
ELSEVIER Theoretical Computer Science 156 (1996) 301-313 

Theoretical 
Computer Science 

Note 

On the ordering of sparse linear systems ’ 

Giovanni Manzini * 

Dipartimento di Scienze e Tecnologie Avanzate, Via Cavour, 84, I-15100 Alessandria, Italy 

Received December 1994; revised June 1995 

Communicated by F. Cucker 

Abstract 

In this paper we consider the algorithms for transforming an n x n sparse matrix A into 
another matrix B such that Gaussian elimination applied to B takes time asymptotically less 
than T?. These algorithms take the sparse matrix A as input, and return a pair of permutation 
matrices P,Q such that B = PAQ has a small bandwidth, or some other desirable form. We 
study the average effectiveness of these algorithms by using random matrices with O(n) nonzero 
elements. We prove that with high probability these algorithms cannot produce a reduction of 
the asymptotic cost of the standard Gaussian elimination algorithm. 

We also study the effectiveness of these algorithms for ordering very sparse matrices. We 
show that there exist matrices with 3n nonzeros for which reordering rows and columns does 
not reduce the asymptotic cost of Gaussian elimination. We also prove that each matrix with at 
most two nonzeros in each row and in each column, can be transformed into a banded matrix 
with bandwidth five. 

1. Introduction 

In this paper we consider the problem of solving the linear system Ax = b, where 
A is an n x n sparse matrix. A classical method for solving this problem is Gaussian 
elimination that basically computes the LU factorization of the coefficient matrix A. 
If A is sparse, Gaussian elimination is usually applied to the matrix PAQ, where P 

and Q are permutation matrices chosen to guarantee numerical stability, and to re- 
duce the computational cost. In fact, during the elimination process, new nonzero 
elements are generated, and the coefficient matrix tends to become less sparse. In- 
troducing the matrices P and Q changes the order in which equations and unknowns 
are numbered. Different orderings yield different sets of new nonzero elements, and 
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also different operation counts for the elimination algorithm. The set of new nonzeros 

generated during the elimination process is called the fill-in. The problem of find- 

ing an ordering that minimizes the fill-in is NP-complete [lo, 121, but many heuristic 

algorithms have been suggested, with the goal of reducing, if not minimizing, the 

fill-in. 

If the matrix A is symmetric and positive definite, then, by taking Q = PT, we have 

the guarantee that no pivoting is needed. For this class of matrices, the performance 

of the ordering algorithms has been extensively studied. Lipton et al. [7] proved that 

there exists a good ordering for A only if the graph associated with A has good sep- 

arators. This result implies that “almost all” sparse symmetric matrices do not have 

good orderings, i.e. for any permutation matrix P, PAPT has fill-in of size @(n’), 

i.e. the Cholesky factor is essentially dense. In the same paper, Lipton et al. proved 

that, if the graph associated with A is planar, the factorization of A can be computed 

in 0(n3/2) time. Their algorithm is a variant of the nested dissection algorithm [3], 

and produces an ordering yielding a fill-in of size O(n log n). Recently, Agrawal et 

al. [l] presented a nested dissection algorithm that finds an ordering yielding a fill-in 

which is within a factor 0(log4 n) of the optimum. Moreover, for the same order- 

ing, the operation count for Gaussian elimination is within a factor O(log6 n) of the 

optimum. 

If the matrix A is not symmetric, fewer results are known on the performance of 

the ordering algorithms. Although the concepts of “separator” and “nested dissection” 

can be extended to the unsymmetric case (see for example [8]), numerical stability has 

to be taken into account, and the “best” ordering depends also on the values of the 

nonzero elements of A. 
The algorithms for reordering an unsymmetric matrix A can be broadly divided into 

two classes. The algorithms of the first class [2,4,5] build the ordering during the 

elimination process. More precisely, at each elimination step, the pivot is chosen so 

that the number of new nonzero elements is small. The algorithms of the second class 

[2,4,9, 1 l] find two permutation matrices P and Q so that PAQ has a small bandwidth, 

or some other desirable form (see Fig. 1). When Gaussian elimination - with partial 

pivoting - is executed, the fill-in may occur only in a small area, and the operation 

count can be much smaller than @(n3) (which is the cost of Gaussian elimination for 

a dense matrix). 

