

Available online at www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics 29 (2008) 568-580

www.elsevier.com/locate/ejc

Euler–Mahonian triple set-valued statistics on permutations

Guo-Niu Han

Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, PR China I.R.M.A. UMR 7501, Université Louis Pasteur et CNRS, 7 rue René-Descartes, F-67084 Strasbourg, France

> Received 9 May 2007; accepted 21 May 2007 Available online 16 June 2007

Abstract

The inversion number and the major index are equidistributed on the symmetric group. This is a classical result, first proved by MacMahon [P.A. MacMahon, Combinatory Analysis, vol. 1, Cambridge Univ. Press, 1915], then by Foata by means of a combinatorial bijection [D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 (1968) 236–240]. Ever since, many refinements have been derived, which consist of adding new statistics, or replacing integral-valued statistics by set-valued ones. See the works by Foata and Schützenberger [D. Foata, M.-P. Schützenberger, Major index and inversion number of permutations, Math. Nachr. 83 (1978) 143–159], Skandera [Mark Skandera, An Eulerian partner for inversions, Sém. Lothar. Combin. 46 (2001), Article B46d, 19 pages. http://www.mat.univie.ac.at/~slc], Foata and Han [D. Foata, G.-N. Han, Une nouvelle transformation pour les statistiques Euler–Mahoniennes ensemblistes, Moscow Math. J. 4 (2004) 131–152] and more recently by Hivert, Novelli and Thibon [F. Hivert, J.-C. Novelli, J.-Y. Thibon, Multivariate generalizations of the Foata–Schützenberger equidistribution, 2006, 17 pages. Preprint on arXiv]. In the present paper we derive a general equidistribution property on Euler–Mahonian set-valued statistics on permutations, which unifies the above four refinements. We also state and prove the so-called "complement property" of the Majcode. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Let $w = y_1 y_2 \cdots y_n$ be a word whose letters y_1, y_2, \ldots, y_n are integers. The *descent* number "des", *major index* "maj" and *inversion number* "inv" are defined by (see, for example, [9, Section 10.6] or [5]):

0195-6698/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2007.05.005

E-mail address: guoniu@math.u-strasbg.fr.

des
$$w = \#\{i \mid 1 \le i \le n - 1, y_i > y_{i+1}\},$$

maj $w = \sum \{i \mid 1 \le i \le n - 1, y_i > y_{i+1}\},$
inv $w = \#\{(i, j) \mid 1 \le i < j \le n, y_i > y_j\}.$

In this paper we only deal with permutations $\sigma = x_1x_2\cdots x_n$ of $12\cdots n$ $(n \ge 1)$. A statistic is said to be *Mahonian* if it has the same distribution as "maj" on the symmetric group \mathfrak{S}_n , and a bi-statistic is said to be *Euler–Mahonian* if it has the same distribution as (des, maj). MacMahon's fundamental result says that "inv" is Mahonian [10], i.e., "maj" and "inv" have the same distribution on \mathfrak{S}_n . This equidistribution property will be written as

$$maj \simeq inv,$$
 (M1)

which also means that we have

$$\sum_{\sigma \in \mathfrak{S}_n} q^{\operatorname{maj} \sigma} = \sum_{\sigma \in \mathfrak{S}_n} q^{\operatorname{inv} \sigma}.$$

Foata [2] obtained a combinatorial proof of MacMahon's result by constructing an explicit transformation Φ such that maj $\sigma = \text{inv } \Phi(\sigma)$. Let the *ligne of route* of a permutation $\sigma = x_1x_2 \cdots x_n$ be the set of all descent places:

Ligne $\sigma = \{i \mid 1 \le i \le n - 1, x_i > x_{i+1}\}.$

The *inverse ligne of route* of σ is defined by Iligne $\sigma = \text{Ligne } \sigma^{-1}$. Foata and Schützenberger [4] showed that the transformation Φ preserved the inverse ligne of route and then derived the first refinement of MacMahon's result:

(Iligne, maj)
$$\simeq$$
 (Iligne, inv). (M2)

A word $w = d_1 d_2 \cdots d_n$ is said to be *subexcedent* if $0 \le d_i \le i - 1$ for all $i = 1, 2, \ldots, n$. The set of all subexcedent words of length n is denoted by SE_n. The Lehmer code [8] is a bijection Invcode : $\mathfrak{S}_n \to SE_n$ which maps each permutation $\sigma = x_1 x_2 \cdots x_n$ onto a subexcedent word Invcode $\sigma = d_1 d_2 \cdots d_n$, where d_i is given by

$$d_i = \#\{j \mid 1 \le j \le i - 1, x_j > x_i\}.$$

The *major index code*, denoted as Majcode, is a bijection of \mathfrak{S}_n onto SE_n , which maps each permutation $\sigma = x_1 x_2 \cdots x_n$ onto a subexcedent word Majcode $\sigma = d_1 d_2 \cdots d_n$, where d_i is given by

$$d_i = \operatorname{maj}(\sigma|_i) - \operatorname{maj}(\sigma|_{i-1}).$$

In the above expression $\sigma|_i \in \mathfrak{S}_i$ is the permutation derived from σ by erasing the letters i + 1, i + 2, ..., n. For example, Majcode(175389642) = 002135573 and Invcode(784269135) = 002320654.

