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1. Introduction

Linear control systems

(Σ) ẋ(t) = Ax(t) + Bu(t).

and nonsingular matrix polynomials are closely related. On the one hand, a standard or null pair

of matrices (A, B) can be associated with any nonsingular matrix polynomial to study its spectral

properties (see [17] for themonic case and [16] for the general case). Such pairs represent controllable

systems that are uniquely determined by the given matrix polynomial up to similarity.

On the other hand, polynomial models introduced by Fuhrmann [10,11] can be used to associate

to a given control system (A, B) a nonsingular matrix polynomial which is the denominator of any

right coprime factorization of the transfer function matrix of system (Σ): (sI − A)−1B = N(s)P(s)−1.

< Partially supported by the Dirección General de Investigación, Proyecto de InvestigaciónMTM2007-67812-CO2-01 and Gobierno

Vasco, GIC10/IT-361-10.∗ Corresponding author.

E-mail addresses: silvia.marcaida@ehu.es (S. Marcaida), ion.zaballa@ehu.es (I. Zaballa).

0024-3795/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2011.03.022

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82083609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.laa.2011.03.022
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2011.03.022


S. Marcaida, I. Zaballa / Linear Algebra and its Applications 436 (2012) 1664–1682 1665

And conversely, the shift realization allows us to associate a controllable system to a given matrix

polynomial. Neither of these two associations is unique (see [12, p. 274], [38]): (A, B) determines P(s)
up to right equivalence and P(s) determines (A, B) up to system similarity.

Matrices P(s)which are the denominator of any right coprime factorization of the transfer function

matrix of system (A, B) were called in [38] Polynomial matrix representations of (A, B). Also systems

(A, B) that are obtained from a given matrix polynomial P(s) through the shift realization are simply

called realizations of P(s). Using Rosenbrock’s equivalence (see [31,25]) it was proved in [38] that if

P1(s), P2(s) are polynomial matrix representations of (A1, B1) and (A2, B2), respectively, then (A1, B1)
and (A2, B2) are system similar if and only if P1(s) and P2(s) are right equivalent; i.e.,

(A2, B2) = (T−1A1T, T
−1B1), for some nonsingular T ⇔

P2(s) = P1(s)U(s), for some unimodular U(s).
(1)

And conversely, if P1(s) and P2(s) are nonsingular polynomial matrices and (A1, B1) and (A2, B2) are
realizations of P1(s) and P2(s), respectively, then (1) holds.

It should be noticed that due to the minimality of the right coprime factorization (sI − A)−1B =
N(s)P(s)−1, the size of the square matrix A is the degree of the determinant of P(s), say n (the Smith–

McMillan degree of the system), and the order of the square matrix P(s) is the number of columns of

B, saym. Hence it follows from condition (1) that a bijection can be defined between two orbit spaces:

controllable systems of order n under similarity andm × m nonsingular polynomial matrices, having

n as the degree of the determinant, under right equivalence. This bijection can be used to transfer

relevant properties from one to each other of these orbit spaces. For example, discrete invariants

for system similarity (like the controllability or Hermite indices [30,28] or the more general class

of discrete invariants studied in [23,38]) correspond to invariant degrees under right equivalence of

matrix polynomials (see Section 4.1).

This bijection can also be used to provide the orbit space of nonsingular polynomial matrices under

right equivalence with the topology and geometry of the orbit space of controllable systems under

similarity. These have been extensively studied (see, for example, [5,6,19–22,34]). Thus, with the

topology that makes this bijection a homeomorphism, we know (see [21]) that, for example, the orbit

space of nonsingularmatrix polynomials with fixed determinant degree is connected but not compact

and it admits a cellular decomposition, each cell being the set of orbits with the sameHermite indices;

i.e., the same degrees of the diagonal polynomials in the Hermite normal form representing each orbit.

A natural question then is whether any known topology on the orbit space of polynomial matri-

ces renders the bijection a homeomorphism. The main goal of this contribution is to prove that this

question has an affirmative answer. This is done in Section 3 where it is proved that an appropriated

topology is the compact–open topology. It will be shown through an example in Appendix B that, in

general this topology, does not coincide with the topologies derived from the usual norms. We finally

use the homeomorphism to produce some new results on the characterization of invariants for the

right equivalence (invariant factors and Wiener–Hopf factorization indices) of polynomial matrices

under small perturbations (Section 4).

2. Polynomial matrix representations and its realizations

Throughout this paper K will denote the field of real, R, or complex numbers, C. The ring of

polynomials with coefficients in K will be denoted by K[s] and K(s) will be its field of fractions, that

is, the field of rational functions. Thematrices with entries fromK[s]will be indistinctly calledmatrix

polynomials or polynomial matrices. A matrix U(s) ∈ K[s]m×m is said to be unimodular if it is a unit

in K[s]m×m; i.e., its determinant is nonzero constant.

For positive integers n,m

Σn,m = {(A, B) ∈ K
n×n × K

n×m : (A, B) controllable}
and in the sequel it is assumed that n � m � 1.
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We formalize the concepts of polynomialmatrix representation of a pair inΣn,m and of a realization

(or left standard or null pair) of a nonsingular matrix polynomial.

Definition 2.1. Let (A, B) ∈ Σn,m and P(s) ∈ K[s]m×m nonsingular. (A, B) is a realization of P(s) and

P(s) is a polynomial matrix representation of (A, B) if there exists N(s) ∈ K[s]n×m such that N(s) and
P(s) are right coprime and

(sIn − A)−1B = N(s)P(s)−1.

There are several equivalent characterizations for these concepts (see [1]). We give two of them,

which are those that will be used in this paper.

Theorem 2.2. Let (A, B) ∈ Σn,m and P(s) ∈ K[s]m×m nonsingular. The following conditions are equiv-

alent:

(a) (A, B) is a realization of P(s) and P(s) is a polynomial matrix representation of (A, B).
(b) (Rosenbrock) There are unimodular matrices U(s), V(s) ∈ K[s]n×n and a matrix Y(s) ∈ K[s]n×m

such that

U(s)
[
sIn − A B

] ⎡⎣ V(s) Y(s)

0 Im

⎤⎦ =
⎡⎣ In−m 0 0

0 P(s) Im

⎤⎦ .

(c) There are matrices C ∈ K
m×n and D(s) ∈ K[s]m×m such that

– (A, C) is observable (i.e., (AT , CT ) is controllable), and
– P(s)−1 = D(s) + C(sIn − A)−1B.

Condition (c) says that system (A, B) can be extended to a system⎧⎨⎩ ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + D(t)u(t)

of minimal order (which means that (A, B) is controllable and (A, C) is observable) for which P(s)−1

is its transfer function matrix. From Condition (b) we deduce that U(s)(sIn − A)V(s) =
⎡⎣ In−m 0

0 P(s)

⎤⎦
and, therefore, deg(det P(s)) = deg(det(sIn − A)) = n. So, A is a linearization of P(s) [26] and sIn − A

and P(s) have the same invariant factors different from 1 (see Section 4.1).

Condition (b) also allows us to construct standard pairs and polynomial matrix representations by

meansof elementary transformations. The followingproposition isbasedon this fact (see [38]).Wefirst

recall the notion of nice basis. A basis ofKn selected fromcolumns in C(A, B) = [BABA2B · · · An−1B] is
nice in the sense of [2] (see also [22]) if for 0 � i � q−1, Aibj is in the basis provided that Aqbj is in it. If

{b1, Ab1, . . . , Ar1−1b1, . . . , bm, Abm, . . . , Arm−1bm}
is a nice basis, where we must agree that bi is absent if ri = 0, then r1, . . . , rm are called the indices

of the nice basis associated with (A, B). The following proposition states that given (A, B) ∈ Σn,m and

any nice basis of K
n associated with (A, B), a polynomial matrix representation of (A, B) can be con-

structed. Moreover, this polynomial matrix representation is a row degree dominant matrix with row

degrees the indices of the basis, that is, a matrix where the elements of the diagonal are monic poly-

nomials with degree equal to the indices of the basis and greater than the degree of any other element

in the same row. These polynomial matrix representation will play an important role in what follows.