In this paper we analyze the average performance of the algorithms of the second 

class. We introduce four different probability measures on the set of sparse matrices, 

and we estimate the probability that these algorithms allow one to compute sparse 

Gaussian elimination in o(n3) time. We prove that for matrices with more than 100 

nonzero elements such probability is very small. More precisely, for a random ma- 

trix A, we prove that, with high probability, for each pair of permutation matrices 

P, Q, Gaussian elimination applied to PAQ takes 0 (n’) time. This result holds only 

for the standard elimination algorithm, i.e. we do not consider algorithms that take 

advantage of the presence of zero elements within the shaded areas of the matrices of 

Fig. 1. The proof of this result follows from the fact that, with probability 1 - 2-“j2, 
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(4 (f 1 
Fig. 1. Some desirable forms for Gaussian elimination. (a) band form, (b) bordered band form, (c) upper 

triangular bordered band form, (d) lower triangular bordered band form, (e) block diagonal form, (f) bordered 

block diagonal form, (g) upper triangular bordered block diagonal form, (h) lower triangular bordered block 

diagonal form. 

the graph associated with a random sparse matrix has the property of being a weak- 

expander. 

We also study the effectiveness of these algorithms for reordering very sparse ma- 

trices. We prove that each matrix containing at most two nonzeros in each row and 

in each column, can be transformed, in O(n) time, into a banded matrix with band- 

width five. Unfortunately, a similar result does not hold when the number of nonzero 

elements increases. We show that there exist matrices with three nonzeros in each row 

and in each column, for which these ordering algorithms do not produce a reduction 

in the computational cost of Gaussian elimination. This completes a result obtained by 

Gilbert [6] for the symmetric case. He proved that there exists a symmetric positive 

definite matrix A with four nonzeros per row that does not have good orderings, i.e. 

for any permutation matrix P, PAPT has fill-in @(n2). 

Throughout the paper, we use the standard O-notation, i.e. we say f(n) = O(g(n)) 

if f(n)/g(n) is bounded for n -+ oo; we say f(n) = 0 (g(n)) if both f(n)/g(n) and 

g(n)/f(n) are bounded for n -+ 00; we say j(n) = o(g(n)) if limnqm f(n)/g(n) = 0. 

The rest of this paper is organized as follows. In Section 2 we introduce four proba- 

bility measures on the set of sparse matrices, and we prove some properties of random 

matrices. This section is rather technical and the reader can skip the proofs of the lem- 

mas without affecting his/her comprehension of the material presented next. In Section 3 

we analyze the average effectiveness of the ordering algorithms, and in Section 4 we 

study the behavior of ordering algorithms for very sparse matrices. Section 5 contains 

some concluding remarks. 
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2. Preliminaries 

In order to study the average effectiveness of the ordering algorithms, we introduce 
four probability measures on the set of n x n sparse matrices. Each measure represents 
a different type of sparse matrix. Since the behavior of the ordering algorithms does not 
depend on the numerical values, all measures are defined on the set of O-l matrices, 
where 1 represents a generic nonzero. Note that this set contains 2”’ elements. 
1. Let 0 <di <n such that drn is an integer. We denote by J?l the probability mea- 

sure such that Pr {A} # 0 only if the matrix A has exactly din nonzero elements; 

moreover, all (:t) matrices with din nonzeros are equally likely. 
2. Let 0 < dZ <n, p = dz/n. We denote by JZ~ the probability measure such that for 

all i, j Pr {ag # 0) = p. Hence, we have Pr {A} = $(l - pfmk, where k is the 
number of nonzero elements of A. 

3. Let dj be an integer s.t. O<ds <n. We denote by M3 the probability measure 
such that Pr {A} # 0 only if each row of A contains exactly d3 nonzero elements; 
moreover, all (J,)” matrices with d3 nonzeros per row are equally likely. 

