Increased Lung Cancer Risk among Patients with Pulmonary Tuberculosis

A Population Cohort Study

Yang-Hao Yu, MD,* Chien-Chang Liao, PhD, MS,†‡ Wu-Huei Hsu, MD,* Hung-Jen Chen, MD,* Wei-Chih Liao, MD,* Chih-Hsin Muo, MS,†‡ Fung-Chang Sung, PhD, MPH,†‡ and Chih-Yi Chen, MD§

Introduction: Given one third of the human population have been infected with tuberculosis, it is important to delineate the relationship between tuberculosis and lung cancer. This study explored whether contracting pulmonary tuberculosis is associated with an increased risk of developing lung cancers.

Methods: In a cohort of 716,872 insured subjects, free from cancers, aged 20 years and older, 4480 patients with newly diagnosed tuberculosis were identified from the universal insurance claims in 1998–2000 and tracked until 2007 with the remaining insured without tuberculosis. We compared the incidence of lung cancers between the two cohorts and measured the associated hazard of developing lung cancer.

Results: The incidence of lung cancers was approximately 11-fold higher in the cohort of patients with tuberculosis than nontuberculosis subjects (26.3 versus 2.41 per 10,000 person-years). Cox proportional hazard regression analysis showed a hazard ratio of 4.37 (95% confidence interval [CI]: 3.56–5.36) for the tuberculosis cohort after adjustment for the sociodemographic variables or 3.32 (95% CI: 2.70–4.09) after further adjustment for chronic obstructive pulmonary disease (COPD), smoking-related cancers (other than lung cancer), etc. The hazard ratio increased to 6.22 (95% CI: 4.87–7.94) with the combined effect with COPD or to 15.5 (95% CI: 2.17–110) with the combined effect with other smoking-related cancers.

Conclusions: This study provides a compelling evidence of increased lung cancer risk among individuals with tuberculosis. The risk may increase further with coexisting COPD or other smoking-related cancers.

Key Words: Lung cancer, Tuberculosis, Chronic obstructive pulmonary disease, Comorbidity, Retrospective cohort study.

Lung cancers are among the neoplastic diseases with the worst prognosis. The etiology of the disease has been associated with smoking, occupational exposure to arsenates, nitrosamines, asbestos, and aromatics, and indoor exposures to radon, and to fumes from fires or cooking stoves.1–4 Outdoor air pollutions also substantially contribute to the burden of lung cancers in urban dwellers. Inflammation processes have long been linked to cancer development.5,6 Among intrinsic lung diseases with inflammatory components, chronic obstructive pulmonary disease (COPD),7 asthma,8 and pulmonary fibrosis9 have been linked to lung cancers. Tuberculosis with more than 80% of the cases primarily affecting the lungs entails a chronic inflammatory process. Coexistence of tuberculosis and lung cancers is not uncommon clinically.10,11 Nevertheless, a clear association of tuberculosis with lung cancers remains to be established.

Several studies have examined the association between tuberculosis and lung cancer using hospital/community-based populations.12–21 Results of these studies were inconclusive. Two studies were conducted in Montreal, Canada, in two different periods (1979–1986 and 1996–2001) to evaluate the association between previous lung diseases and lung cancers.15 For tuberculosis, the evidence is inconsistent between these two studies. Litman et al.16 tracked a large community population (n = 17,698) with respiratory diseases for a median follow-up of 9.1 years and found 1028 cases of lung cancers. COPD, but not tuberculosis, was associated with higher risk of lung cancers in this study. Among nonsmoker women in Hong Kong16 and the United States,17 preexisting pulmonary tuberculosis, asthma, pneumonia, and chronic bronchitis were more frequently noted in patients with lung cancers than without. Nevertheless, in these two studies, only asthma, but not tuberculosis, bore a significant impact. In a hospital-based case-control study in Taiwan, Lee et al.18 found that history of pulmonary
tuberculosis was an independent risk factor for lung cancers, outweighing chronic bronchitis.