Proposition 2.3. Let (A, B) ∈ Σn,m. Let r1, . . . , rm be the indices of a nice basis of K
n associated with

(A, B). Then there exist scalars xijt ∈ K, i, j = 1, . . . ,m, t = 0, 1, . . . , ri, such that xiiri = −1, xjiri =
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0, i �= j, and P(s) = (pij(s)) ∈ K[s]m×m, with

pij(s) = −
ri∑

t=0

xjits
t, (2)

is a row degree dominant matrix with row degrees r1, . . . , rm, and a polynomial matrix representation of

(A, B).
Moreover, if B = [b1 · · · bm] and rli �= 0, 1 � l1 < · · · < lp � m and ri = 0 if i /∈ {l1, . . . , lp} then

Aribi = ∑m
j=1

∑rj−1

t=0 xijtA
tbj, i = 1, . . . ,m,

T = [bl1 Abl1 · · · Arl1−1bl1 · · · blp · · · A
rlp−1

blp ] ∈ K
n×n,

is nonsingular and

T−1AT = (Aij)
p
i,j=1, T−1B =

⎡⎢⎢⎢⎢⎣
B1
...

Bp

⎤⎥⎥⎥⎥⎦ , (3)

with

Aii =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 xlili0

1 0 · · · 0 xlili1

0 1 · · · 0 xlili2
...

...
. . .

...
...

0 0 · · · 1 xlilirli−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ K

rli×rli , i = 1, . . . , p,

Aij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 xljli0

0 · · · 0 xljli1
...

. . .
...

...

0 · · · 0 xljlirli−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ K

rli×rlj , i, j = 1, . . . , p, i �= j,

Bi = [bi1 · · · bim] ∈ K
rli×m, i = 1, . . . , p, and forj = 1, . . . ,m,

bij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, j ∈ {l1, . . . , lp} − {li},[
1 0 · · · 0

]T
, j = li,[

xjli0 xjli1 · · · xjlirli−1

]T
, j /∈ {l1, . . . , lp}.

It is also possible to obtain, by means of elementary transformations, a standard pair out of a

given nonsingular polynomial matrix. The procedure is based on the fact that for any nonsingular

polynomial matrix P(s) there is always a unimodular matrix U(s) such that P(s)U(s) is column proper

[37]. However, this procedure will not be used here.

As said in Section 1, two controllable matrix pairs are similar if and only if their polynomial matrix

representations are right equivalent. Let the general linear group Gln(K) act on Σn,m by similarity:

Σn,m × Gln(K) → Σn,m

((A, B), T) �→ (T−1AT, T−1B)
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and let [(A, B)]denote the orbit of (A, B)under this action. Since anecessary condition for a polynomial

matrix P(s) to be a polynomial matrix representation of a pair in Σn,m is that deg(det P(s)) = n, we

consider the set

Kn[s]m×m = {P(s) ∈ K[s]m×m : deg(det(P(s))) = n}.
Let Glm(K[s]) be the group of unimodularmatrices and let it act onKn[s]m×m by rightmultiplication:

Kn[s]m×m × Glm(K[s]) → Kn[s]m×m

(P(s),U(s)) �→ P(s)U(s).

As above, [P(s)] denotes the orbit of P(s) under this action. Put

Σ̃n,m = Σm,n

Gln(K)
and K̃n[s]m×m = Kn[s]m×m

Glm(K[s]) .

It follows from (1) that the correspondence

f̃ : Σ̃n,m → K̃n[s]m×m

[(A, B)] �→ [P(s)] (4)

where P(s) is any polynomial matrix representation of (A, B) (or (A, B) is any realization or standard

pair of P(s)), is a bijection between orbit spaces.

3. The compact–open topology in the set of polynomial matrices

Our goal is to prove that the map defined in (4) is a homeomorphism when Σn,m is provided with

the usual topology, the compact–open topology is considered in Kn[s]m×m, and Σ̃n,m and K̃n[s]m×m

are given the corresponding quotient topologies. The proof of the continuity of this map is quite

straightforward (Lemma 3.6), but proving that it is also open seems to be more involved. The main

idea is to associate continuously with each P(s) ∈ Kn[s]m×m a minimal realization of the strictly

proper part of P(s)−1. That is to say, given P(s) we write

P(s)−1 = 1

det P(s)
Adj(P(s)) = Q(s) + R(s)

det P(s)
,

withQ(s) and R(s) being the quotient and remainder of the Euclidean division of Adj(P(s)) by det P(s).
We will see that, with the compact–open topology, R(s) depends continuously on P(s). Once this

is proved we will associate continuously with (R(s), det P(s)) a minimal realization, (A, B, C), of
R(s)(det P(s))−1 (that is, R(s)(det P(s))−1 = C(sI − A)B, (A, B) controllable and (A, C) observable). It
turns out that, by Theorem 2.2, P(s) is a polynomial matrix representation of (A, B). Since all minimal

realizations are similar, a mapping from Kn[s]m×m onto Σ̃n,m will be defined and its continuity will

be proved.

Everything depends on a basic property: The remainder of the Euclidean division of two polyno-

mials, p(z) and q(z), continuously depends on these polynomials when the divisor, q(z), is in a set of

polynomials of fixed degree and the corresponding polynomial sets are endowed with the compact–

open topology (Proposition 3.7). In turn, this result is based on the fact, for p(z) and q(z) as indicated,

the coefficients in the Laurent series at infinity of
p(z)
q(z)

continuously depend on p(z) and q(z) (Lemma

3.1). It is most likely that these results are either known or consequences of more general results and

their proofs only require the use of standard techniques in complex analysis. However, we have not

been able to find them in the literature and, for completeness, the proofs are included in Appendix A.
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Let D be any open set in C. Define the sets

C(D)m×n = {F : D → C
m×n : F continuous in D},

H(D)m×n = {F : D → C
m×n : F holomorphic in D},

P(D)m×n = {P : D → C
m×n : P polynomial matrix function}.

Then P(D)m×n ⊂ H(D)m×n ⊂ C(D)m×n.

Let ‖ · ‖ be any matrix norm. Given F ∈ C(D)m×n, a compact subset Γ in D and a positive real

number ε, let

VF(Γ , ε) = {G ∈ C(D)m×n : ‖G(z) − F(z)‖ < ε for all z ∈ Γ }.
By [36, Theorem 43.7] and [7, Proposition 3.1, p. 146] or [29, Theorem 5.1, p. 286] we know that the

sets VF(Γ , ε) form a neighbourhood basis for the compact–open topology in C(D)m×n. Notice that

VF(Γ , ε) depends on the matrix norm. However, since all matrix norms are equivalent in C
m×n, the

topologies generated by using different norms in VF(Γ , ε) are all the same.

We consider the relative compact–open topology in P(D)m×n andH(D)m×n. Hereafter we assume

the product of two or more spaces to be endowed with the product topology. Note that the spaces

P(D)m×n endowed with the compact–open topology and P(D) × · · · × P(D) (mn times) endowed

with theproduct topologywhen the compact–open topology is considered inP(D) arehomeomorphic.