4. Let ds be an integer s.t. 0 <dg <n. We denote by &Zd the probability measure such 
that Pr {A} # 0 only if each column of A contains exactly dq nonzero elements; 
moreover, all (id)” matrices with dq nonzeros per column are equally likely. 
In the following, the expression “random matrix” will denote a matrix chosen ac- 

cording to one of the probability measures .&-&4. 
Let X = {xl , . . . ,xn}, and Y = {yi,. . . , y,}. Given an n x n matrix A, we consider the 

formal product y = Ax, and we associate with the matrix A a directed bipartite graph 
G(A), called the dependency graph. The vertex set of G(A) is X U Y and (xi, yj) is 
an edge of G(A) if and only if aj; # 0. In other words, the vertices of G(A) represent 
the components of x and y, and the edge (xi, yj) E G(A) if and only if the value yj 
depends on xi. Given U CX, we define Adj (U) = {y E Y Iy is adjacent to x E U}. 

Let 1 < /? < 2. We say that the graph G(A) is a /?-weak-expander if, for each set 
U c X, the following property holds: 

IUI = 1421 --r. lAdj(U) I > BlV 

The notion of weak-expander is similar to the well known notion of expander graph 
(we remind that a graph is an (a, /3, n)-expander if IUJ <na implies IAdj (U) ) > /?[Ul). 

Given a random matrix A we want to estimate the probability that the graph G(A) is 
a B-weak-expander. In this section we prove that, for the measures JZl-Md previously 
defined, such probability is very close to one. 

We will make use of some well known inequalities. For n 2 1, we have 

&(n/e)” < n! < &(n/e)“e’1’2, (1) 

which is a sharp form of Stirling’s formula. For 0 <k 6 n, we have 

(;> < (gk, (2) 
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and, for any real number x 2 1, we have 

( ) 
x 

l-! <e-l. 
X 

(3) 

Lemma 2.1. Let N,Z,m be positive integers such that Z + m <N. Then 

(“m”) . (g-L (1- FJz. 

Proof. We have 

= (N-m)(N-m-l)...(N-m-Z+l) 

N(N - l)...(N -Z+ 1) 

1-m 
N-l 

l- m 
N-Z+1 

Lemma 2.2. Let 1 <i<4, and let A be a random matrix chosen accordingly to the 

probability measure JXi. If U s X, V c Y, then 

Pr{Adj(U)nV=0}< (4) 

Proof. Let Q = {aii 1 Xi E U,yj E V}. We have IQ1 = IUI IF’1 and Adj(U)n V = 0 if 

and only if aji = 0 for all aji E Q. For the probability measure &‘I, using Lemma 2.1, 

we have 

Pr{Adj(U)nV=Q)}= ~2;;Ql)(;,;)-1< (1- !y 

For the probability measure ./t2 we have trivially 

Pr{Adj(U)nV=0}= 

For the probability measure .,#Ts we have Adj (U) n V = 0 only if the I VI rows corre- 

sponding to V do not contain nonzeros in the ) UJ columns corresponding to U. Using 

Lemma 2.1 we have 

Pr{Adj(U)rl V = 0) = [(“--l”)(;)‘]‘v’< (I-!3)‘u”v’ 
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An analogous reasoning yields for the probability measure &!d 

Pr{Adj(U)nV=0}= [(“;i’l)(l)-‘]‘U’< (l_$)‘““V’. q 

Lemma 2.3. Zf n > l,n>d, then 

Proof. If 1 - d/n < e-’ , then 

ln/*J < e-(n--lY* ge’l*-dJ*. 

If 1 - d/n 2 e-l, using (3) we have 

Lemma 2.4. Let U C X, 1 lJ[ = [n/2], and assume that (4) holds. Zf 

1 di~2[~+logy+y(log2+3)], - 
y = 1 - /3/2 ’ (5) 

Pr{IAdj(U)I</IIUI} < (2eli2)-“. 

Proof. First note that 

Pr {JAdj (V 1 GPlW = Pr {I.Wj (W I G LBJUIJ}. 