Furthermore, "eul" is an integral-valued statistic (see [6,3]) defined on SE_n as follows. Let $w = d_1 d_2 \cdots d_n$ be a subexcedent word. If n = 1, then eul w = 0; if $n \ge 2$ let $w' = d_1 d_2 \cdots d_{n-1}$ so that $w = w' d_n$, then define

$$\operatorname{eul}(w) = \begin{cases} \operatorname{eul} w', & \text{if } d_n \leq \operatorname{eul} w', \\ 1 + \operatorname{eul} w', & \text{if } d_n \geq 1 + \operatorname{eul} w'. \end{cases}$$

Skandera [12] proved the following refinement:

$$(\text{des}, \text{maj}) \simeq (\text{eul} \circ \text{Invcode}, \text{inv}).$$
 (M3)

He also conjectured the following multi-variable equidistribution:

 $(\text{des}, \text{maj}, \text{ides}, \text{imaj}) \simeq (\text{des}, \text{maj}, \text{eul} \circ \text{Invcode}, \text{inv}),$ (M4)

where ides $\sigma = \text{des } \sigma^{-1} = \#\text{Iligne } \sigma$ and imaj $\sigma = \text{maj } \sigma^{-1} = \sum \text{Iligne } \sigma$. This conjecture was proved by Foata and Han [3]. In fact, we have obtained the following stronger refinement:

 $(\text{Iligne, Eul} \circ \text{Majcode}) \simeq (\text{Ligne, Eul} \circ \text{Invcode}), \qquad (M5)$

where "Eul" is a set-valued statistic defined for each subexcedent word, having the property: #Eul = eul. The explicit definition of "Eul" can be found in [3]. We also have the alternative definition:

Ligne σ = Eul \circ Majcode σ .

Note that there is no "perfect" vector-based refinement of MacMahon's result because

(Iligne, Majcode) $\not\simeq$ (Ligne, Invcode).

We only have the *set-based* equidistribution displayed in (M5).

Recently, another set-based refinement of MacMahon's result was discovered by Hivert, Novelli and Thibon [7]. Their notation is slightly different: they use *subdiagonal* instead of *subexcedent* words. A word $w = d_1d_2\cdots d_n$ is said to be *subdiagonal*, if $0 \le d_i \le n - i$ for all i = 1, 2, ..., n. Instead of "Invcode" they introduce the "Lc-code", denoted by "Lc", which is a bijection that maps each permutation $\sigma = x_1x_2\cdots x_n$ onto a subdiagonal word Lc $\sigma = d_1d_2\cdots d_n$, where d_i is given by

$$d_i = \#\{j \mid i+1 \le j \le n, x_i > x_j\}.$$

Let $\operatorname{Ic} \sigma = \operatorname{Lc}(\sigma^{-1})$. Their variation of "Majcode", called "Mc-code", denoted by "Mc", is a bijection that maps each permutation $\sigma = x_1 x_2 \cdots x_n$ onto a subdiagonal word $\operatorname{Mc} \sigma = d_1 d_2 \cdots d_n$, where d_i is given by

$$d_i = \operatorname{maj}(\sigma \mid^i) - \operatorname{maj}(\sigma \mid^{i+1}).$$

In the above expression $\sigma |^i$ is the subword of σ obtained by erasing the letters *smaller* than *i*. The relations between "Invcode" and "Ic" (resp. between "Majcode" and "Mc") are given in Section 3.

For each word w let "sort w" be the nondecreasing rearrangement of w. Then the result obtained by Hivert et al. [7] is a set-based equidistribution property, which can be rephrased as

(Iligne, sort
$$\circ$$
 Mc) \simeq (Iligne, sort \circ Ic). (M6)

The variation of "Eul" is denoted by "El". In this paper we simply define "El" by

Ligne $\sigma = \text{El} \circ \text{Mc} \sigma$.

Some relations between the statistics "El" and "Eul" are given in Section 3.

The main result of the present paper is the following set-based equidistribution property, which includes all previous equidistribution properties (M1)–(M6) as special cases.

570

Theorem 1. The following two triplets of set-valued statistics are equidistributed on the symmetric group \mathfrak{S}_n :

$$(\text{Iligne, sort} \circ \text{Mc}, \text{El} \circ \text{Mc}) \simeq (\text{Iligne, sort} \circ \text{Ic}, \text{El} \circ \text{Ic}). \tag{M7}$$

Remark. Theorem 1 is not an automatic consequence of (M6). For example, as shown in [7], there is another statistic called "Sc", which also satisfies

(Iligne, sort \circ Mc) \simeq (Iligne, sort \circ Sc),

but

(Iligne, sort \circ Mc, El \circ Mc) \simeq (Iligne, sort \circ Sc, El \circ Sc).

Theorem 1 is proved in Section 2. To illustrate the above equidistributions we have listed the twenty-four permutations of order 4 and their corresponding statistics in Section 4.

We also use the transformations **i**, **c** and **r** of the dihedral group. Recall that $\mathbf{i}\sigma = \sigma^{-1}$ is the inverse of the permutation σ ; then, **c** is the *complement to* (n + 1) and **r** the *reverse image*, which map each permutation σ , written as a linear word $\sigma = x_1 \dots x_n$, onto

$$\mathbf{c}\,\boldsymbol{\sigma} \coloneqq (n+1-x_1)(n+1-x_2)\dots(n+1-x_n),$$

$$\mathbf{r}\,\boldsymbol{\sigma} \coloneqq x_n\dots x_2 x_1,$$

respectively. For each subexcedent word $w = d_1 d_2 \cdots d_n \in SE_n$ let

$$\delta w = (0 - d_1)(1 - d_2)(2 - d_3) \cdots (n - 1 - d_n).$$

Clearly δw also belongs to SE_n. The map δ is called the *complement* map.