Now K[s] can be identified with P(C) (see [15, p. 365]), and then K[s]m×n can be endowed with

the compact–open topology and P(C)m×n with the topologies induced by norms. We will consider

Σ̃n,m and K̃n[s]m×m endowed with the corresponding quotient topologies, i.e., the finest topologies

for which the canonical projections πΣ : Σn,m → Σ̃n,m and πK : Kn[s]m×m → K̃n[s]m×m are

continuous maps.

Along this paper the l1 norm in the corresponding space will be used for specific computations.

Thus if A ∈ C
n×m then the l1 norm is

‖A‖ =
n,m∑
i,j=1

|aij|.

The l1 norm of (A, B) ∈ Σn,m is ‖(A, B)‖ = ‖A‖ + ‖B‖ after identifying Σn,m with an open set of

K
n×(n+m), and if P(s) = Pds

d + Pd−1s
d−1 + · · · + P1s + P0 is a matrix polynomial then ‖P(s)‖ =

‖P0‖ + ‖P1‖ + · · · + ‖Pd‖.
Several normed spaceswill appear along the paper. If x is any point in one of them, Bη(x)will denote

the open ball with centre at x and radius η.
As already commented the proof of the following result will be given in Appendix A.

Lemma 3.1. Let (p, q) ∈ P(C) × Pn(C), where Pn(D) = {p ∈ P(D) : p has degree n}, and let
p(z)
q(z)

= ∑+∞
j=−∞ ajz

j be the Laurent series at infinity of p/q. If we consider the usual topology in C and the

compact–open topology in P(C) and Pn(C), the map

ϕj : P(C) × Pn(C) → C

(p, q) �→ aj

is continuous for −∞ < j < +∞.

Remark 3.2. The set P(C) × Pn(C) can be identified with the set of rational functions with degree

of the denominator equal to n. If the subset of strictly proper rational functions is considered instead,

then it is known (see [34, p. 105]) that the compact–open topology and the topology derived from any

norm (after identifying a proper rational function with degree n in the denominator with a vector in

C
2n) are the same.

An immediate consequence of Lemma 3.1 is
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Corollary 3.3. If p ∈ P(C) and p(z) = p0 + p1z + · · · then for j � 0 the map

ϕj : P(C) → C

p �→ pj

is continuous with the usual topology in C and the compact–open topology in P(C).

For each d ∈ N define the set

K
d[s]m×n = {P(s) ∈ K[s]m×n : deg(P(s)) � d}.

For this finite-dimensional vector space we have

Proposition 3.4. InK
d[s]m×n the compact–open topology and the topology induced by any norm are the

same.

Proof. Any open set in the compact–open topology is open in the topology induced by any norm

because both are jointly continuous for K
d[s]m×m and the compact–open topology is the smallest

jointly continuous topology for K
d[s]m×m [36, p. 288].

For the converse, if m = n = 1 and p(s) ∈ K
d[s], it follows from Corollary 3.3 that for each ε > 0

there exist δj > 0 and Γj , compact in C, such that if p̃(s) ∈ Vp(Γ1, δj) ∩ K
d[s] then |pj − p̃j| < ε

d+1

for all j = 0, 1, . . . , d. Then ‖p(s) − p̃(s)‖ = ∑d
j=0 |pj − p̃j| < ε.

The general case follows easily from this by using the l1 norm. �

Our next objective is to prove the continuity of f̃ . The following remarkwill play a role in that proof.

Remark 3.5. Let (A, B) ∈ Σn,m be in the form (3). Then (recall that normmeans l1 norm for practical

computations)

‖(A, B)‖ = n + ∑
i,j,t

|xijt|.
By Proposition 2.3 we know that there exists a polynomial matrix representation P(s) of (A, B) in the

form (2). Therefore, P(s) ∈ Kn[s]m×m, deg(P(s)) � n, and

‖P(s)‖ = m + ∑
i,j,t

|xijt|.

We will use the following notation for the intersection of Kn[s]m×m and K
d[s]m×m:

K
d
n[s]m×m = {P(s) ∈ K[s]m×m : deg(det P(s)) = n, deg(P(s)) � d}.

Notice that dm � n is required for this set to be non-empty. In K
d
n[s]m×m we consider the relative

compact–open topology. By Proposition 3.4 this topology and the relative topology induced by any

norm are the same.

Lemma 3.6. Consider Σn,m with the topology induced by any norm, Kn[s]m×m with the compact–open

topology and Σ̃n,m and K̃n[s]m×m with the corresponding quotient topologies. The map

f̃ : Σ̃n,m → K̃n[s]m×m

[(A, B)] �→ [P(s)]
where P(s) is any polynomial matrix representation of (A, B), is continuous.
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Proof. It is enough to prove that f = f̃ ◦ πΣ : Σn,m → K̃n[s]m×m is continuous. Let U be any open

set in K̃n[s]m×m. We aim to see that f−1(U) is open in Σn,m.

Let (A, B) ∈ f−1(U). Suppose that r1, . . . , rm are the indices of a nice basis of K
n associated with

(A, B), with B = [b1 · · · bm]. Therefore,
{b1, Ab1, . . . , Ar1−1b1, . . . , bm, Abm, . . . , Arm−1bm},

where bi is absent if ri = 0, is a nice basis associated with (A, B) and the matrix

T = [b1 Ab1 · · · Ar1−1b1 · · · bm Abm · · · Arm−1bm] ∈ K
n×n

is nonsingular. There exists δ2 > 0 such that if ‖(A, B) − (Â, B̂)‖ < δ2 and B̂ =
[
b̂1 · · · b̂m

]
, then

T̂ = [b̂1 Âb̂1 · · · Âr1−1b̂1 · · · b̂m Âb̂m · · · Ârm−1b̂m] ∈ K
n×n

is also nonsingular. Therefore, (Â, B̂) is controllable and r1, . . . , rm are the indices of a nice basis

associated with (Â, B̂).

Let α : Bδ2((A, B)) → Σn,m be a map defined by α((Ã, B̃)) = (T̃−1ÃT̃, T̃−1B̃). According to what

we have just said, this map is continuous and so, for any ε > 0 there exists 0 < δ < δ2 such that if

‖(A, B) − (Ã, B̃)‖ < δ then ‖(T−1AT, T−1B) − (T̃−1ÃT̃, T̃−1B̃)‖ < ε. Moreover, (T−1AT, T−1B) and

(T̃−1ÃT̃, T̃−1B̃) have the form (3) (with, possibly, different parameters xijk).

Proposition 2.3 ensures that with those parameters, polynomial matrices P(s) and P̃(s) can be con-

structedwith the form (2) that are polynomialmatrix representations of (A, B) and (Ã, B̃), respectively.
Then,on theonehand,byRemark3.5,P(s), P̃(s) ∈ K

n
n[s]m×m, and‖P(s)−P̃(s)‖ = ‖(T−1AT, T−1B)

− (T̃−1ÃT̃, T̃−1B̃)‖ < ε. And on the other hand, since P(s) is a polynomial matrix representation of

(A, B) and (A, B) ∈ f−1(U), [P(s)] ∈ U and P(s) ∈ π−1
K

(U). But π−1
K

(U) is open in Kn[s]m×m

with the compact–open topology and by Proposition 3.4 π−1
K

(U) ∩ K
n
n[s]m×m is open in K

n
n[s]m×m

with the topology induced by the l1 norm. Notice now that since P(s) has the form (2), P(s) ∈
π−1

K
(U)∩ K

n
n[s]m×m. Thus, there exists ε1 > 0 such that if P̂(s) ∈ K

n
n[s]m×m and ‖P(s)− P̂(s)‖ < ε1

then P̂(s) ∈ π−1
K

(U).