To characterize the relationship between pulmonary tuberculosis and lung cancers, a cohort study with population-based large representative sample is highly desirable but has rarely been conducted. The only published cohort study on this topic to date was conducted among farmers in a remote countryside in China using retrospective analysis based on self-reported questionnaire data. The risk of lung cancer mortality was eightfold (25 versus 3.1 per 1000 person-years) higher for those with tuberculosis than those without in a population of 42,422 subjects. Nevertheless, this study did not include review of medical records making it possible for recall biases.

A recent systematic review of 41 studies was performed to determine whether preexisting tuberculosis increased the risk of developing lung cancers. Association of tuberculosis with lung adenocarcinoma group was noted particularly in nonwesternized countries. The impact of tuberculosis on lung cancers varied among different ethnic groups and in different regions. The inconclusive results led the authors of this systematic review to call for more cohort studies with larger sample sizes to confirm the association between tuberculosis and lung cancers.

To gain better knowledge on tuberculosis in relationship to lung cancers, we conducted a population-based cohort study using patient care data compiled into a large cohort of 1 million patients under the universal National Health Insurance (NHI) program in Taiwan with a follow-up period of 7 to 9 years.

METHODS AND MATERIALS

Study Design and Sample

The NHI in Taiwan has registered all medical claims since 1996 with insured identification numbers scrambled for protecting patients’ privacy. Sets of information available for this study include gender, birthdates, disease codes, health care rendered, medications prescribed, admissions, discharges, medical institutions, and physicians providing the care rendered, medications prescribed, admissions, discharges, medical institutions, and physicians providing the services and others. In this longitudinal cohort study in a randomly selected population of 1 million insured subjects, we identified all patients aged 20 years and older with a new diagnosis of tuberculosis in 1998–2000 as the exposed cohort and all people without tuberculosis history as the nonexposed cohort. We then identified new lung cancer cases (ICD-9-CM of 140–150, 157, 160–161, 189, and A08, A090, A096, A100, A109, and A123). We further applied a multivariate Cox proportional hazard model to investigate the combined effect of tuberculosis and COPD or other smoking-related cancers on lung cancer risk. The Kaplan-Meier model was used to compare the probabilities of being free from lung cancer during the two cohorts. The incidence rates of lung cancers were calculated in the follow-up period until the end of 2007 adjusted by the sociodemographic factors and comorbidities. The duration of observation for each person was calculated until lung cancer diagnosed or censored for death, migration, or discontinued enrolment in the insurance system.

Criteria and Definition

The International Codes of Diseases 9th Edition Clinical Modification (ICD-9-CM) was used to identify the individual health status. The exposure group consisted of patients with diagnosis of tuberculosis (ICD-9-CM of 011 and A-code of A020), and the nonexposure group consisted of all insured without tuberculosis. Both groups were treated as fixed cohorts. Even if a person developed tuberculosis in the years 2001–2007, they were still classified as being free of tuberculosis in the period 1998–2000 and remained in the same cohort. We then identified new lung cancer cases (ICD-9-CM of 162 and A-code of A101) from outpatient and inpatient medical records. To ensure the accuracy of reimbursement claims, the NHI system required experts review conducted for every 50 to 100 claims. The institutions with false diagnoses are subject to penalties.

In addition to tuberculosis, COPD, characterized by chronic airway inflammatory process, has been linked to lung cancers. Metabolic syndromes have also been linked to several types of cancers. Diabetes was found to be associated with breast cancer. Nevertheless, its relationship with lung cancers remains controversial. Two articles addressed its "protective" effect and another was negative. Impaired glucose intolerance, elevated blood pressure, and dyslipidemia comprise the major components of metabolic syndromes, which were, therefore, included in the comorbidity analysis.

Data Analysis

We first compared the distribution of sociodemographic factors between the cohorts with and without tuberculosis. The proportions of comorbidities were also compared between the two cohorts. The incidence rates of lung cancers were calculated in the follow-up period until the end of 2007 adjusted by the sociodemographic factors and comorbidities. The duration of observation for each person was calculated until lung cancer diagnosed or censored for death, migration, or discontinued enrolment in the insurance system.