We have that /Adj (U,> I d [/?/U/j only if there exists a set q C Y, with 1 Pi = PI- I/3/~/j, 

such that Adj (U) n V = 0. Since there are (n_L&o,,) sets V of size n - IpI UlJ, if (4) 
holds then 

Pr{I.W(WldSlUI~ < (. _ ;piu,,) (1 _ ,)‘“‘(n-‘~‘u’J). 

From (2), using Lemma 2.3, we have 

n LBIUIJ < [ye3J*-dzJ*] - . 
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From (5) it follows that 

ye 
W-d,/2 < (2e’/2)-Y < 1, 

hence 

Pr {(Adj(U) 1 </?lU(} < (2e”2)-“(1--P/2)y 

= (2eli2)-“. 0 

Lemma 2.5. Let A be an n x n random matrix for which (4) holds. Ifdi satisjies (5), 

then the graph G(A) is a /l-weak-expander with probability greater than 1 - (a)-“. 

Proof. The graph G(A) is not a /I-weak-expander only if there exists a set U CX 

with IU( = Ln/2J such that IAdj (U) 1 <plU(. The probability that a set of size [n/2] 

is connected to less than fi[n/2] ve ices is given by Lemma 2.4. Since there are ( ,ny2,) rt’ 

such sets, we have 

Pr {G(A) is not a /&weak-expander} < 

+ ( > 
147.l 

(2eli2) -* . 

Let f(t) = (m/t)*, since f’(t) > 0 for m/t > e, we have 

Pr {G(A) is not a /?-weak-expander} < (2e)“” (2e’12) P-n 

= (fi)-n. 

This completes the proof. q 

From Lemmas 2.2 and 2.5 we obtain the main results of this section. 

Theorem 2.6. Let A be a matrix chosen at random from distribution Jli i = 1,. . . ,4. 

If di satisfies (5), then the graph G(A) is a P-weak-expander with probability greater 

than 1 - (&)-fl. 

For example, for /I = 16/15 inequality (5) becomes diB9.63.. . . If this condition 

is met, G(A) is a 16/15-weak-expander with probability greater than 1 - (a)-“. 

Similarly, if di 2 11.32 . . . G(A) is a 5/4-weak-expander with very high probability. 

If G(A) is a /?-weak-expander, given U LX such that IUI = \n/2J, there are more 

than BlUl values yj’s that depend on the values xi E U. It is interesting to note that, 

if G(AT) is a fl-weak-expander, given V C Y 1 VI = Ln/2J the values Yi E V depend 

on more than /Ilk’1 values xi’s. The following theorem gives a lower bound to the 

probability that both these properties hold. 
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Theorem 2.7. Let A be a matrix chosen at random from distribution ./Hi i = 1,. . . ,4. 

If di satisfies (5), then the probability that both G(A) and G(AT) are b-weak- 

expanders is greater than 1 - 2(d)-“. 

Proof. It is straightforward to verify that Lemma 2.2 holds also for the matrix AT. By 
Lemma 2.5, we know that G(AT) is a /?-weak-expander with probability greater than 
1 - (&)-‘. The theorem follows from elementary properties of probability measures. 

0 

The following result justifies the use of weak-expanders in the study of ordering 
algorithms. 

Theorem 2.8. Let A be an n x n matrix, and let P,Q be permutation matrices. Then 

G(A) is a fi-weak-expander e G(PAQ) is a /l-weak-expander. 

Proof. The proof is straightforward since the graphs G(A) and G(PAQ) are isomorphic, 
i.e. they differ only in the labeling of the vertices. 0 

3. The average effectiveness of ordering algorithms 

In this section we analyze the average effectiveness of the ordering algorithms de- 
scribed in Section 1. These algorithms take a sparse matrix A as input, and return a 
pair of permutation matrices P, Q such that PAQ has one of the forms shown in Fig. 1. 
When Gaussian elimination - with partial pivoting - is applied to PAQ, we have the 
following well known behaviors. 