By choosing ε = ε1 we have that ‖P(s) − P̃(s)‖ < ε1 and so P̃(s) ∈ π−1
K

(U); i.e., f ((Ã, B̃)) =
[P̃(s)] ∈ U. In otherwords, for all (A, B) ∈ f−1(U) there exists δ > 0 such that if ‖(A, B)−(Ã, B̃)‖ < δ

then (Ã, B̃) ∈ f−1(U). That is to say, the set f−1(U) is open in Σn,m. �

Our goal now is to prove that f̃−1 is also continuous when the quotient compact–open topology

is considered. The proof is strongly based on the following result that says that the remainder of the

Euclidean division of any polynomial by a polynomial of fixed degree is continuouswhen the compact–

open topology is considered.

Proposition 3.7. Let p(s) ∈ K[s] and q(s) ∈ Kn[s]. Denote by r(s) the remainder of the Euclidean

division of p(s) by q(s). With the compact–open topology in all involved sets, the map

ϕr : K[s] × Kn[s] → K
n−1[s]

(p(s), q(s)) �→ r(s)

is continuous.

Proof. Write p(s) = c(s)q(s)+ r(s) and p(s)
q(s)

= c(s)+ r(s)
q(s)

. Notice that
r(s)
q(s)

is a strictly proper rational

function. Thus, its Laurent series at infinity is of the form

r(z)

q(z)
=

−1∑
j=−∞

ajz
j,
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and if

c(z) =
d∑

j=0

ajz
j

then

p(z)

q(z)
=

d∑
j=0

ajz
j +

−1∑
j=−∞

ajz
j

is the Laurent series expansion of
p(z)
q(z)

at infinity.

Set

q(z) = qnz
n + qn−1z

n−1 + · · · + q1z + q0, qn �= 0,

and

r(z) = rn−1z
n−1 + rn−2z

n−2 + · · · + r1z + r0.

Then r(z) = q(z)
∑−∞

j=−1 ajz
j for all z big enough, and this implies that

rn−j = qna−j + qn−1a−(j−1) + · · · + qn−j+1a−1, j = 1, 2, . . . , n. (5)

Therefore, the coefficients of r(z) are determined by the coefficients of q(z) and the first n coefficients

of the Laurent series of
r(z)
q(z)

.

We prove now that ϕr is continuous when in K[s], Kn[s] and K
n−1[s] we consider the compact–

open topology. First, by Proposition 3.4, we can use in Kn[s] and K
n−1[s] the topology induced by any

norm in these spaces. Second, by Lemma 3.1 and (5) for j = 0, . . . , n−1, rj is a continuous function of

p(s) and q(s). Finally, with the topology induced by any norm inK
n−1[s] and the usual topology inK

n,

the map ρ : K
n → K

n−1[s] defined by ρ(x0, . . . , xn−1) = x0 + x1s + · · · + xn−1s
n−1 is continuous

and the proposition follows. �

Remark 3.8. (i) The quotient c(s) of the Euclidean division of p(s) and q(s) is also a continuous

function of p(s) and q(s) when the compact–open topology is considered in K[s] and Kn[s].
However, this fact will be not used.

(ii) In K[s] the compact–open topology and the topologies induced by norms are not the same in

general. In the previous propositionwehave seen that the remainder of the Euclidean division of

anypolynomial byapolynomial offixeddegree is a continuous functionwhen thecompact–open

topology is considered. An example is given now that shows that this function is not continuous

when the topology induced by the l1 norm is considered:

Example 3.9. Let p(s) = 1, q(s) = s − 2, ε = 1
2
. For each δ > 0 there exists k ∈ N such that 1

k
< δ

and there exist p′(s) = 1
k
sk + 1 such that ‖p′(s) − p(s)‖ = 1

k
< δ. The remainders of the Euclidean

division of p(s) and p′(s) by q(s) are, respectively, r(s) = 1 and r′(s) = 2k

k
+1. But ‖r′(s)−r(s)‖ = 2k

k
.

We need some additional lemmas to prove the continuity of f̃−1. Recall that theMcMillan degree of

a strictly proper rational matrix G(s) ∈ Kpr(s)
m×n, δM(G), is (see [35, p. 42]) the order of the minimal

realizations of G(s). In particular, if P(s) ∈ K[s]m×m is nonsingular and (A, B) ∈ Σn,m is a realization

of P(s) then, by item (c) of Theorem 2.2, there exist matrices C and D(s) such that

P(s)−1 = D(s) + C(sIn − A)−1B

and (A, B) is controllable and (A, C) is observable. This means that C(sIn −A)−1B is aminimal realiza-

tion of the strictly proper part of P(s)−1. So, the McMillan degree of the strictly proper part of P(s)−1
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is deg(det P(s)) = n. Notice that

P(s)−1 = 1

det P(s)
Adj P(s) = D(s) + 1

det P(s)
R(s),

where R(s) is a polynomial matrix of degree less than n whose elements are the remainders of the

Euclidean divisions of the elements of Adj P(s) by det P(s). Hence 1
det P(s)

R(s) is the strictly proper part

of P(s)−1 and so the McMillan degree of this rational matrix is deg(det P(s)). The pair (R(s), det P(s))
will play an important role inwhat follows.Weneed a notation for the set of pairs (L(s), q(s)) ofmatrix

polynomials and monic polynomials such that 1
q(s)

L(s) has McMillan degree n:

(Kd−1[s]m×n × Kd[s])n =
{
(L(s), q(s)) ∈ K

d−1[s]m×n × Kd[s] : δM

(
1

q(s)
L(s)

)
= n

}
.

Lemma3.10. Themapα : Kn[s]m×m → (Kn−1[s]m×m×Kn[s])n definedbyα(P(s))= (R(s), det P(s)),
whereR(s) is the remainder of the EuclideandivisionofAdj P(s)bydet P(s), is continuouswhenweconsider

the compact–open topology in all the involved sets.

Proof. On the one hand K[s]m×m endowed with the compact–open topology and K[s] × · · · × K[s]
(m2 times) endowed with the product topology when the compact–open topology is considered in

K[s] are homeomorphic. On the other hand, the sum and product of polynomials are continuous

functionswhenK[s] is providedwith the compact–open topology (see LemmaA.1). As a consequence,

the determinant and the adjoint of a polynomial matrix are continuous functions of the polynomial

matrix. That is to say,

α1 : Kn[s]m×m → K[s]m×m × Kn[s]
P(s) �→ (Adj P(s), det P(s))

is continuous.

Consider the map

α2 : K[s]m×m × Kn[s] → K
n−1[s]m×m × Kn[s]

(Q(s), q(s)) �→ (L(s), q(s))

where L(s) is the remainder of the Euclidean division of Q(s) ∈ K[s]m×m by q(s) ∈ Kn[s]. By Propo-

sition 3.7, α2 is continuous.

Since (R(s), det P(s)) ∈ (Kn−1[s]m×m × Kn[s])n, α = α2 ◦ α1 and α is continuous. �

Let

Σn,m,m = {(A, B, C) ∈ K
n×n × K

n×m × K
n×n : (A, C) observable and (A, B) controllable}.

The triples (A1, B1, C1), (A2, B2, C2) ∈ Σn,m,m are similar if there exists a nonsingular matrix T ∈
K

n×n such that (A2, B2, C2) = (T−1A1T, T
−1B1, C1T). Recall that two similar triples give raise to the

same strictly proper rational matrix and, conversely, if two triples areminimal realizations of a strictly

proper rational matrix, they must be similar. Let Σ̃n
n,m,m, = Σn,m,m

Gln(K)
be given the quotient topology

when Σn,m,m is seen as a subspace of K
n(n+2m).