Crude and adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for factors associated with lung cancer risk were calculated using both the univariate and multivariate Cox proportional hazard analyses with the variables categorized. Two multivariate Cox proportional hazard models were used. The model 1 adjusted for age, sex, and occupation. Model 2 further adjusted for diabetes, hypertension, dyslipidemia, and COPD. We also included in the model 2 the smoking-related cancers other than lung cancer (ICD-9-CM of 140–150, 157, 160–161, 189, and A08, A090, A096, A100, A109, and A123). We further applied a multivariate Cox proportional hazard model to investigate the combined effect of tuberculosis and COPD or other smoking-related cancers on lung cancer risk. The Kaplan-Meier model was used to compare the probabilities of being free from lung cancer between the two cohorts. SAS software version 9.1 (SAS Institute Inc., Cary, NC) was used for data analyses with two-sided probability values less than 0.05 considered statistically significant.

RESULTS

The eligible study subjects included 4480 persons in the tuberculosis cohort and 712,392 persons in the nontuberculosis cohort (Table 1). Compared with individuals without tuberculosis, those with tuberculosis were dominated by males (57.9 versus 49.2, p < 0.0001), the elderly aged 60
TABLE 1. Comparison in Sociodemographic Factors between Cohorts with and without Tuberculosis

<table>
<thead>
<tr>
<th>Factors</th>
<th>Tuberculosis, n (%)</th>
<th></th>
<th>Total, n (%)</th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No (N = 712,392)</td>
<td>Yes (N = 4480)</td>
<td>Yes (N = 716,872)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>361,749 (50.8)</td>
<td>1887 (42.1)</td>
<td>363,636 (50.7)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>350,643 (49.2)</td>
<td>2593 (57.9)</td>
<td>353,236 (49.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20–39</td>
<td>297,705 (41.8)</td>
<td>678 (15.1)</td>
<td>298,383 (41.6)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>40–59</td>
<td>279,312 (39.2)</td>
<td>1453 (32.4)</td>
<td>280,765 (39.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60–79</td>
<td>111,010 (15.6)</td>
<td>1601 (35.7)</td>
<td>112,611 (15.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥80</td>
<td>24,365 (3.4)</td>
<td>748 (16.7)</td>
<td>25,113 (3.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public</td>
<td>380,233 (53.4)</td>
<td>2053 (45.8)</td>
<td>382,286 (53.3)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>99,028 (13.9)</td>
<td>830 (18.5)</td>
<td>99,858 (13.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>173,473 (24.4)</td>
<td>986 (22.0)</td>
<td>174,459 (24.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low income</td>
<td>3029 (0.4)</td>
<td>31 (0.7)</td>
<td>3060 (0.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>56,629 (8.0)</td>
<td>580 (13.0)</td>
<td>57,209 (8.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Government, education, and military.

b Insured income is lower than the level required for charging premium.

TABLE 2. Comparison in Comorbidity between Cohorts with and without Tuberculosis

<table>
<thead>
<tr>
<th>Comorbiditiesb</th>
<th>No (N = 712,392)</th>
<th>Yes (N = 4480)</th>
<th>Total (N = 716,872)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>572,900 (80.4)</td>
<td>2657 (59.3)</td>
<td>575,557 (80.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Yes</td>
<td>139,492 (19.6)</td>
<td>1823 (40.7)</td>
<td>141,315 (19.7)</td>
<td></td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>657,385 (92.3)</td>
<td>832 (18.5)</td>
<td>661,217 (92.2)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Yes</td>
<td>55,007 (7.7)</td>
<td>648 (14.5)</td>
<td>55,655 (7.8)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>650,162 (91.3)</td>
<td>3654 (81.6)</td>
<td>653,816 (91.2)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Yes</td>
<td>62,230 (8.7)</td>
<td>826 (18.4)</td>
<td>63,056 (8.8)</td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>638,130 (89.6)</td>
<td>2505 (55.9)</td>
<td>640,635 (89.4)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Yes</td>
<td>74,242 (10.4)</td>
<td>1975 (44.1)</td>
<td>76,237 (10.6)</td>
<td></td>
</tr>
<tr>
<td>Smoking-related cancer</td>
<td>709,926 (99.6)</td>
<td>4454 (99.4)</td>
<td>714,380 (99.6)</td>
<td>0.008</td>
</tr>
<tr>
<td>No</td>
<td>2466 (0.4)</td>
<td>26 (0.6)</td>
<td>2492 (0.4)</td>
<td></td>
</tr>
</tbody>
</table>

a Missing value: 11 in urbanization.