The second result of this paper is the "complement" property of the Majcode. As is well known, the generating polynomial for the major index over the symmetric group \mathfrak{S}_n is equal to

 $F(q) = (1+q)(1+q+q^2)\cdots(1+q+q^2+\cdots+q^{n-1}),$

a polynomial having symmetric coefficients: $F(q) = q^{n(n-1)/2}F(1/q)$. This fact can be checked by constructing a bijection $\sigma \mapsto \tau$ satisfying the relation

$$\operatorname{maj} \sigma = \frac{n(n-1)}{2} - \operatorname{maj} \tau. \tag{R1}$$

This value-based relation has *two* array-based refinements. As the major index is equal to the sum of all descent positions, the following relation implies (R1):

$$\text{Ligne } \sigma = \{1, 2, \dots, n-1\} \setminus \text{Ligne } \tau. \tag{R2}$$

The major index is also the sum of all elements in the Majcode. Therefore the following relation also implies (R1):

$$Majcode \sigma = \delta \circ Majcode \tau. \tag{R3}$$

Classically, there is a trivial way of defining a bijection satisfying (*R*2): just take $\tau = \mathbf{c} \sigma$. But this way provides no simple relation between Majcode σ and Majcode $\mathbf{c} \sigma$. The following result shows that the complement of Majcode (*R*3) is stronger than the complement of Ligne (*R*2).

Theorem 2. Let σ and τ be two permutations satisfying relation (R3). Then relation (R2) holds.

In Section 3 we first give an example serving to illustrate the complement property of Majcode. Then we prove Theorem 2. Finally, we show how to derive (M5) from Theorems 1 and 2.

2. Proof of Theorem 1

The basic idea of the proof is to use the inclusion–exclusion principle, as in [7] or in [1]. We begin with some technical lemmas concerning the Mc-code.

Lemma 3. Let $\sigma = x_1 x_2 \cdots x_n$ be a permutation and let $Mc(\sigma) = d_1 d_2 \cdots d_n$ be its Mc-code. If $d_1 d_2 \cdots d_k$ is nondecreasing for some integer k such that $1 \le k \le n$, then all factors of σ , whose letters are less than or equal to k, are increasing.

Example. Take $\sigma = 12596133481271011$ and k = 7; we have Mc(σ) = 0011344020200. The word $d_1d_2\cdots d_k = 0011344$ is nondecreasing. There are four maximal factors whose letters are in $\{1, 2, \dots, 7\}$: "5", "6", "3 4" and "1 2 7". They are all increasing.

Proof. Call a *bad pair* of σ each pair (y, z) of letters such that $1 \le y < z \le k$ and such that zwy is a *factor* of σ having all its letters in $\{1, 2, ..., k\}$. It suffices to prove that there is no bad pair in the permutation σ . If σ contains some bad pairs, let (y, z) be the *maximal* bad pair, which means that (y', z') is not a bad pair for every y' > y or y' = y and z' > z. Consider the permutation σ' obtained from σ by deleting all letters smaller than y. Then $Mc(\sigma') = d_y d_{y+1} \cdots d_z \cdots d_n$. This means that (y, z) is also a bad pair of σ' . In fact, all bad pairs of σ' are of form (y, \cdot) because (y, z) is the maximal bad pair of σ .

Let $\sigma' = azyb$ with a, b two factors of σ' (we can check that z is just on the left of y because (y, z) is the maximal bad pair of σ). When carrying out the computation of $Mc(\sigma')$, consider the insertion of the letter z. Let a' (resp. b') be the subword obtained from a (resp. b) by deleting all letters smaller than z. Then

$$d_z = \operatorname{maj}(a'zb') - \operatorname{maj}(a'b')$$

=
$$\begin{cases} \operatorname{des}(b') & \text{if } \operatorname{last}(a') > \operatorname{first}(b') \text{ or } |a'| = 0; \\ |a'| + \operatorname{des}(b') & \text{if } \operatorname{last}(a') < \operatorname{first}(b') \text{ or } |b'| = 0. \end{cases}$$

In the above equation first(w) (resp. last(w)) denotes the first (or leftmost) (resp. last (or rightmost)) letter of w. In the same manner, we have

$$d_y = \operatorname{maj}(azyb) - \operatorname{maj}(azb)$$

=
$$\begin{cases} \operatorname{des}(b) & \text{if } z > \operatorname{first}(b); \\ |az| + \operatorname{des}(b) & \text{if } z < \operatorname{first}(b) \text{ or } |b| = 0. \end{cases}$$

However z > first(b) is not possible, because (y, z) is the maximal bad pair of σ . Hence, $d_y = |az| + \text{des}(b) \ge |a'| + 1 + \text{des}(b') > d_z$, a contradiction. \Box

Lemma 4. Let σ be a permutation and $Mc(\sigma) = d_1d_2 \cdots d_n$. Let $k \in \{1, 2, \dots, n\}$ be an integer satisfying the following conditions:

(C1) $d_1 \le d_2 \le \dots \le d_{k-1}$; (C2) $d_{k-1} > d_k$; (C3) $d_k \le d_1$; (C4) *k* is on the right of all i < k in σ . Then

Ligne σ = Ligne τ ,

where $\tau = Mc^{-1}(d_k d_1 d_2 \cdots d_{k-1} d_{k+1} d_{k+2} \cdots d_n).$

Proof. In fact, τ can be constructed by means of an explicit algorithm. First, define τ' by the following steps:

(T1) $\tau'(i) = \sigma(i)$, if $\sigma(i) \ge k + 1$; (T2) $\tau'(i) = \sigma(i) + 1$, if $\sigma(i) \le k - 1$; (T3) $\tau'(i) = 1$, if $\sigma(i) = k$.