Lemma3.11. Let (L(s), q(s)) ∈ (Kn−1[s]m×m×Kn[s])n. Let (A, B, C) ∈ Σn,m,m beaminimal realization

of 1
q(s)

L(s). Then the map

β : (Kn−1[s]m×m × Kn[s])n → Σ̃n
n,m,m

(L(s), q(s)) �→ [(A, B, C)]
is continuous.
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Proof. Let (M1, . . . ,M2n) be a finite sequence of matricesMi ∈ K
m×m and for s, t � 1 letHs,t be the

Hankel matrix:

Hs,t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M1 M2 · · · Mt

M2 M3 · · · Mt+1

...
...

. . .
...

Ms Ms+1 · · · Ms+t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Put

Mn,m = {(M1, . . . ,M2n) : rankHn,n = rankHn+1,n = rankHn,n+1 = n}.
Let (L(s), q(s)) ∈ (Kn−1[s]m×m × Kn[s])n and (A, B, C) a minimal realization of 1

q(s)
L(s). This strictly

proper matrix can be written as

1

q(s)
L(s) = C(sIn − A)−1B =

0∑
j=−∞

CA−jBsj−1

for any swith absolute value greater than the spectral radius ofA. By [33, Corollary 5.5.7], (CB, CAB, . . . ,
CA2n−1B) ∈ Mn,m. Therefore the map

β1 : (Kn−1[s]m×m × Kn[s])n → Mn,m

(L(s), q(s)) �→ (CB, CAB, . . . , CA2n−1B)

is well defined and, by Lemma 3.1, it is continuous. Now, by [33, p. 224], the map

β2 : Σ̃n,m,m → Mn,m

[(A, B, C)] �→ (CB, CAB, . . . , CA2n−1B)

is a homeomorphism. Since β = β−1
2 ◦ β1, β is continuous. �

The following corollary is a straightforward consequence of the previous lemma and the fact that

the map Σ̃n
n,m,m → Σ̃n,m that takes [(A, B, C)] to [(A, B)] is also continuous.

Corollary 3.12. Let (L(s), q(s)) ∈ (Kn−1[s]m×m × Kn[s])n. Let (A, B, C) ∈ Σn,m,m be a minimal

realization of 1
q(s)

L(s). Then the map

β : (Kn−1[s]m×m × Kn[s])n → Σ̃n,m

(L(s), q(s)) �→ [(A, B)]
is continuous.

Lemma 3.13. The map

f̃−1 : K̃n[s]m×m → Σ̃n,m

[P(s)] �→ [(A, B)]
where P(s) is a polynomial matrix representation of (A, B), is continuous for the quotient compact–open

topology.

Proof. It is enough to prove that f̃−1 ◦πK : Kn[s]m×m → Σ̃n,m is continuous. Notice that f̃−1 ◦πK =
β ◦ α, with α and β the maps in Lemma 3.10 and Corollary 3.12, respectively. In fact β(α(P(s))) =
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[(A, B)] means that there exists C ∈ K
m×n such that (A, B, C) is a minimal realization of the strictly

proper part of P(s)−1. By Theorem 2.2, P(s) is a polynomial matrix representation of (A, B). Since α

and β are continuous, so is f̃−1 ◦ πK. �

We have already proved that f̃ is bijective, continuous with continuous inverse. Therefore,

Theorem 3.14. The map

f̃ : Σ̃n,m → K̃n[s]m×m

[(A, B)] �→ [P(s)]
where P(s) is a polynomial matrix representation of (A, B), is a homeomorphism when we consider the

quotient compact–open topology in K̃n[s]m×m.

It is worth-remarking that for the space K̃n[s]m×m with the quotient topology induced by any

norm, f̃ is continuous (same proof as in Lemma 3.6). One can reasonably ask whether its inverse is

also continuous for some specific norm defined in Kn[s]m×m. At this point it is important to recall

that in K[s]m×m all norms are not equivalent (see, for example, [32, p. 195]). An example is shown in

Appendix B where for many norms in Kn[s]m×m, f̃−1 is not continuous.

4. Perturbation of polynomial matrices with fixed determinant degree: invariants of right equiv-

alence

In this section we study the changes of the right equivalence invariants under small perturbations

of polynomial matrices. On the one hand, we give necessary conditions that must be satisfied by the

invariants of a polynomial matrix close enough to a given one. On the other hand, we prove that these

conditions, are also sufficient in the sense that if amatrix polynomial P(s), is given and some invariants

are prescribed that satisfy those conditions then as close as we want to P(s) there is another matrix

polynomials with the prescribed invariants.

First of all we introduce the right equivalence invariants and some needed concepts and results.

4.1. Invariants for the right equivalence of matrix polynomials

By a partition it is meant an infinite sequence a = (a1, a2, . . .) of nonnegative integers almost

all zero. The length of a, l(a), is the number of its components ai different from zero. In the sequel

we identify partition with non-increasing partition. Therefore a partition is an infinite sequence of

nonnegative integers a = (a1, a2, . . .) such that a1 � a2 � · · · and aj = 0 for j > l(a). If a and

b are partitions, a + b is the partition whose ith component is ai + bi. Let a and b be partitions and

m = max{l(a), l(b)}. The partition a is majorized by b or bmajorizes a, and it is denoted by a ≺ b, if

j∑
i=1

ai �
j∑

i=1

bi, j = 1, . . . ,m − 1,

m∑
i=1

ai =
m∑
i=1

bi.

If a = (a1, . . . , am, 0, . . .) and b = (b1, . . . , bm, 0, . . .) we will write (a1, . . . , am) ≺ (b1, . . . , bm)
instead of a ≺ b.

We recall now the notion of finite structure of a polynomial matrix. Two polynomial matrices

P1(s), P2(s) ∈ K[s]m×n are equivalent if there exist unimodularmatricesU(s) ∈ K[s]m×m and V(s) ∈
K[s]n×n such that

P2(s) = U(s)P1(s)V(s).
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Any polynomial matrix P(s) ∈ K[s]m×n, rank P(s) = r, r � min{m, n}, is equivalent to its Smith form

(see, for example, [14])

S(s) =
⎡⎣ Diag (α1(s), . . . , αr(s)) 0

0 0

⎤⎦ ,

where αi(s) are monic polynomials such that α1(s) | · · · | αr(s). These polynomials are uniquely

determined by P(s) and are called the invariant factors of P(s). If we decompose the invariant factors

αi(s) of P(s) into irreducible monic factors φj(s) over C and kij is the power of φj(s) in αi(s), then

φj(s)
kij with kij �= 0 are called the elementary divisors of P(s). Either the invariant factors or the

elementary divisors give the finite structure of P(s).
We introduce now the Wiener–Hopf factorization indices of a rational matrix. Kpr(s) denotes the

ring of proper rational functions. These are the rational functionswhose numerators have degrees that

are not bigger that the degrees of their denominators. A proper rational matrix is amatrix with entries

in this ring and a square proper rational matrix B(s) ∈ Kpr(s)
m×m is called biproper if its inverse is in

Kpr(s)
m×m or, equivalently, if its determinant is a biproper rational function, that is, the degrees of its

numerator and denominator are the same.

Two rational matrices T1(s), T2(s) ∈ K(s)m×n are left Wiener–Hopf equivalent if there exist a

biproper matrix B(s) ∈ Kpr(s)
m×m and a unimodular matrix U(s) ∈ K[s]n×n such that

T2(s) = B(s)T1(s)U(s).