b ICD-9-CM and A codes for hypertension were 401, 402, 403, 404, A260, A269; for hyperlipidemia 272.0, 272.1, 272.2, 272.3, 272.4, A189; for diabetes 250, A181; for COPD 491, 492, 496, A323.01, A323.03, A325; and for smoking-related cancer 140–150, 157, 160–161, 189, A89, A909, A906, A100, A109, A123.

COPD, chronic obstructive pulmonary disease.
confirmation of diagnosis for both tuberculosis and lung cancer.22

This cohort study explored the longitudinal association between tuberculosis and lung cancer risk using a nationwide population-based sample of patients and complete ascertainment of care that are verified with stringent NHI claim procedures. Our analyses revealed that the incidence of lung cancer is much greater in patients with tuberculosis than in the general population, with an adjusted HR of 3.32 during a follow-up of 7 to 9 years. It is also not surprise to observe a much higher mortality in the tuberculosis cohort.

Results from this study are consistent with the report by Gao and coworkers.32 that lung cancers were more frequently found in recent survivors of tuberculosis infection. The risk is higher for men than for women and much higher for the elderly. The data also show tuberculosis is an independent predictor of lung cancer risk, stronger than COPD. The changing incidence shows a trend of lung cancer shifting from developed to less-developed countries,33,34 where tuberculosis poses a major health risk because of poverty, high population density, inadequate living environment, and less accessibility to health care. High-smoking prevalence and inadequate ventilated stove in houses point to a potential health burden of lung cancer risk associated with tuberculosis in developing countries. In these countries, the populations are also aging with tuberculosis more prevalent in men. These features together with results presented in this study heighten the need for the developing countries to control tuberculosis.

Smoking and air pollutions are the two major risk factors causing airway diseases by repeatedly irritating respiratory epithelium, resulting in a chronic inflammatory condition. The link of chronic inflammation to the lung cancer development has been demonstrated in animal models.35,36 COPD is a known risk for lung cancer. Cohort studies have shown the association of COPD with lung cancers.37 It has been reported that smokers with COPD had increased risk of developing lung cancers by 1.3-fold to 4.5-fold in comparison with smokers without COPD.37–39 Our analysis shows a similar trend for COPD to increase the risk of lung cancers with a HR of 2.30 (Table 4). The combined effect of tuberculosis and COPD increased the HR of lung cancer risk from 3.32 to 6.22, a risk measure comparable to smoking, the major etiologic factor of lung cancer.40,41

This causal association between chronic inflammatory conditions and lung cancers has been observed not only clinically but also in a mice model. Using mutated K-ras restricted to Clara cells of the conducting airway, Moghaddam et al.35 reported that a chronic inflammatory airway, mimicking COPD condition, promoted cancer progression. The infected sites of tuberculosis are under a chronic inflammatory condition with inflammatory cells and mediators that may facilitate carcinogenesis.

The longitudinal survey applied in this study is a better approach in establishing a link of tuberculosis to lung cancers. It avoids the selection and recall biases in previous cross-sectional and case-control studies.12–14,17,21 The population-based insurance data allow this study to avoid recall biases inherent to a previous self-reported questionnaire study, which has been the only cohort study on association of tuberculosis to lung cancers published to date.22 The larger representative sample sizes collected in this study provide a more reliable statistical power for assessing the increase in lung cancer risk in patients with tuberculosis, when compared with a control cohort without tuberculosis.

Using a nationwide insurance database for an epidemiology study, the accuracy of clinical coding could be questioned. Tuberculosis is one of the communicable diseases under intense national surveillance in Taiwan. Reporting patients with tuberculosis is mandatory and is enforced by the Department of Health in Taiwan. Cases reported to the Center for Disease Control, Department of Health, were under the World Health Organization recommended Directly Observed Therapy Short-Course Care.