Then the permutation τ is obtained from τ' by making the following modifications:

(T4) rearrange the maximal factor of τ' containing "1" and having all its letters in $\{1, 2, ..., k\}$ in increasing order.

Example. Take $\sigma = 5\ 6\ 12\ 4\ 10\ 2\ 3\ 9\ 11\ 1\ 7\ 8$ and k = 7; we have $Mc(\sigma) = 011233042010$. The following calculation shows that $\tau = 6\ 7\ 12\ 5\ 10\ 3\ 4\ 9\ 11\ 1\ 2\ 8$. We have $Mc(\tau) = 001123342010$.

$\sigma =$	5	6	12	4	10	2	3	9	11	1	7	8	
(T1)			12		10			9	11			8	
(T2)	6	7	12	5	10	3	4	9	11	2		8	
(T3) (T4)													= τ

All factors of σ and τ having their letters in $\{1, 2, ..., k\}$ are increasing, thanks to Lemma 3 and condition (C4). Therefore, Ligne σ = Ligne τ by (T1).

Let $Mc(\tau) = f_1 f_2 \cdots f_k d_{k+1} d_{k+2} \cdots d_n$. We need to prove (N1) $f_1 = d_k$ and (N2) $f_{i+1} = d_i$ for $i = 1, 2, \dots, k - 1$. We first prove the following property related to the insertion of k in σ .

(P1). Let σ' be the word obtained from σ by deleting all letters smaller than k. Then $\sigma' = \cdots x k y \cdots$ or $\sigma' = k y \cdots$ with x > y > k.

Proof of (P1). If *k* is not the last letter of σ' , i.e., $\sigma' = \cdots ky \cdots$, then y > k by (C4). We need to prove that $\sigma' = \cdots xky \cdots$ (with x < y) and $\sigma' = \cdots xk$ are not possible. If those cases occur, consider the insertion of k - 1 into σ' : (k - 1) is on the left of *k* by (C4), so that $d_{k-1} \le d_k$; a contradiction with (C2). \Box

Proof of (N1). By Property (P1) and Lemma 3 the permutation σ must have the form $\sigma = azx_1x_2\cdots x_rkyb$ with $z > y > k > x_r > \cdots x_2 > x_1$ (az and b being possibly empty) and the factor b has all its letters greater than k because of condition (C4). Then $\tau = uz_1(x_1 + 1)(x_2 + 1)\cdots(x_r + 1)yb$ by definition of τ . Let a' be the word obtained from a by deleting all letters smaller than k. Then

$$d_k = \operatorname{maj}(a'zkyb) - \operatorname{maj}(a'zyb) = \operatorname{des}(yb).$$

On the other hand,

$$f_1 = \operatorname{maj}(\tau) - \operatorname{maj}(uz(x_1 + 1)(x_2 + 1)\cdots(x_r + 1)yb) = \operatorname{des}((x_1 + 1)(x_2 + 1)\cdots(x_r + 1)yb) = \operatorname{des}(yb) = d_k. \quad \Box$$

Proof of (N2). For i = 1, 2, ..., k - 1 let $\tau = a(i + 1)b$. Let \overline{a} (resp. \overline{b}) be the word obtained from a (resp. b) by deleting all letters smaller than i + 1. Let \hat{a} (resp. \hat{b}) be the word obtained from \overline{a} (resp. \overline{b}) by replacing j by j - 1 for $j \le k$. Note that $1 \notin \overline{a}(i + 1)\overline{b}$ and $k \notin \hat{a}i\hat{b}$. Then

$$f_{i+1} = \operatorname{maj}(\overline{a}(i+1)\overline{b}) - \operatorname{maj}(\overline{a}\overline{b})$$

= maj($\hat{a}i\hat{b}$) - maj($\hat{a}\hat{b}$)
=
$$\begin{cases} \operatorname{des}(\hat{b}) & \text{if } \operatorname{last}(\hat{a}) > \operatorname{first}(\hat{b}) \text{ or } |\hat{a}| = 0; \\ |\hat{a}| + \operatorname{des}(\hat{b}) & \text{if } \operatorname{last}(\hat{a}) < \operatorname{first}(\hat{b}) \text{ or } |\hat{b}| = 0. \end{cases}$$

Let $\sigma = uiv$. Let u' (resp. v') be the word obtained from u (resp. v) by deleting all letters smaller than i. Note that $k \in u'v'$. Then

$$\begin{aligned} d_i &= \max(u'iv') - \max(u'v') \\ &= \begin{cases} \deg(v') & \text{if } \operatorname{last}(u') > \operatorname{first}(v') \text{ or } |u'| = 0; \\ |u'| + \operatorname{des}(v') & \text{if } \operatorname{last}(u') < \operatorname{first}(v') \text{ or } |v'| = 0. \end{cases} \end{aligned}$$

In fact, by definition of τ , we have $\hat{a} = u'$. We verify that \hat{b} is the word obtained from v' by removing the letter k. By Property (P1) and condition (C4), we have only the following cases: $v' = \cdots x k y \cdots$ (with x > y > k), $v' = \cdots x k y \cdots$ (with x < k < y), $v' = k y \cdots$ (with k < y) and $v' = \cdots x k$ (with x < k). In all those cases,

$$\begin{cases} |\hat{a}| = |u'|;\\ \operatorname{des}(\hat{b}) = \operatorname{des}(v'). \end{cases}$$

If $|\hat{a}| = |u'| = 0$, then $f_{i+1} = d_i$. If $\text{first}(v') \neq k$, then $\text{first}(v') = \text{first}(\hat{b})$ and $f_{i+1} = d_i$. If $\hat{a} = u' = \cdots x$ and $v' = ky \cdots$, then $(x > k) \Leftrightarrow (x > y)$ by Property (P1). Hence, $f_{i+1} = d_i$.