Any rational matrix T(s) ∈ K(s)m×n, rank T(s) = r, r � min{m, n}, is left Wiener–Hopf equivalent to

a matrix of the form


(s) =
⎡⎣ Diag(sk1 , . . . , skr ) 0

0 0

⎤⎦
where k1 � · · · � kr , ki ∈ Z (see [13,9,16]). These integers form a complete system of invariants of

T(s) for the left Wiener–Hopf equivalence and are called the left Wiener–Hopf factorization indices of

T(s). The left Wiener–Hopf factorization indices of a polynomial matrix are non-negative.

4.2. Perturbation of matrix polynomials

Recall that the nontrivial finite invariant factors of a nonsingular polynomial matrix P(s) are the

nontrivial invariant factors of the state matrix of any pair for which P(s) is a polynomial matrix repre-

sentation (Theorem 2.2 (b)). Moreover, there is a close relationship between the controllability indices

of a controllable system and theWiener–Hopf factorization indices of its matrix polynomial represen-

tations (see [13,38]).

Proposition 4.1. Let P(s) be a polynomial matrix representation of (A, B). Then the left Wiener–Hopf

factorization indices of P(s) are the controllability indices of (A, B).

The point is that there are results in the literature about the changes, under small perturbations,

of the finite structure of constant matrices [27,3] and the changes of the controllability indices of

matrix pairs [18]. We can use that the orbit spaces Σ̃n,m and K̃n[s]m×m are homeomorphic and the

corresponding canonical projections πΣ : Σn,m → Σ̃n,m and πK : Kn[s]m×m → K̃n[s]m×m are

continuous and open to translate these results on perturbation into results about polynomialmatrices.

The change of the finite structure of nonsingular polynomial matrices under small perturbations

can also be studied using the results in [4]. We will see that both approximations give better results in

some cases but worse in some others.

Let P(s) ∈ K[s]m×m, let {λ1, . . . , λu} be the set of roots in C of det P(s) and let, hereafter, η
be a positive real number such that the open balls Bη(λi), i = 1, . . . , u, are pairwise disjoint. We

define Vη(P(s)) = ∪u
i=1Bη(λi). If r = rank P(s) and (s − λi)

aij with aij > 0 for j = ti, ti + 1, . . . , r,
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i = 1, . . . , u are the elementary divisors of P(s) in C, the Segre characteristic of P(s) is

[(a1r, a1(r−1), . . . , a1t1 , 0, . . .), . . . , (aur, au(r−1), . . . , autu, 0, . . .)]
(with air � ai(r−1) � · · · � aiti for i = 1, . . . , u).

First we prove that πΣ is an open map.

Lemma 4.2. The map πΣ is open.

Proof. We have to prove that if U is an open set in Σn,m, then πΣ(U) is an open set in Σ̃n,m, i.e.,

π−1
Σ (πΣ(U)) is open in Σn,m. We know that

π−1
Σ (πΣ(U)) = {(TAT−1, TB) | (A, B) ∈ U, T ∈ K

n×n nonsingular}.
Let (A1, B1) ∈ π−1

Σ (πΣ(U)). Then there exist (A, B) ∈ U and a nonsingular matrix T ∈ K
n×n

such that (A1, B1) = (TAT−1, TB). Since U is open, there exists a real number δ1 > 0 such that if

‖[A B] − [A′ B′]‖ < δ1, then (A′, B′) ∈ U. Let S =
⎡⎣ T 0

0 Im

⎤⎦. Let δ = δ1
‖T−1‖·‖S‖ . Hence, if (A2, B2) ∈

Σn,m, if ‖[A2 B2] − [A1 B1]‖ < δ and if we call (A′, B′) = (T−1A2T, T
−1B2), then ‖[A′ B′] − [A B]‖ =

‖[T−1A2T T−1B2] − [T−1A1T T−1B1]‖ � ‖T−1‖ · ‖S‖ · ‖[A2 B2] − [A1 B1]‖ < ‖T−1‖ · ‖S‖δ =
δ1. Therefore, (A

′, B′) ∈ U and, by the definition of π−1
Σ (πΣ(U)), (A2, B2) ∈ π−1

Σ (πΣ(U)). Thus,

π−1
Σ (πΣ(U)) is open. �

Theorem 4.3. Let P(s) ∈ Kn[s]m×m. Let η > 0. Let {λ1, . . . , λp} be a subset of the roots inC of det P(s),
ai the partition of the Segre characteristic of P(s) corresponding to λi, i = 1, . . . , p, and k1, . . . , km its

left Wiener–Hopf factorization indices. Then there exists a neighbourhood V of P(s) in the spaceKn[s]m×m

with the compact–open topology such that if P′(s) ∈ V the following properties hold:

(i) the roots in C of det P′(s) are in Vη(P(s)),

(ii) if μi1, . . . , μivi are the roots in C of det P′(s) that are in Bη(λi) and bij is the partition of the Segre

characteristic of P′(s) corresponding to μij , j = 1, . . . , vi, i = 1, . . . , p, then
p∑

i=1

ai ≺
p∑

i=1

vi∑
j=1

bij,

(iii) if k′
1, . . . , k

′
m are the left Wiener–Hopf factorization indices of P′(s), then

(k′
1, . . . , k

′
m) ≺ (k1, . . . , km).

Proof. Let (A, B) ∈ Σn,m such thatP(s) isoneof itspolynomialmatrix representations. Sinceλ1, . . . , λp

are some roots inC of det P(s), a1, . . . , ap are their corresponding partitions of the Segre characteristic
and k1, . . . , km are the leftWiener–Hopf factorization indices of P(s), thenλ1, . . . , λp form a subset of

the eigenvalues of Awith corresponding partitions of the Segre characteristic a1, . . . , ap, respectively,
and k1, . . . , km are the controllability indices of (A, B).

By [27, Theorem 1] or [18, Corollary 4.5] there exists a neighbourhood U of A in K
n×n such that

A′ ∈ U implies that:

(a) the eigenvalues of A′ are in Vη(A),

(b) ifμi1, . . . , μivi are theeigenvaluesofA
′ inBη(λi)andbij is thepartitionof theSegrecharacteristic

of A′ corresponding to μij , j = 1, . . . , vi, i = 1, . . . , p, then
∑p

i=1 ai ≺ ∑p
i=1

∑vi
j=1 bij .

The set U1 = (U ×W)∩Σn,m, withW a neighbourhood of B inK
n×m, is a neighbourhood of (A, B)

in Σn,m.
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By [18, Lemma 4.2] there exists a neighbourhood U2 of (A, B) in Σn,m such that if (A′, B′) ∈ U2 and

k′
1, . . . , k

′
m are its controllability indices then

(k′
1, . . . , k

′
m) ≺ (k1, . . . , km). (6)

Let U3 = U1 ∩ U2. Since πΣ is open, f̃−1 is continuous when we consider the quotient compact–

open topology and πK is continuous, it follows that V = π−1
K

(f̃ (πΣ(U3))) is a neighbourhood of P(s)

inKn[s]m×m. If P′(s) ∈ V , there exists amatrix pair (A′, B′) ∈ U3 such that P′(s) is a polynomialmatrix

representation of (A′, B′). Since (A′, B′) ∈ U1, A
′ satisfies (a) and (b). Therefore, (i) and (ii) are satisfied.

Since (A′, B′) ∈ U2 and k′
1, . . . , k

′
m are the controllability indices of (A′, B′), (6) is verified and so is

(iii). �

Remark 4.4. Items (i) and (ii) in Theorem 4.3 can be deduced from [4, Theorem 2.1]. Actually this

theorem when applied to polynomial matrices is stronger than Theorem 4.3 for the finite structure

because it not only establishes the necessity of the conditions (i) and (ii) for polynomial matrices with

degree of their determinants equal to n, as we do, but for any matrix no matter what the degree of its

determinant is. However, when studying the sufficiency of these conditions, [4, Theorem 1.3] cannot

ensure that the matrix of functions that exists as close as we want to a given polynomial matrix is also

polynomial. Then, [4, Theorem 2.4] states that this is so if the given polynomial matrix is monic. We

extend this result to any polynomial matrix.