The diagnosis of cancers, including lung cancer, entitles the patients to qualify for special health care privileges in the class of “major critical diseases” in Taiwan’s NHI system. Once a patient is claimed to have this disease entity; copayments for health care are waived. This health benefit program
has been under stringent NHI auditing to avoid abuse or frauds. Thus, results derived from the NHI database for the diagnosis of tuberculosis and lung cancer are reliable.

In this study, none of the three metabolic syndrome-related comorbidities was significantly associated with the lung cancer risk in the multivariate analysis. There is a significant collinearity among the components of the metabolic syndrome, supporting the validity of the data retrieved from the NHI cohorts. The findings that metabolic syndrome-related comorbidities did not bear any weight on lung cancer development in these cohorts support the contention that a close association of tuberculosis with lung cancer is not a chance observation.

There are potential limitations in this study. First, the major concern in this study is that the smoking data of the study cohorts were available only for the smoking cessation history. Some studies have addressed the positive association between smoking and tuberculosis. The estimate of smoking is an important issue in the risk measurement of lung cancers. The prevalence of smoking in Taiwan has been in the range of 50 to 60% in men and 3 to 4% in women. We used COPD and other smoking-related cancer to substitute smoking as one of covariates in the adjustment measures. This study showed that patients with other smoking-related cancers were more prevalent in tuberculosis cohort. A case-control study has indicated that 40% of patients with tuberculosis in Taiwan were smokers. A lower smoking rate in patients with tuberculosis reflects greater efforts for this group to quit smoking. Thus, the confounding impact of smoking on the risk of lung cancer may be lower in the tuberculosis group. A higher risk of lung cancer in men than in women may reflect the smoking impact. Smoking has been associated with metabolic syndrome. The negative associations between metabolic syndrome-related comorbidities and lung cancer risk may also alleviate the potential bias that is not adjusted without smoking data.

Second, even if tuberculosis is associated with lung cancers, more questions could be raised. Does tuberculosis affects some types of lung cancer but not others? Clinically, squamous cell carcinoma (SCC) was found in more than 50% of cases with coexistence of tuberculosis and lung cancers. SCC of lung was also found in mice subjected to chronic infection of mycobacterial tuberculosis. A recent meta-analysis of epidemiological data, however, revealed the association was only significant with adenocarcinoma but not SCC. Without information on lung cancer types, whether tuberculosis is preferentially associated with select types of lung cancer cannot be addressed based on results derived from this study. Finally, there is a remote possibility that a small number of patients with tuberculosis may have the disease before being selected into the cohorts because of receiving no medical care until 1998–2000. It is likely, however, the bias will affect both groups with and without lung cancer. Furthermore, 1584 patients with lung cancer in the nontuberculosis cohort had received 2480 person-times of x-ray examinations, whereas there were 1973 person-times for the 100 patients in the tuberculosis cohort necessary for the treatment progress. It is possible the frequent x-ray examinations may increase the risk of lung cancer as well.

In conclusion, this nationwide population-based cohort study provides evidence supporting the contention that patients with pulmonary tuberculosis carried higher risk of developing lung cancers. COPD and smoking enhanced the risk of lung cancer further in patients with tuberculosis.

ACKNOWLEDGMENTS
Supported by the National Science Council, Executive Yuan, Taiwan (NSC 97–2625-M-039-003), Department of Health Clinical Trial and Research Center of Excellence (DOH99-TD-B-111-004), China Medical University Hospital (Grant IMSI), and Taiwan Department of Health, China Medical University Hospital Cancer Research of Excellence (DOH99-TD-C-111-005).

The authors are grateful to Prof. Chung Y. Hsu for his critical review of this manuscript. The authors’ contribu-
tions: Yu YH, Sung FC, and Chen CY initiated this project; Yu YH, Liao CC, Muo CH, and Sung FC designed the study, analyzed data, and drafted the manuscript; Sung FC and Hsu WH provided conceptual and technical input and assisted in revising the manuscript; Chen HJ and Liao WC conducted literature review and provided background information in relation to the novel findings reported in this manuscript; and Sung FC is the corresponding author.

REFERENCES