This ends the proof of Lemma 4. \Box

Lemma 5. Let β be a permutation of $\{k + 1, k + 2, ..., n\}$ and let σ be a shuffle of $12 \cdots k$ and β whose *Mc*-code reads

$$Mc(\sigma) = d_1 d_2 \cdots d_k d_{k+1} d_{k+2} \cdots d_n.$$

Then

Ligne σ = Ligne τ ,

where $\tau = \operatorname{Mc}^{-1}(\operatorname{sort}(d_1d_2\cdots d_k)d_{k+1}d_{k+2}\cdots d_n).$

Proof. By induction. Define

 $\tau_i = \mathrm{Mc}^{-1}(\mathrm{sort}(d_1d_2\cdots d_i)d_{i+1}\cdots d_kd_{k+1}d_{k+2}\cdots d_n),$

so that $\tau_1 = \sigma$ and $\tau_k = \tau$. By definition of Mc, we have

 $d_i \ge \max\{d_1, d_2, \dots, d_{i-1}\}$ or $d_i \le \min\{d_1, d_2, \dots, d_{i-1}\}$

for every $i \le k$, because k is on the right of all letters smaller than k (see also the proof of Lemma 6.5 in [7]). In both cases Ligne τ_{i-1} = Ligne τ_i for $2 \le i \le k$ by Lemma 4. \Box

Example. Take $n = 12, k = 7, \beta = 12\ 10\ 9\ 11\ 8$. Let σ be the following shuffle of 1234567 and β :

 $\sigma = 12\ 1\ 2\ 3\ 10\ 4\ 9\ 5\ 6\ 11\ 7\ 8.$

Then Mc(σ) = 333214042010. The following calculation shows that $\tau = \tau_7 = 12.4.5$ 6 10 3 9 2 7 11 1 8.

$$\tau_1 = \tau_2 = \tau_3 = Mc^{-1}(333214042010) = 12\ 1\ 2\ 3\ 10\ 4\ 9\ 5\ 6\ 11\ 7\ 8$$

$$\tau_4 = Mc^{-1}(233314042010) = 12\ 2\ 3\ 4\ 10\ 1\ 9\ 5\ 6\ 11\ 7\ 8$$

$$\tau_5 = \tau_6 = Mc^{-1}(123334042010) = 12\ 3\ 4\ 5\ 10\ 2\ 9\ 1\ 6\ 11\ 7\ 8$$

$$\tau_7 = Mc^{-1}(012333442010) = 12\ 4\ 5\ 6\ 10\ 3\ 9\ 2\ 7\ 11\ 1\ 8$$

We check that $\text{Ligne}(\sigma) = \text{Ligne}(\tau) = \{1, 5, 7, 10\}.$

Lemma 6. Let a, b, c be words such that a, b, ca, cb are subdiagonal. If El(a) = El(b), then

 $\operatorname{El}(ca) = \operatorname{El}(cb).$

Proof. By induction we need only prove the lemma when c = x is a one-letter word. Let σ (resp. τ) be the permutation such that $Mc(\sigma) = xa$ (resp. $Mc(\tau) = xb$). Also let $\sigma|^2$ (resp. $\tau|^2$) be the subword obtained from σ (resp. from τ) by erasing the letter 1. Then El(a) = El(b) implies $Ligne(\sigma|^2) = Ligne(\tau|^2)$. Now $x = maj(\sigma) - maj(\sigma|^2) = maj(\tau) - maj(\tau|^2)$, so that the letter 1 is inserted into $\sigma |^2$ and $\tau |^2$ at the same position. Hence, $Ligne \sigma = Ligne \tau$. \Box

Let $\alpha \in \mathfrak{S}_k$ and $\beta = y_1 y_2 \cdots y_\ell \in \mathfrak{S}_\ell$ be two permutations. A permutation $\sigma \in \mathfrak{S}_{k+\ell}$ is said to be a *shifted shuffle* of α and β if the subword of σ whose letters are $1, 2, \ldots, k$ (resp. $k+1, k+2, \ldots, k+\ell$) is equal to α (resp. to $(y_1+k)(y_2+k)\cdots(y_\ell+k)$). The set of all shifted shuffles of α and β is denoted by $\alpha \cup \beta$. The identity permutation $12 \cdots k$ is denoted by id_k .

Lemma 7. On the set $id_{k_1} \cup id_{k_2} \cup \cdots \cup id_{k_r}$ we have

 $(\text{sort} \circ \text{Mc}, \text{El} \circ \text{Mc}) \simeq (\text{sort} \circ \text{Ic}, \text{El} \circ \text{Ic}).$

