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In this article, we present a new numerical method to solve the integro-differential equa-
tions (IDEs). The proposed method uses the Legendre cardinal functions to express the approxi-
mate solution as a finite series. In our method the operational matrix of derivatives is used to
reduce IDEs to a system of algebraic equations. To demonstrate the validity and applicability of
the proposed method, we present some numerical examples. We compare the obtained numerical

results from the proposed method with some other methods. The results show that the proposed
algorithm is of high accuracy, more simple and effective.
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1. Introduction

The integro-differential equation is an equation that involves
both integrals and derivatives of an unknown function.
Mathematical modeling of real-life problems usually results
in functional equations, like ordinary or partial differential
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equations, integral and integro-differential equations and
stochastic equations. Many mathematical formulations of
physical phenomena contain integro-differential equations,
these equations arise in many fields like fluid dynamics, biolog-
ical models and chemical kinetics [1].

Legendre polynomials occur in the solution of Laplace
equation of the potential, V2®(x) = 0, in a charge-free region
of space, using the method of separation of variables, where
the boundary conditions have axial symmetry, the solution
for the potential will be
d(r,0) = Z (A + Bir~ "V Py(cos 0),

1=0

A; and B, are to be determined according to the boundary
conditions of each problem. They also appear when solving
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Schrédinger equation in three dimensions for a central force.
In recent years, there has been a growing interest in IDEs
which are combination of differential and Fredholm—Volterra
integral equations. This is an important branch of modern
mathematics and arise frequently in many applied areas which
include engineering, mechanics, physics, chemistry, astron-
omy, biology, economics, potential theory, electrostatics, etc.
[2-6]. The mentioned IDEs are usually difficult to solve analyt-
ically, so approximate and numerical methods are required
[7-13]. The concept of IDEs has motivated a huge size of re-
search work in recent years. Several numerical methods were
used, such as the successive approximations [14], homotopy
perturbation method [15,16], Chebyshev and Taylor colloca-
tion [17,18], Haar function methods [19], variational iteration
method [20-24], etc., [25-30]. Moreover, the following meth-
ods for IDEs have been presented the Monte Carlo method
by Farnoosh and Ebrahimi [31] and the direct method based
on Fourier and block-pulse functions by Asady et al. [32].

In this paper, by means of the matrix relations between the
Legendre cardinal functions and their derivatives, the above
mentioned methods are modified and developed for solving
the mth order linear and non-linear integro-differential
equations with variable coefficients

S () =Ax) + 1y )+ [ et

k=0
+ ()0 (y(1))ldr,

under the mixed-boundary conditions

—1<xt<1, (1)

m—1

D (awy® (= 1) +buy® (1) + ey ™ (e) = Aiy i=0,1,...,m—1, ()
k=0
where ay., by, cix and A; are suitable constants; —1 < ¢ < 1.
The organization of this paper is as follows. In the next
section, the definition of Legendre cardinal functions is intro-
duced, in Section 3, the procedure of the numerical solution of
the proposed problem is given, in Section 4, two numerical
examples are introduced, in the last Section 5, conclusions
and discussion are presented.

2. Legendre cardinal functions

In this section, to construct the so called Legendre cardinal
functions for the set of orthogonal Legendre polynomials
{P;(x)}=y, we will use the Taylor expansion of Py, (x) in
neighborhood the jth root of Py, (x), which gives

Pyi1(x) = Prii (X)) + Pusie(x — X5) + O(x — x;)%,

from this relation, since the first term in the right hand side
vanishes, then we can define the cardinal function of degree
N in [—1,1] as follows [33]

Py (x)

R e NCACEETR

3)

where the subscript x denotes x-differentiation and Xx;

(j=1,2,...,N+1) are the zeros of Py,(x). Now any func-
tion f(x) on [—1,1] can be approximated as follows

N+1
flx) = E f(x))Ci(x) = FTdp(x), (4)

J=1

where
F=[f(x1),f(x2),....f(xys1)]", and
Dy (x) = [C1(x), Co(x), ..., Cyn ()] (5)

Note that, we can use the expansion of the form (4) on any
interle [a,b] if we wuse the change of variable
1="9(x4+1)+a. For more detail about these functions
and 1ts properties see [27,34].

The first derivative of vector @y(x) in Eq. (5) can be ex-
pressed into the matrix form

@y(x) = Dy (x), (6)

where D'V is (N + 1) x (N + 1) operational matrix of deriva-
tive for Legendre cardinal functions. The matrix D can be
obtained by the following process.