If PAQ is in band or bordered band form, during Gaussian elimination the size of 
the band at most doubles. If the bands have size O(m), then Gaussian elimination 
takes @(n&r) time. 
If PAQ is in block or bordered block form, the fill-in occurs only within the shaded 
area. If bands and blocks have size O(m), then Gaussian elimination takes O(m*n) 

time. 
If PAQ is in upper or lower triangular bordered band (or bordered block) form, 
the fill-in occurs only within the shaded area. If bands and blocks have size O(m), 
then Gaussian elimination takes 8 (mn* ) time. 
These results hold for the standard elimination algorithm that does not take advantage 

of the presence of zero elements within the shaded regions of the matrices of Fig. 1. 
In this section we prove that, with high probability, reordering rows and cohmms does 
not allow one to execute Gaussian elimination in o(n3) time. We consider only the 
algorithms for transforming a matrix into upper or lower triangular bordered band form, 
since all other special forms are clearly more difficult to achieve. 

We say that an n x n matrix A is in upper triangular (d,b)-bordered band form, 
if au # 0 implies i < j + d or i > n - b. We say that A is in lower triangular 
(d, b)-bordered band form, if AT is in upper triangular (d, b)-bordered band form. 
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Lemma 3.1. Let A be a matrix such that G(A) is a P-weak-expander. Suppose that 
there exist two permutation matrices P,Q such that B = PAQ is in upper triangular 

(d, b)-bordered band form. Then d + b > 1 + (fi - 1) Ln/2]. 

Proof. Let k = [n/2] and consider the set U c G(B), U = { 1,2,. . , k}. By Theo- 

rem 2.8, we know that G(B) is a P-weak-expander, hence /Adj (U) 1 > j?[n/2J. 
Since B is in upper triangular (d, b)-bordered band form we have 

Adj(U)={1,2 ,..., k}U{k+l,k+2 ,..., k+d-l}U{n-b+l,n-bf2 ,..., n}, 

hence lAdj(U) 1 <k + d + b - 1. It follows that in/21 + d + b - 1 > B[n/2], that 

implies d + b > 1 + (/I - 1) [n/21. 0 

Suppose for example that G(A) is a 5/4-weak-expander. Then, if B = PAQ is in 

upper triangular (d, b)-bordered band form, b + d > 1 + a 15 J E f. In other words, 

even if we try all (n!)2 pairs of permutation matrices it is not possible to reduce b + d 

below this threshold. 

Lemma 3.2. Let A be a matrix such that G(AT) is a j&weak-expander. Suppose that 
there exist two permutation matrices P,Q such that B = PAQ is in lower triangular 

(d, b)-bordered band form. Then d + b > 1 + (/I - l)ln/2J. 

Proof. We have that BT = QTATPT is in upper triangular (d, b)-bordered band form. 

The thesis follows from Lemma 3.1. Cl 

From Lemmas 3.1, 3.2, and Theorem 2.7 we have the following result. 

Theorem 3.3. Let A be a matrix chosen at random from distribution Ai i = 1,. . . ,4, 

and assume that di satisfies (5). The probability that there exists a pair of permuta- 

tion matrices P,Q such that PAQ is in lower or upper triangular (d, b)-bordered band 

form with b+d<l +(j& l)[n/2J, is less than 2’-“12. In particular, tf d, > 9.63 . 

we have d i- b > n/30 with probability greater than 1 - 2’-“12. 

This theorem implies that any ordering algorithm will leave most of the matrices 

with M 10n nonzero elements in (d, b)-bordered band form with b + d = O(n). Since 

b + d = 0 (n) implies that Gaussian elimination takes 0(n3) time, we have that the 

asymptotic cost of the elimination algorithm cannot be reduced by reordering the rows 

and columns of the coefficient matrix. 

4. Ordering matrices with at most two or three nonzeros per row 

By Theorem 3.3 we know that, with high probability, we cannot transform a matrix 

with more than 10n nonzeros into (d, b)-bordered band form with b + d = o(n). In 
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Fig. 2. The four possible types of connected components of G(A). (a) Balanced chain, (b) X-chain, (c) 

Y-chain, (d) ring. 

this section we study the effectiveness of the ordering algorithms for matices with 2n 
and 3n nonzero elements. 

We need a preliminary lemma. 

Lemma 4.1. For any integer m 3 1 there exists a one-to-one function fm : { 1,. . . ,m} 

--f {l,..., m} such that, for i = 1 ,...,m-4 Ifm(i+l)-fm(i)l<2 and IfJm)-fm(l)l 
= 1. 