Proof. We construct a bijection $\phi : \sigma \mapsto \phi(\sigma)$ on $\operatorname{id}_{k_1} \sqcup \operatorname{id}_{k_2} \sqcup \cdots \sqcup \operatorname{id}_{k_r}$ satisfying sort $\circ \operatorname{Mc} \sigma = \operatorname{sort} \circ \operatorname{Ic} \phi(\sigma)$ and $\operatorname{El} \circ \operatorname{Mc} \sigma = \operatorname{El} \circ \operatorname{Ic} \phi(\sigma)$. By induction, let $\sigma \in \operatorname{id}_k \sqcup \beta$ and $\operatorname{Mc}(\sigma) = d_1 d_2 \cdots d_k \operatorname{Mc}(\beta)$ with $\beta \in \operatorname{id}_{k_2} \sqcup \cdots \sqcup \amalg d_{k_r}$ and $k = k_1$. As proved in Lemma 6.5 in [7], the mapping $(d_1 d_2 \cdots d_k, \beta) \mapsto (\operatorname{sort}(d_1 d_2 \cdots d_k), \beta)$ is bijective. We then define $\phi(\sigma) = \operatorname{Ic}^{-1}(\operatorname{sort}(d_1 d_2 \cdots d_k)\operatorname{Ic}(\phi(\beta)))$. We have

sort
$$\circ \operatorname{Mc}(\sigma) = \operatorname{sort}(d_1 d_2 \cdots d_k \operatorname{Mc}(\beta))$$

$$= \operatorname{sort}(d_1 d_2 \cdots k_k \operatorname{sort}(\operatorname{Mc}(\beta)))$$

$$= \operatorname{sort}(d_1 d_2 \cdots k_k \operatorname{sort}(\operatorname{Ic}(\phi(\beta)))) \quad \text{(by induction)}$$

$$= \operatorname{sort}(\operatorname{sort}(d_1 d_2 \cdots k_k) \operatorname{Ic}(\phi(\beta)))$$

$$= \operatorname{sort} \circ \operatorname{Ic} \phi(\sigma).$$
El $\circ \operatorname{Mc}(\sigma) = \operatorname{El}(d_1 d_2 \cdots d_k \operatorname{Mc}(\beta))$

$$= \operatorname{El}(\operatorname{sort}(d_1 d_2 \cdots d_k) \operatorname{Mc}(\beta)) \quad \text{(by Lemma 5)}$$

$$= \operatorname{El}(\operatorname{sort}(d_1 d_2 \cdots d_k) \operatorname{Ic}(\phi(\beta))) \quad \text{(by Lemma 6)}$$

$$= \operatorname{El} \circ \operatorname{Ic} \phi(\beta). \square$$

Proof of Theorem 1. As used on several occasions (see, e.g., [7, Eq. (10)] or [1, Section 3]), we have

 $\mathrm{id}_{k_1} \sqcup \mathrm{id}_{k_2} \sqcup \cdots \sqcup \mathrm{id}_{k_r} = \{ \sigma \mid \mathrm{Iligne}(\sigma) \subseteq \{k_1, k_1 + k_2, \dots, k_1 + k_2 + \dots + k_{r-1} \} \}.$

By Lemma 7

 $(\text{sort} \circ \text{Mc}, \text{El} \circ \text{Mc}) \simeq (\text{sort} \circ \text{Ic}, \text{El} \circ \text{Ic})$

on the set $\{\sigma \mid \text{Iligne}(\sigma) \subseteq \{k_1, k_1 + k_2, \dots, k_1 + k_2 + \dots + k_{r-1}\}\}$. It is also true on the set $\{\sigma \mid \text{Iligne}(\sigma) = \{k_1, k_1 + k_2, \dots, k_1 + k_2 + \dots + k_{r-1}\}\}$ by the inclusion–exclusion principle.

3. The "Complement" property of the Majcode

We rephrase the statement of Theorem 2 as follows.

Theorem 2'. For each permutation σ of $12 \cdots n$ let

 $\tau = \text{Majcode}^{-1} \circ \delta \circ \text{Majcode}(\sigma).$

Then

 $\text{Ligne } \tau = \{1, 2, \dots, n-1\} \setminus \text{Ligne } \sigma. \tag{R2}$

(R3')

For example, take n = 9 and $\sigma = 935721468$. Then Ligne $\sigma = \{1, 4, 5\}$, Majcode $\sigma = 012020203$ and δ Majcode $\sigma = 000325475$. We have $\tau =$ Majcode $^{-1}(000325475) = 795128643$. We verify that

Ligne
$$\tau = \{2, 3, 6, 7, 8\} = \{1, 2, 3, 4, 5, 6, 7, 8\} \setminus \text{Ligne } \sigma$$

Proof of Theorem 2'. Proceed by induction on the order of the permutation. Let $\sigma = x_1x_2$ $\cdots x_n \in \mathfrak{S}_n$ be a permutation and $\sigma' \in \mathfrak{S}_{n-1}$ be the permutation obtained from σ by erasing the letter *n*. Let Majcode $\sigma = c_1c_2 \dots c_{n-1}c_n$. Then Majcode $\sigma' = c_1c_2 \dots c_{n-1}$. Let $\tau = y_1y_2$ $\cdots y_n \in \mathfrak{S}_n$ be the permutation defined by relation (R3'), i.e., Majcode $\tau = d_1d_2 \dots d_{n-1}d_n$ with $d_i = i - 1 - c_i$ for $1 \le i \le n$. Let $\tau' \in \mathfrak{S}_{n-1}$ be the permutation obtained from τ by erasing the letter *n*. Then Majcode $\tau' = d_1d_2 \dots d_{n-1}$. It is easy to see that the σ' and τ' also satisfy relation (R3'). By induction we have

$$\operatorname{Ligne} \sigma' = \{1, 2, \dots, n-2\} \setminus \operatorname{Ligne} \tau'. \tag{R2'}$$

