence

$$x \ge E - \sup \{g + x_n\} = g + E - \sup \{x_n\} = g + x > x.$$

This is impossible. Therefore $f = x^{\uparrow}$ and $f_0 = x^{\uparrow} - 1_{\Omega} = (x - e)^{\uparrow}$.

We present an example to show that the condition (5) in Theorem 8 is necessary for $(B) \Rightarrow (A)$.

EXAMPLE 2. Let $E = \{f \in C(\mathbb{R}) :$ there is a polynomial p such that $|f| \le p\}$. Once more, let Ω be the collection of all Riesz homomorphisms ϕ from E onto \mathbb{R} such that $\phi(1_{\mathbb{R}}) = 1$. We also endow Ω with the topology induced by E. We claim the following properties.

(1) E is a Riesz subspace of $C(\mathbb{R})$ and $E \neq C(\mathbb{R})$.

(2) Ω is homeomorphic to \mathbb{R} .

For every $a \in \mathbb{R}$, define $\phi_a: E \to \mathbb{R}$ by $\phi_a(f) = f(a)$ for all $f \in E$. Then $\{\phi_a: a \in \mathbb{R}\} \subset \Omega$. Conversely, we proceed to prove that for every $\phi \in \Omega$ there exists an $a \in \mathbb{R}$ such that $\phi = \phi_a$. Let e be the identity mapping from \mathbb{R} onto \mathbb{R} and let $a = \phi(e)$. For any $f \in E$, we shall prove $\phi(f) = f(a)$. Setting $g = f - f(a) \mathbf{1}_{\mathbb{R}}$, we have g(a) = 0. It is sufficient to show $\phi(g) = 0$. To this end, for any $\varepsilon > 0$, we take $\delta > 0$ such that $|g| \le \varepsilon \mathbf{1}_{\mathbb{R}}$ on $[a - \delta, a + \delta]$. It is easy to see $|g| \le \le (\delta^{-1}(|e - a\mathbf{1}_{\mathbb{R}}|)|g|) \lor \varepsilon \mathbf{1}_{\mathbb{R}}$. Since ϕ is also a ring homomorphism (by Theorem 2), we have

$$|\phi(g)| \leq (\delta^{-1}|\phi(e) - a\phi(1_{\mathbb{R}})||\phi(g)|) \vee \varepsilon \phi(1_{\mathbb{R}}) = 0 \vee \varepsilon = \varepsilon.$$

Consequently, $\phi(g) = 0$. Thus, we obtain $\Omega = \{\phi_a : a \in \mathbb{R}\}$.

Let \mathscr{T}' be the topology for Ω induced by E. Then the family

 $S^{\widehat{}} = \{f^{\widehat{}}(U): f \in E, U \text{ is open in } \mathbb{R}\}$

is a subbase for \mathscr{T}' . Let \mathscr{T} be the topology for \mathbb{R} such that the family

$$S = \{ f^{-1}(U) : f \in E, U \text{ is open in } \mathbb{R} \}$$

is a subbase for \mathscr{T} . Completely similar to the proof in Theorem 4, we see that the mapping $\Phi: a \to \phi_a$ is a homeomorphism from $(\mathbb{R}, \mathscr{T})$ onto (Ω, \mathscr{T}') . It is easy to see that $E \subset C(\mathbb{R})$ implies $\mathscr{T} \subset \mathscr{T}_u$ (where \mathscr{T}_u is the usual topology for \mathbb{R}). On the other hand, $U = e^{-1}(U) \in S \subset \mathscr{T}$ for every $U \in \mathscr{T}_u$ which implies $\mathscr{T}_u \subset \mathscr{T}$. Thus we obtain $\mathscr{T} = \mathscr{T}_u$. Therefore Φ is a homeomorphism from $(\mathbb{R}, \mathscr{T}_u)$ onto (Ω, \mathscr{T}') .