Proof. Take fm(i) = 2i - 1 for id [m/21, and fm(i) = 2m - 2i +2 for i > [m/21. 0 

Theorem 4.2. Let A be a matrix in which each row and each column contains at 

most two nonzero elements. Then, there exists a pair of permutation matrices P,Q 
such that B = PAQ is a banded matrix with bandwidth five (i.e. b;j = 0 if Ii- jl > 2). 
Moreover, the matrices P and Q can be computed in O(n) time. 

Proof. Clearly, it suffices to prove that there exist two permutations r,o such that 

aji # 0 implies [r(j) - o(i)1 <2. Since there is a one-to-one correspondence between 

nonzeros of A and edges of G(A), this is equivalent to proving that (Xi, yj) E G(A) 
implies [r(j) - a(i)/ <2. 

We consider the connected components of G(A). Since each vertex has degree at 

most two, there are only four possible types of connected components (see Fig. 2). 

1. The balanced chain, which is composed of an even number of vertices. 

2. The X-chain, which is composed of an odd number of vertices; the first and the 

last vertex both belong to X. 

3. The Y-chain, which is composed of an odd number of vertices; the first and the last 

vertex both belong to Y. Note that the number of Y-chains is equal to the number 

of X-chains. 

4. The ring, in which each vertex has degree two. 

Note that, by inserting a dummy edge, an X-chain and a Y-chain can be linked to- 

gether to form a balanced chain. This allows us to consider only two types of connected 

components: rings and balanced chains. 
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Let Y = (Xilr.Yj,tXi2,Yjlt- . . ,xi,, yi,) a balanced chain of size 2m, and let z<n - m. 

By taking o(ik ) = z + k, and r( jk ) = z + k all nonzeros of y are moved into an m x m 
diagonal block. Moreover, (Xi, yj) E y implies lr( j) - a(i)1 < 1. 

Similarly, if y’ = (Xi,, yj, ,Xi2, yj,, . . , Xi,, JJi,) is a ring of size 2m, by taking o(ik ) = 

z’ + fm(k), and r( jk) = z’ + fm(k) all nonzeros of y’ are moved into a diagonal block, 

and (xl,yj) E y’ implies lr( j) - o(i)1 ~2. 

In other words, by permuting rows and columns of A, the nonzeros of each con- 

nected component can be moved into a diagonal block of bandwidth at most five. By 

combining these permutations the whole matrix A can be transformed into a block 

diagonal matrix of bandwidth at most five. 

It is straightforward to verify that the connected components of G(A), and the per- 

mutations r, 0 can be determined in O(n) time. Cl 

From Theorem 4.2, we do not obtain a new result on the complexity of Gaussian 

elimination. In fact, it is already known that the factorization of a matrix with two 

nonzeros in each column takes O(n) time. However, Theorem 4.2 shows that, when 

the number of nonzeros is small, it is possible to significantly reduce the bandwidth of 

the matrix. Unfortunately, this is no longer true when the number of nonzero elements 

increases. The following theorem establishes that there exist matrices with 3n non- 

zeros for which reordering rows and columns does not allow us to execute Gaussian 

elimination in o(n3) time. 

Theorem 4.3. For all n>5, there exists an n x ): matrix 2 such that 

1. each row and each column of A” contains at most three nonzero elements, 

2. for all pair of permutation matrices P, Q, if PA”Q is in lower or upper triangular 
(d, b)-bordered band form, then b + d > n/16. 

Proof. Let n denote the set of the n x n permutation matrices. We consider the set 

93 of the matrices of the form nt + 7~2 + 7~3, where rrt, 712,~s E 17. Clearly 93 contains 

(n!)3 matrices, although some of them are equal, and some of them have the same 

nonzero pattern. 

We prove that 93 contains at least one matrix A” such that both G(J) and G(jT) 

are 9/8-weak-expanders. This result, together with Lemmas 3.1 and 3.2, will prove the 

theorem. 