Recall the classical construction of the Majcode consisting of labelling the slots (see, for example, [11]). Let $\sigma' = x'_1 x'_2 \dots x'_{n-1}$. Let $x'_0 = x'_n = 0$ so that the word $x'_0 x'_1 x'_2 \dots x'_{n-1} x'_n$ has n slots (i-1, i) with $1 \le i \le n$. A slot (i-1, i) is called a *descent* (resp. *rise*) if $x'_{i-1} > x'_i$ (resp. $x'_{i-1} < x'_i$). We label the k descent slots $0, 1, 2, \dots, k-1$ from right to left and the remaining n - k rise slots $k, k + 1, \dots, n-1$ from left to right. For $1 \le i \le n$ let $c_n(i)$ be the label of the slot (i-1, i) and $\sigma^{\langle i \rangle} \in \mathfrak{S}_n$ be the permutation obtained from σ' by inserting n into the slot (i-1, i). The basic property is that $c_n(i) = \operatorname{maj} \sigma^{\langle i \rangle} - \operatorname{maj} \sigma'$. In the same manner, let $d_n(i)$ (for $1 \le i \le n$) be the label of the slots in τ' . Thanks to relation (R2') the above construction of labels implies the following simple relation between $c_n(i)$ and $d_n(i)$:

$$c_n(n) = d_n(n) = 0$$
 and $c_n(i) + d_n(i) = n$ (for $1 \le i \le n - 1$). (R4)

For example, take $\sigma' = 35721468$ and $\tau' = 75128643$ as in the above example; we have

slot of σ' :	0	1⁄3	⊅ 5	177	∖ 2	∖ 1	1∕7 4	≯ 6	1 8	$\searrow 0$
label $c_n(i)$:		3	4	5	2	1	6	7	8	0
slot of τ' :	0	17	∖ 5	∖ 1	≯ 2	1 8	∖ 6	× 4	∖ 3	$\searrow 0$
label $d_n(i)$:		6	5	4	7	8	3	2	1	0

If $x_s = n$ and $y_t = n$, that means that the permutation σ (resp. τ) can be constructed by inserting n into the slot (s - 1, s) in σ' (resp. slot (t - 1, t) in τ'). By relation (R3') we have

$$d_n(t) = n - 1 - c_n(s).$$
(R5)

From (*R*4) and (*R*5) we obtain a relation between $c_n(s)$ and $c_n(t)$:

$$c_n(s) = \begin{cases} n-1, & \text{if } c_n(t) = 0; \\ c_n(t) - 1, & \text{if } c_n(t) \ge 1. \end{cases}$$
(R6)

In fact, relation (R6) gives an algorithm for computing t from s.

(st1) If the slot s (that means the slot (s - 1, s)) is a rise, but not the rightmost rise, then t is the *next* rise on the right of s.

(st2) If the slot *s* is the rightmost rise, then *t* is the rightmost slot.

(st3) If the slot s is a descent, but not the leftmost descent, then t is first descent preceding s on the left.

(st4) If the slot *s* is the leftmost descent, then *t* is the leftmost slot.

We summarize those cases in the following table.

	σ'	au'
(st1)	$\cdots \overset{s}{\nearrow} \searrow \searrow \searrow \overset{t}{\searrow} \overset{t}{\checkmark} \cdots$	$\cdots \searrow^{s} \nearrow \nearrow \nearrow \swarrow^{t} \cdots$
(st2)	$\cdots \overset{s}{\nearrow} \searrow \searrow \searrow \bigvee^{t}$	$\cdots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(st3)	$\cdots \checkmark^t \nearrow \nearrow \nearrow \checkmark^s \cdots$	$\cdots t \nearrow \searrow \searrow \searrow s \nearrow \cdots$
(st4)	$\overset{t}{\nearrow}\nearrow\nearrow\nearrow\overset{s}{\searrow}\cdots$	$t \nearrow \searrow \searrow \searrow s \nearrow \cdots$

In each case inserting the letter *n* into the slot *s* of σ' and inserting the letter *n* into the slot *t* of τ' produces two permutations σ and τ . From the above table it easy to see that σ and τ satisfy relation (*R*2). \Box

By the definitions of "Invcode", "Ic", "Majcode" and "Mc" we obtain the following simple relations between them.

Lemma 8.

 $Mc = \mathbf{r} \circ \delta \circ Majcode \circ \mathbf{c},$ $Ic = \mathbf{r} \circ \delta \circ Invcode \circ \mathbf{r} \mathbf{i}.$ For Example, we have Mc(935721468) = 501012010, Ic(362715984) = 420520010, also obtained by the following calculations.

```
\sigma = 935721468

\mathbf{c}\sigma = 175389642

Majcode \circ \mathbf{c} \sigma = 002135573

\delta \circ \text{Majcode} \circ \mathbf{c} \sigma = 010210105

\mathbf{r} \circ \delta \circ \text{Majcode} \circ \mathbf{c} \sigma = 501012010

\sigma = 362715984

\mathbf{i}\sigma = 531962487

\mathbf{r}\mathbf{i}\sigma = 784269135

Invcode \circ \mathbf{r}\mathbf{i}\sigma = 002320654

\delta \circ \text{Invcode} \circ \mathbf{r}\mathbf{i}\sigma = 010025024

\mathbf{r} \circ \delta \circ \text{Invcode} \circ \mathbf{r}\mathbf{i}\sigma = 420520010.
```

The relation between the statistics "El" and "Eul" is given in the following lemma.