Theorem 4.5. Let P(s) ∈ Cn[s]m×m. Let η > 0. Let {λ1, . . . , λp} be a subset of the roots in C of det P(s)
and ai be the partition of the Segre characteristic of P(s) corresponding toλi, i = 1, . . . , p. Let bi1, . . . , bivi
be given partitions, i = 1, . . . , p.

In any neighbourhood V of P(s) in the space Cn[s]m×m with the compact–open topology there exists

P′(s) such that

(i) the roots in C of det P′(s) are in Vη(P(s)),

(ii) det P′(s) has vi roots in C, μi1, . . . , μivi , which are in Bη(λi) and bij is the partition of the Segre

characteristic of P′(s) corresponding to μij , j = 1, . . . , vi, i = 1, . . . , p,

if and only if

ai ≺
vi∑
j=1

bij, i = 1, . . . , p. (7)

Proof. The necessity follows from Theorem 4.3.

Let (A, B) ∈ Σn,m be a realization of P(s). Then λ1, . . . , λp form a subset of the eigenvalues of A

with corresponding partitions of the Segre characteristic a1, . . . , ap, respectively. Since (7) is satisfied,

by [27, Theorem 4], we have that in any neighbourhood U of A in C
n×n there exists A′ ∈ U such that

(a) the eigenvalues of A′ are in Vη(A),

(b) A′ has vi eigenvalues μi1, . . . , μivi in Bη(λi) and bij is the partition of the Segre characteristic of

A′ corresponding to μij , j = 1, . . . , vi, i = 1, . . . , p.

Let V be any neighbourhood of P(s) in Cn[s]m×m. Using that πC is open (same proof as Lemma

4.2), f̃ is continuous and πΣ is also continuous we conclude that π−1
Σ (f̃−1(πK(V))) is a neighbour-

hood of (A, B) in Σn,m. Therefore, there exists δ1 > 0 such that (A, B) ∈ Bδ1((A, B)) ∩ Σn,m ⊂
π−1

Σ (f̃−1(πC(V))). On the other hand, by [18, Lemma 4.2], there exists δ2 > 0 such that if (A′, B′) ∈
Bδ2((A, B)) then (A′, B′) is controllable. Let δ = min{δ1, δ2}. Since Bδ(A) is a neighbourhood of A in

C
n×n, there exists A′ ∈ Bδ(A) that satisfies (a) and (b). Moreover, (A′, B) ∈ Bδ((A, B)) ⊂ Bδ2((A, B)).
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In consequence, (A′, B) is controllable. Finally, (A′, B) ∈ Bδ1((A, B)) ∩ Σn,m ⊂ π−1
Σ (f̃−1(πC(V))),

which implies that (A′, B) has a polynomial matrix representation P′(s) which is in V and satisfies (i)

and (ii). �

In the case that the underlying field is R, Theorem 4.5 can be written in the same terms as in [18].

In the previous theorem the determinant of P′(s)may have roots that are different from the roots of

the determinant of P(s). If the determinant of P(s) and P′(s) are prescribed to have the same roots, then

one is actually prescribing the invariant factors. In this case, a result in [3] about the characterization of

the orbit of a squarematrix under similarity can be used in order to prove, in the sameway as Theorem

4.5, the following result, which is a generalization of [4, Theorem 2.4].

Theorem 4.6. Let P(s) ∈ Kn[s]m×m. Let γ1(s) | · · · | γm(s) be the invariant factors of P(s). Let
γ ′
1(s) | · · · | γ ′

m(s) be monic polynomials such that
∑m

i=1 deg(γ
′
i (s)) = n. In any neighbourhood V of

P(s) in the space Kn[s]m×m with the compact–open topology there exists P′(s) with γ ′
1(s) | · · · | γ ′

m(s)
as invariant factors if and only if

(i) γ ′
1(s) · · · γ ′

i (s) | γ1(s) · · · γi(s), i = 1, . . . ,m,

(ii) γ ′
1(s) · · · γ ′

m(s) = γ1(s) · · · γm(s).

The proof of the following theorem is similar to the one for Theorem 4.5.

Theorem 4.7. Let P(s) ∈ Kn[s]m×m with left Wiener–Hopf factorization indices k1, . . . , km.
Let k′

1 � · · · � k′
m be a sequence of nonnegative integers. In any neighbourhood V of P(s) in the

space Kn[s]m×m with the compact–open topology there exists P′(s) ∈ V such that k′
1, . . . , k

′
m are its

left Wiener–Hopf factorization indices if and only if

(k′
1, . . . , k

′
m) ≺ (k1, . . . , km).

Remark 4.8. Theorems 4.5–4.7 remain true when the topology induced by any norm is considered

because f̃ is continuous for this topology.

Appendix A. Proof of Lemma 3.1

The proof of Lemma 3.1 implicitly or explicitly uses the following two lemmas whose proofs are

immediate.

Lemma A.1. If D is an open set of C and C(D) is endowed with the compact–open topology then the

following maps are continuous

ϕs : C(D) × C(D) → C(D)

(f , g) �→ f + g

ϕp : C(D) × C(D) → C(D)

(f , g) �→ f · g
Lemma A.2. If D1 ⊂ D are open sets of C, D = {f ∈ H(D)|f (z) �= 0 ∀z ∈ D} and H(D1) and D are

endowed with the compact–open topology then the following map is continuous

ϕs : H(D1) × D → H(D)

(f , g) �→ f

g

Proof of Lemma 3.1. We aim to prove that for each j and for any ε > 0 there exist two compact

sets Γ1 and Γ2 and two real numbers δ1, δ2 > 0 such that if (p̃, q̃) ∈ [Vp(Γ1, δ1) × Vq(Γ2, δ2)] ∩
[P(C)×Pn(C)] and if g(z) = p̃(z)

q̃(z)
= ∑+∞

j=−∞ bjz
j is the Laurent series expansion of g at infinity, then

|aj − bj| < ε. Thus, from now on we consider that j has been fixed.
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Recall that if R is the radius of convergence of
p(z)
q(z)

and Λ(q) is the set of the roots of q then

R > maxz∈Λ(q) |z|.
Let Λ(q) = {z1, . . . , zr} and let η > 0 be a real number such that Bη(zi) ∩ Bη(zk) = ∅, i �= k, and

∪r
k=1Bη(zk) ⊂ {z ∈ C : |z| < R}. As a consequence of Rouché’s Theorem or by [24, Theorem 4.1.2], for

example, there exist δ′ > 0 and Γ ′, compact in C, such that if q′ ∈ Vq(Γ
′, δ′) ∩Pn(C), then q′ has all

its roots in ∪r
k=1Bη(zk) ⊂ {z ∈ C : |z| < R}. This means that q′ is not zero in D = {z ∈ C : |z| > R}.

The map

φ : P(C) × D → H(D)

(p, q) �→ p

q

where D = {f ∈ Pn(D) : 1
f

∈ H(D)}, is continuous. Choose real numbers R0 > R and 0 < δ0 < εR
j
0,

and define Γ0 = {z ∈ C : |z| = R0}. There exist δ̃1, δ̃2 > 0, Γ̃1, compact in C, and Γ̃2, compact in D,

such that if (p̃, q̃) ∈ [Vp(Γ̃1, δ̃1) × Vq(Γ̃2, δ̃2)] ∩ [P(C) × D], then p̃

q̃
∈ V p

q
(Γ0, δ0).