Let #(x) = [C,(x). G4(x). ... Cypy ()]
any function Cj(x) can be approximated as

. Using Eq. (4),

N+1
= ;C}(Xk)ck(X), (7)
comparing Eqs. (6) and (7) we get
C(x1) Ci(xn1)
N L (8)
Clyp (x1) Clys (xn41)

By the same procedure we can write the nth derivative of vec-
tor @y (x) in the following matrix form
) o o)
&Y (x)=D" dy(x) where D™ = : : 9
C(‘z)

v (1) Cf\,"ll(xNH)

3. Procedure of the numerical solution

In this section, we are going to construct the fundamental ma-
trix equation corresponding to Eq. (1). We use Eq. (4) to
approximate the function y(x) as

y(x) = Y dy(x), (10)

where Y is (N + 1) unknown vector as ¥ = [y, ¥, ..., Vxu] "
and should be found. Now using Egs. (9) and (10) we can write

¥ (x) = YT, (x) = YDV dy(x), (11)
V'(x) = YIDO @, (x) = YIDP dy(x), (12)
and

Y (x) = YIDW by (x). (13)

Using Eqgs. (10)—(13) in Eq. (1) we get
S () Y DYy (x) =Ax) + ¥ by () / ¢ Y @)
k=0

+h()O (Y ®y(1))]dt (14)
Collocation of Eq. (14) at some points 7;(j = 1,2,... ,N —m+ 1)
in the interval [—1, 1] gives

—fly) =Y dy(1))

m

Zpk(f/) Y'DWaoy(y)

k=0

- /Tf[g(t) YT ®y(1) + h(1)O(YT &y (1))]dt = 0. (15)
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We approximate the integral term in Eq. (15) using Newton—
Cotes integration rule as

M

/j [g() YT DN (1) + h(1)O(YT D (1))]dt = ZW,AQ(Z‘,,% (16)

with
Q1) = g() Y @y (1) + h(1)O(Y @y (1)), (17)

where w, and ¢, r =0,1,..., M are the weights and nodes of
Newton—Cotes integration technique, respectively. Substitut-
ing Eq. (16) in Eq. (15) we have the following equations

m M

Y (1) Y DO dy(1)) — flg) =y Y ®u(r)) = Y w,Q(1,) =0,
k=0 r=0

j=12,....N—m+1. (18)

We can obtain the corresponding matrix forms for the con-
ditions (2) as
—1
(aw + b + C,-/c)(D(k)) Y =1,
0

3

i=0,1,...,m— 1. (19)

=
Il

Egs. (18) together with Egs. (19) give a system of N + 1 linear
or non-linear algebraic equations, which can be solved for
Vi, k=1,2,...,N+1, so the unknown function y(x) can be
found using a suitable numerical method.

4. Numerical examples

In this section, to achieve the validity, the accuracy and sup-
port our theoretical discussion in this paper of the proposed
method, we give some computational results of numerical
examples.

Example 1. Consider Eq. (1) with the following functions and
coefficients

p:(x)=0,(i=0,1,2,3), ps(x)=1, fix)=x+(x+3)e", y=1,

h(x) =0, O(y)=y(x),

subject to the boundary conditions
y(=)=1=e', y'(=)=e", y(1)=1+e, y'(1)=3¢, (20)
i.e., Eq. (1) takes the form

gx) =—1,

X

y(i\‘)(x) :f(x) —|—y(X) _/ y([)dlu

-1

-l <x<. (21)

We apply the suggested method with N = 6, and approxi-
mate the solution y(x) as follows

yo(x) = Z:y,-C,-(x) = Y/ ®(x). (22)

Using Eq. (15) we have

YT DO (1) — f(x) — YTby(z,) — /

j=1,2,3. (23)

T,

' Y d(1)dt = 0,
1

We approximate the integral term in Eq. (23) using Newton—
Cotes integration rule as the formula (16) we have

M
YD dg(1)) —f(x) = Y dg(ty) = > w,Q(1,) =0, j=12,3, (24)
r=0

where Q(f) = Y7 ®(t), also, the matrix equations of the mixed-
boundary conditions are

Yo(—1)=1-e¢"', Y1) =1+e, (25)
Y'DPo(~1)=e', Y DPds(1) = 3e. (26)

Egs. (24)—-(26) represent linear system of algebraic equations.
By solving it we obtain

y, = 1.0209, y, = 3.4532,
ys=0.6581, y, = 1.6236,

5 = 0.6350,
y, = 0.7496.

y, = 2.5631,

(27)

Therefore, the approximate solution of this example can be
obtained using (22) as

$(x) 2 1.021C (x) +3.453C5(x) +0.635C5 (x) +2.563C4 (x)
+0.658Cs(x) + 1.624C5(x) +0.750C7(x). (28)

Now, we compare the approximate solution using the pro-
posed method with the well-known approximate variational
iteration method (VIM) as follows.