(3) It follows from (2) that Ω separates the points of E.

(4) $G(I_d(1_\mathbb{R})) = C_b(\Omega)$.

E is a Riesz space in its own right having a weak unit $1_{\mathbb{R}}$. For every $f \in C(\mathbb{R})$, we define f^* by $f^*(\phi_a) = f(a)$ for all $\phi_a \in \Omega$. It follows from (2) that the mapping $T: f \to f^*$ is a Riesz isomorphism and ring isomorphism from $C(\mathbb{R})$ onto $C(\Omega)$. It is obvious that the restriction $T|_E$ is the Gelfand mapping *G* on *E*. Note that the principal ideal $I_d(1_{\mathbb{R}})$ in *E* is equal to $C_b(\mathbb{R})$. We conclude $G(I_d(1_{\mathbb{R}})) = C_b(\Omega)$.

(5) E is uniformly complete.

For every $f \in E^+$ and every f-uniform Cauchy sequence $\{f_n : n \in \mathbb{N}\}$ in E (so in $C(\mathbb{R})$), since $C(\mathbb{R})$ is uniformly complete, the sequence $\{f_n\}$ has an f-uniform limit $f_0 \in C(\mathbb{R})$. That is, for every $\varepsilon > 0$ there exists a positive integer n_0 such that $|f_n - f_0| \le \varepsilon f$ for all $n \ge n_0$. Hence

$$|f_0| \le |f_{n_0} - f_0| + |f_{n_0}| \le \varepsilon f + |f_{n_0}| \in E$$

which implies $f_0 \in E$.

(6) E is not 2-universally complete.

Consider $f \in C(\mathbb{R})$ which is defined by $f(t) = e^t$ ($t \in \mathbb{R}$). Similar to the proof in Theorem 8, we set

$$F_n = \{ t \in \mathbb{R} : n - 1 \le f(t) \le n \},\$$

$$V_n = \{ t \in \mathbb{R} : n - \frac{4}{3} < f(t) < n + \frac{1}{3} \}.$$

Then for each $n \in \mathbb{N}$ there exists a $g_n \in C(\mathbb{R})$ such that $0 \le g_n \le 1$, $g_n(F_n) = 1$ and $g_n(\mathbb{R} \setminus V_n) = 0$. It is easy to see that $\{fg_n : n \in \mathbb{N}\}$ is 2-disjoint in E, but $f = \sup\{fg_n\} \notin E$. Therefore E is not 2-universally complete.

REFERENCES

- Jonge, E. de and A.C.M. van Rooij Introduction to Riesz spaces, Mathematical Centre Tracts 78, Amsterdam, 1977.
- Luxemburg, W.A.J. and A.C. Zaanen Riesz spaces I, North-Holland Publishing Company, Amsterdam, 1971.
- Huijsmans, C.B. and B. de Pagter On z-ideals and d-ideals in Riesz spaces II, Indag. Math.
 42 (Proc. Netherl. Acad. Sc. A 83), 391-408 (1980).
- Gillman, L. and M. Jerison Rings of continuous functions, Graduate Texts in Math. 43, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- 5. Kelley, J.L. General topology, Van Nostrand Reinhold, Princeton, 1955.
- Feldman, W.A. and J.F. Porter The order topology for function lattices and realcompactness, Internat. J. Math. & Math. Sci. Vol. 4, No. 2, 289-304 (1981).
- Huijsmans, C.B. and B. de Pagter Subalgebras and Riesz subspaces of an *f*-algebra, Proc. London Math. Soc. (3) 48, 161-174 (1984).
- Luxemburg, W.A.J. and A.R. Schep An extension theorem for Riesz homomorphisms, Indag. Math. 41 (Proc. Netherl. Acad. Sc. A 82), 145-154 (1979).
- 9. Lipecki, Z. Extension of vector lattice homomorphisms, Proc. Amer. Math. Soc. 79, 247-248 (1980).