In order to prove that .Ps contains at least one 9/8-weak-expander, we count the 

number of matrices in 9s that are not 9/S-weak-expanders, and we show that they 

are less than (n!)3. We start by observing that given a set U of size m, the number 

of matrices B E 9’3 such that IAdj, (U) ( < fllU\ is at most 

(,&) [(‘E’)@--I!-!]‘, 
since for each set I’ of size LfirnJ there are (lB,“l) (n - m)!m! matrices rt E ZZ such that 

Adj,(U)c V. 
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Let m = [n/2J, and /I be such that /Irn = 19m/8]. The number W(n) of matrices in 

93 that are not 9/8-weak-expanders, is at most 

W(n)< (;)(;m) [(Bmm>(n-mYm!]3 
= (n!)3 

[(n - m)! (Pm)!]2 
n! m! (n - pm)! [(pm - m)!]3’ 

For 5 <n < 3 1, a direct calculation shows that W(n) < (~!)~/10. For n > 32, we bound 

W(n) using Stirling’s formula. If n is even, we have n = 2m, hence 

m! [@I)!]~ 
W(n)'(n!)3(2m)!(2m-~m)![(j?m -m)!13' 

(6) 

If n is odd, we have n = 2m+ 1, and 

[(m + l)! (fim)!12 

w(n' ' (n!'3 m!(2m + l)! (2m - /3m + l)![#m - m)!13 

(m+ 1)2 m![(fim)!12 

= (n!)3(2m + 1)(2m - j?m + 1) (2m)! (2m - /?m)![(fim - m)!13 

' ("!)j(2m)!(2m 

m! [(/lm)!12 

- j?m)![(jm - m)!13' 

where the last inequality holds because (m + 1 )2 < (2m + 1)(2m - pm + 1) for p < 9/8 

and ma 1. It follows that (6) holds for all n. By using (1) we obtain 

W(n) < (n!)3 
e”4/l ( P 28 

) 
m 

27cmd2(2 - /?)(/? - 1)3 4(2 - p)W(fi - 1)X8-1) . 

Since 918 - l/m G/I d 918, and m > 16, we have 

e’14/? 

e1/4 9 

0 

27tmJ2(2 -/3)(/l - 1)3 
‘32rc/& < ” 

hence 

( B 28 

> 

m 

W(n) < (nl)3 4(2 _ fi)2--Q _ 1)3(/I-l) ’ 

The function f(t) = t2’/(2 - t)2-r(t - 1)3’-3 increases for 1 < t < 3/2, hence f(/?) < 

f(9/8) < 16/5. It follows that 

W(n) < (n!)3 (i)" < (n!)3 ($'" < $. 

This computation can be repeated verbatim to show that the same bound holds also 

for the number W'(n) of matrices B E 9s such that G(BT) is not a 9/8-weak-expander. 
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Since W(n) + W’(n) < (n! )3, we have proved that 9s contains a matrix 2 such that 

both G(j) and G(AT) are 9/8-weak-expanders. By Lemmas 3.1 and 3.2, 2 cannot be 

transformed into upper or lower triangular (d, b)-bordered band form with b +d f 416. 

0 

As a consequence of the preceding analysis, we have that, for n 2 32, if A is chosen 

randomly in 9~3 the probability that both G(A) and G(AT) are 9/8-weak-expanders is 

greater than 1 - 2 (:) ‘n’2’. For this reason, we conjecture that a result analogous to 

Theorem 3.3 holds for di 23, i.e. for matrices with M 3n nonzero elements. 

5. Conclusions 

In this paper we have considered a class of ordering algorithms designed for reducing 

the computational cost of sparse Gaussian elimination. In particular, we have analyzed 

the probability that such algorithms allow us to compute the factorization of an n x n 

sparse matrix in o(n3) time. We have shown that for the matrices with more than 10n 

nonzeros, such probability is less than 2’-“12. 

We conjecture that, when the number of nonzero elements is greater than 3n, the 

probability of computing Gaussian elimination in o (n3) time is 22’“. 

Our next step is to study the average effectiveness of the algorithms that reorder rows 

and columns during Gaussian elimination. We also plan to extend our 

analysis to random Toeplitz matrices. 
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