VIM gives the possibility to write the solution of Eq. (21)
with the aid of the correction functionals

B0 =10+ [ 60 {yf:'” -5+ [

-1

f,,(s)ds] dv, n=0, (29)

where A is a general Lagrange multiplier. Making the above
correction functional stationary

831 (x) =07, (x) / A1) [y () —fle) — 5(a)

[ 51| e, + (31007 o,

1
+1(2)dy, = A"y, + / [ @y, |d=0, (30)
’ 0

where dy, is considered as a restricted variation, i.e., 6y, =0,
yields the following stationary conditions (by comparison the
two sides in the above equation)

@) =0, A0 = (@) =2 (@) =0,
1-2"(1)],_, = 0. (31)
The equations in (31) are called Lagrange—Euler equation and

the natural boundary conditions, respectively, the Lagrange
multiplier can be obtained by solving this equation as follows

A7) :%(T —x).

Now, by substituting from (32) in (29), the following varia-
tional iteration formula can be obtained [20]

Pual) (9 + [ 550 [0 = 0 () = 1 (0)

(32)

[ G —y,,<s>>ds} b s 0. (33)

We start with initial approximation y,(x) = ax® + bx* 4 cx
+d, for some constants a, b, ¢ and d which will determine later,
and by using the above iteration formula (33), we can directly
obtain the components of the solution. Now, the first two
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approximations of the solution y(x) of Eq. (21) by using (33)
are

Vo(x) = ax® + bx* + ex + d,

11(x) = yo(x) + (1/6)(6 — 3x% — 2x" + €*(—6 + 6x)
—0.0009ax* + x7(0.0072a — 0.0024b) + x°(0.01667h
—0.00833¢) + x*(0.1840 + 0.0625a — 0.08333h
+0.1250¢) + x°(0.05 4 0.05¢ — 0.05d)).

Now, to find the constants a, b, ¢, and d we impose the bound-
ary conditions (20) on the n-term approximation y;(x), we
obtain

a=0.5001107, b=0.995759,

The exact solution of this problem is y(x) = 1 + xe*.

The behavior of the numerical solutions using the proposed
cardinal function method, with N =6, compared with the
approximate solution using VIM, yyy, With three components
(n = 3) are presented in Fig. 1. Also, in Table 1 to show the
effect of the numbers of terms of the series (22), N, we intro-
duced the absolute error of our approximate solution with dif-
ferent values of N =3,5,7 at some values of x. From this
figure, it is clear that the proposed method can be considered
as an efficient method.

Example 2. Consider Eq. (1) with the following functions and
coefficients

pi(x) =0(1=0,1,2,3), py(x)=1, flx)=e",

7=0, gx)=0, h(x)=e", O()=y*(x),
subject to the boundary conditions
=l =el, Y(=D=el, yl)=e Y(l)=e  (34)

i.e., Eq. (1) takes the form
Y (x) =e! +/ ey (dt, —-1<x<l. (35)
-1

We apply the suggested method with N = 6, and approximate
the solution y(x) as follows

4 : T T T T T T T T
Exact solution
+  Approximate solution
350 % vIM salution
3 L
251
=
==
2 -
15} A .
1 - .
4
05 1 1 1 1 1 1 1 1 1
-1 08 L6 04 02 0 02 04 06 08 1
X
Fig. 1  The behavior of the approximate solution and the exact

solution at N = 6 and comparison with the solution using VIM.

c=0.999917, d=1.0031507.

Table 1 The absolute error of the numerical solution with
different values of N = 3,5,7.