Lemma 9. Let d be a subdiagonal word of length n. Then

 $\operatorname{El}(d) = \{1, 2, \dots, n-1\} \setminus \operatorname{Eul}(\delta \mathbf{r}(d)).$

Proof. We have

 $El(d) = Ligne \circ Mc^{-1}(d)$ = Ligne \circ (\mathbf{r} \circ \delta \circ Majcode \circ \mathbf{c})^{-1}(d) = Ligne \circ (\mathbf{c} \circ Majcode ^{-1} \circ \delta \circ \mathbf{r})(d) = Ligne(\mathbf{c} \circ Majcode ^{-1} (\delta \circ \mathbf{r}(d))) = \{1, 2, \ldots, n - 1\} \ Ligne(Majcode ^{-1} (\delta \circ \mathbf{r}(d))) = \{1, 2, \ldots, n - 1\} \ Eul(\delta \circ \mathbf{r}(d)). \Box

In fact, there is another simple, but not trivial, relation between the above two statistics.

Lemma 10. Let d be a subdiagonal word of length n, Then

 $\mathrm{El}(d) = \mathrm{Eul}(\mathbf{r}(d)).$

Proof. By Lemma 9 we need to verify the following relation

 $\operatorname{Eul}(\mathbf{r}(d)) = \{1, 2, \dots, n-1\} \setminus \operatorname{Eul}(\delta(\mathbf{r}(d))).$

This is true by Theorem 2. \Box

For every permutation σ it is easy to see that

Invcode $\mathbf{r} \sigma = \delta$ Invcode σ .

578

We end this paper by showing why the equidistribution (M5) obtained in [3] is a special case of Theorem 1. We have

 $El \circ Ic \circ i = Eul \circ r \circ Ic \circ i \quad (by Lemma 10)$ = Eul \circ r r \delta \circ Invcode \circ r ii \circ (by Lemma 8) = Eul \circ \delta \circ Invcode \circ r = Eul \circ \delta \circ \delta \circ Invcode \circ (by (R7)) = Eul \circ Invcode,

so that

4. Table

We give the list of the twenty-four permutations of order 4 and their corresponding statistics. The permutations are sorted according to the statistic "Iligne".

σ	Ic	$\mathrm{El}\circ\mathrm{Ic}$	Mc	$El \circ Mc$	Sc	$El \circ Sc$
1234	0000	ϵ	0000	ϵ	0000	ϵ
2134	1000	1	1000	1	3000	3
2314	2000	2	2000	2	2000	2
2341	3000	3	3000	3	1000	1
1324	0100	1	1100	2	0200	2
1342	0200	2	1200	3	0100	1
3124	1100	2	0100	1	2200	13
3142	1200	3	2200	13	2100	12
3412	2200	13	0200	2	1100	2
1243	0010	1	1110	3	0010	1
1423	0110	2	1010	2	0110	2
4123	1110	3	0010	1	1110	3
3214	2100	12	2100	12	3200	23
3241	3100	13	3100	13	1200	3
3421	3200	23	3200	23	3100	13
2143	1010	2	2110	13	3010	13
2413	2010	12	0110	2	1010	2
2431	3010	13	3110	23	2010	12
4213	2110	13	2010	12	3110	23
4231	3110	23	3010	13	2110	13
1432	0210	12	2210	23	0210	12
4132	1210	13	1210	13	1210	13
4312	2210	23	0210	12	2210	23
4321	3210	123	3210	123	3210	123

From this table we can check the following equidistributions:

(Iligne, sort \circ Mc, El \circ Mc) \simeq (Iligne, sort \circ Ic, El \circ Ic),

(Iligne, sort \circ Mc) \simeq (Iligne, sort \circ Sc).

The fifth row contains three permutations 3214, 3241, 3421. The corresponding values for the statistic $El \circ Mc$ (resp. $El \circ Sc$) are 12, 13, 23 (resp. 23, 3, 13). This means that

(Iligne, sort \circ Mc, El \circ Mc) $\not\simeq$ (Iligne, sort \circ Sc, El \circ Sc).

References

- Jacques Désarménien, Michelle L. Wachs, Descent classes of permutations with a given number of fixed points, J. Combin. Theory Ser. A 64 (1993) 311–328.
- [2] D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 (1968) 236–240.
- [3] D. Foata, G.-N. Han, Une nouvelle transformation pour les statistiques Euler-Mahoniennes ensemblistes, Moscow Math. J. 4 (2004) 131–152.
- [4] D. Foata, M.-P. Schützenberger, Major index and inversion number of permutations, Math. Nachr. 83 (1978) 143–159.
- [5] Adriano M. Garsia, Ira Gessel, Permutations statistics and partitions, Adv. in Math. 31 (1979) 288-305.
- [6] Guo-Niu Han, Distribution Euler-Mahonienne: une correspondance, C. R. Acad. Sci. Paris 310 (1990) 311-314.
- [7] F. Hivert, J.-C. Novelli, J.-Y. Thibon, Multivariate generalizations of the Foata–Schützenberger equidistribution, 2006, 17 pages. Preprint on arXiv.
- [8] D.H. Lehmer, Teaching combinatorial tricks to a computer, in: Proc. Sympos. Appl. Math., vol. 10, Amer. Math. Soc., Providence, R.I, 1960, pp. 179–193.
- [9] M. Lothaire, Combinatorics on Words, in: Encyclopedia of Math. and its Appl., vol. 17, Addison-Wesley, London, 1983.
- [10] P.A. MacMahon, Combinatory Analysis, vol. 1, Cambridge Univ. Press, 1915.
- [11] Don P. Rawlings, Generalized Worpitzky identities with applications to permutation enumeration, European J. Combin. 2 (1981) 67–78.
- [12] Mark Skandera, An Eulerian partner for inversions, Sém. Lothar. Combin. 46 (2001), Article B46d, 19 pages. http://www.mat.univie.ac.at/~slc.