X Erry—s Erry—s Erry—q

—1.0 0.25781e—03 0.74215e—05 0.36341e—07
—0.6 0.75850e—03 0.36987¢—05 0.45447¢—07
-0.2 0.26897e—03 0.21587¢—05 0.25874e—07
0.2 0.97542e—03 0.12354e—05 0.21578¢—07
0.6 0.67894e—03 0.21589¢—05 0.25478e—07
1 0.25988e—03 0.36981e—05 0.32548e—07

el Zy, = Y o(x). (36)

Using Eq. (15) we have

7
—e! f/ e
—1

We approximate the integral term in Eq. (37) using New-
ton—Cotes integration rule as the formula (16) we have

Zw =0,

with Q(r) = e”(YTsD(,(t))z, also, the matrix equations of the
mixed-boundary conditions are

Yidg(~1)=e, Yo5(1) =e, (39)
Y DOdg(~1)=e' YDP (1) =e. (40)

YD g (x,) (YT@4(1)) dt=0, j=1,2,3.  (37)

Y'DW &4 (1 j=1,2,3, (38)

Eqgs. (38)-(40) represent non-linear system of algebraic equa-
tions. By solving it we obtain
y, =1.0044, p, =2.5837,
ys =0.4785, y, =1.5039,

¥, = 0.3875,
y, = 0.6703.

y, = 2.1007,

(41)

Therefore, the approximate solution of this example can be ob-
tained using (36) as

y(x) 2 1.004C) (x) +2.584C5 (x) +0.388C5(x)
+2.102C4(x) +0.479Cs(x) +1.504C4 (x) +0.670C (x). (42)

Now, we compare the approximate solution using the
proposed method with the well-known VIM as follows.

VIM gives the possibility to write the solution of Eq. (35)
with the aid of the correction functionals

na@ =3+ [0 [ e

By the same procedure in the previous example, the
Lagrange multiplier is

Ar) =5 (= x). (44)

Now, by substituting from (44) in (43), the following varia-
tional iteration formula can be obtained [20]

[ gt [ et

—2(s ))ds} dr, n=0. (45)

Y)7:;(5)ds] dr, n>0, (43)

yn+] yn
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We start with initial approximation y,(x) = ax® + bx* + cx + d,
for some constants a, b, ¢, and d which will determine later, and
by using the above iteration formula (45), we can directly obtain
the approximations of the solution.

Now, the first two approximations of the solution y(x) of
Eq. (35) by using (45) are

Vo(x) = ax® + bx* + cx + d,

P1(x) = yo(x) + (1/6)(0.091x* +0.081a*x* 4 0.0001a*x!"!
—0.00006a%x'? 4 0.000024°x"> — 0.186abx*
+ 0.0004abx" — 0.0003abx"" + 0.00006abx"
+0.10956%x* 4 0.0004a%x° — 0.00035%x'°
+0.000055*x" 4+ 0.2190acx* + 0.0008acx’
— 0.0004acx' + 0.0002acx'! + 0.0018bcx®
—0.0008bhcx’ + 0.0002b¢x'® +0.17083¢3x*
—0.2667bcx* +0.0024¢%x" — 0.0009¢° x®
—0.00079adx’ 4 0.00019adx"" + 0.3417hdx*
—0.0008adx’ + 0.0002adx'® + 0.3417bdx*
+ 40.0002%x° — 0.26667adx* + 0.0018adx*
+ 0.0048hdx" — 0.0018hdx" + 0.0004bdx’
—0.4793cdx* +0.01667cdx® — 0.0048cdx’
+0.0009¢dx® + 0.41667dx* + 0.054° x> — 0.00834°x°
+0.0013d*x7).

Now, to find the constants a, b, ¢ and d we impose the bound-
ary conditions (34) on the n-term approximation y,;(x), we
obtain

a=0.166461, b =0.50217, c¢=1.00021, d=0.998347.
The exact solution of this problem is y(x) = ¢".

The behavior of the numerical solutions using the proposed
cardinal function method, with N =6, compared with the

approximate solution using VIM, yy, with three components

3 T T T T T
Exact solution
+  Approximate solution L
254 ¢ VIM solution 4

(%)

Fig. 2 The behavior of the approximate solution and the exact
solution at N = 6 and comparison with the solution using VIM.

(n = 3) are presented in Fig. 2. From this figure, it is clear that
the proposed method can be considered as an efficient method.

5. Conclusions and discussion

In this paper, we presented a new highly accurate approximate
method for solving the integro-differential equations. In the
proposed method we used the cardinal functions with Legen-
dre pseudo-spectral method. Comparison of our obtained re-
sults using the proposed method with that obtained by other
methods reveals that the presented method is very effective
and convenient. The numerical results show that the accuracy
improves by increasing N, the number of terms of the series
(36). Tables and figures indicate that as N increases the errors
decrease more rapidly; hence for better results, using number
N is recommended. Also, from the comparison we can con-
clude that the approximate solution is in excellent agreement
with the exact solution. All computations are performed by
Matlab 7.1.
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