Let Γ1 = Γ̃1, Γ2 = Γ̃2 ∪ Γ ′, δ1 = δ̃1, and δ2 = min{δ̃2, δ′}. We see now that if (p̃, q̃) ∈
[Vp(Γ1, δ1) × Vq(Γ2, δ2)] ∩ [P(C) × Pn(C)] and if g(z) = p̃(z)

q̃(z)
= ∑+∞

j=−∞ bjz
j is the Laurent series

expansion of g at infinity, then this series converges uniformly to g for |z| > R′ with R′ < R0 and

|aj − bj| < ε.

Since q̃ ∈ Vq(Γ2, δ2) ∩ Pn(C) then q̃ ∈ Vq(Γ
′, δ′) ∩ Pn(C). This implies that q̃ is different from

zero in D, so q̃ ∈ D and if R′ is the radius of convergence of the Laurent series of
p̃(z)
q̃(z)

then R′ < R0. On

the other hand, by the continuity of φ, since p̃ ∈ Vp(Γ1, δ1) ∩ P(C) and q̃ ∈ Vq(Γ̃2, δ̃2) ∩D it follows

that
p̃

q̃
∈ V p

q
(Γ0, δ0). Namely,

∣∣∣ p(z)
q(z)

− p̃(z)
q̃(z)

∣∣∣ < δ0 for all z ∈ Γ0. Now, by Cauchy’s inequality (see, for

example, [7, p. 87]), we obtain that |aj − bj| � M

R
j
0

, where M = supz∈Γ0

∣∣∣ p(z)
q(z)

− p̃(z)
q̃(z)

∣∣∣ < δ0 < εR
j
0.

Therefore, |aj − bj| � M

R
j
0

� δ0

R
j
0

< ε. �

Appendix B. Norms and homeomeorphism

When m = 1 the set Kn[s] consists of the polynomials with degree n. By Proposition 3.4, in this

set the compact–open topology and the topology induced by any norm are the same. Therefore, Σ̃n,1

and K̃n[s] are homeomorphic when in K̃n[s] the topology induced by any norm is considered.

Hereafter in this section we consider m � 2. We are to give an example in which if the chosen

norm ‖ · ‖e satisfies the property

∀A ∈ K
m×m ∃M > 0 such that ‖Ask‖e � M ∀k ∈ N (8)

then f̃−1 is not continuous. This property is satisfied by those norms in K[s]m×m for which ‖P(s)‖ =
‖P0‖ + · · · + ‖Pd‖, d being the degree of P(s) and ‖ · ‖ any norm in K

m×m. In fact, for these norms

‖Ask‖ = ‖A‖ for any k.

Let f = f̃ ◦ πΣ . If f̃−1 were continuous then f would be open, since πΣ is an open map. We will

see that f is not open in general when a norm ‖ · ‖e satisfying (8) is considered.

Example B.1. Let

(A, B) =
⎛⎝⎡⎣ 2 0

0 0

⎤⎦ ,

⎡⎣ 1 0

0 1

⎤⎦⎞⎠ ∈ Σ2,2.
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Since B is nonsingular and since the rank is a lower semicontinuous function, we know that there

exists ε̃ > 0 such that if ‖B−B′‖ < ε̃ then B′ is nonsingular. Therefore, if (A′, B′) ∈ Bε̃ ((A, B)) then B′
is nonsingular and (A′, B′) is controllable. Thus, Bε̃ ((A, B)) ⊂ Σ2,2. Let ε < min{ε̃, 1

9
}, ε > 0. Then,

on the one hand, Bε((A, B)) ⊂ Bε̃ ((A, B)) ⊂ Σ2,2.

On the other hand,

π−1
K

(f (Bε((A, B)))) = {P(s) ∈ K2[s]2×2 | P(s) is a polynomial matrix

representation of any matrix pair in Bε((A, B))}.
We are going to show that this set is not open in K2[s]2×2. Since

P(s) =
⎡⎣ s − 2 0

0 s

⎤⎦ ∈ K2[s]2×2

is a polynomial matrix representation of (A, B), P(s) ∈ π−1
K

(f (Bε((A, B)))). Let M be such that∥∥∥∥∥∥
⎡⎣ 0 1

0 0

⎤⎦ sk

∥∥∥∥∥∥
e

� M for all k ∈ N.We know that for each δ > 0 there exists p ∈ N such that 1
p

< δ
M
. Let

P′(s) =
⎡⎣ s − 2 1

p
sp

0 s

⎤⎦ ∈ K2[s]2×2.

It is verified that ‖P(s) − P′(s)‖ = 1
p

∥∥∥∥∥∥
⎡⎣ 0 1

0 0

⎤⎦ sp

∥∥∥∥∥∥
e

� 1
p
M < δ. Let us see that P′(s) is not in

π−1
K

(f (Bε((A, B)))), namely, that P′(s) is not a polynomial matrix representation of any matrix pair

in Bε((A, B)). The Hermite form of P′(s) (see [14] or [8]) is H′(s) =
⎡⎣ s − 2 2p

p

0 s

⎤⎦. P′(s) and H′(s) are

polynomial matrix representations of the pair

(A′
1, B

′
1) =

⎛⎝⎡⎣ 2 − 2p

p

0 0

⎤⎦ ,

⎡⎣ 1 0

0 1

⎤⎦⎞⎠ ,

which is not in Bε((A, B)) because ‖[A′
1 B′

1] − [A B]‖ = 2p

p
� ε. Nevertheless, this is not enough; we

have to see that no pair similar to (A′
1, B

′
1) is in Bε((A, B)). Suppose that there is at least one, that is,

suppose that there exists a nonsingular T =
⎡⎣ a b

c d

⎤⎦ such that ‖[TA′
1T

−1 TB′
1] − [A B]‖ < ε. On the

one hand, TB′
1 = T . On the other hand, T−1 = 1

t

⎡⎣ d −b

−c a

⎤⎦, with t = det T = ad − bc. The element

in position (1, 2) of TA′
1T

−1 is− a
t
(2b+ 2p

p
a). Sincewe are assuming that ‖[TA′

1T
−1 TB′

1]−[A B]‖ < ε,

we have that

a = 1 + ε1, b = ε2, c = ε3, d = 1 + ε4, −a

t

(
2b + 2p

p
a

)
= ε5,

with
∑5

i=1 |εi| < ε. Hence, −εi � |εi| < ε, −εiεj � |εiεj| < ε2 < ε and ±εiεjεk � |εiεjεk| < ε3 <

ε, so −ε < εi, −ε < εiεj and −ε < ∓εiεjεk for all i, j, k. Thus, −(1 + ε1)[2ε2 + 2p

p
(1 + ε1)] =
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ε5[(1 + ε1)(1 + ε4) − ε2ε3]. Therefore − 2p

p
(1 + ε1)

2 = u, with u = 2ε2 + ε5 + 2ε2ε1 + ε5ε1 +
ε5ε4 + ε5ε1ε4 − ε5ε2ε3. Then u > −9ε > −1. However, 1 + ε1 > 1 − ε > 1 − 1

9
= 8

9
,

(1 + ε1)
2 > (1 − ε)2 >

(
8
9

)2 = 64
81

and − 2p

p
(1 + ε1)

2 < − 2p

p
64
81

� −264
81

< −1. This is a

contradiction.

References

[1] A. Amparan, S. Marcaida, I. Zaballa, Local realizations and local polynomial matrix representations of systems, Linear Algebra
Appl. 425 (2007) 757–775.

[2] A.C. Antoulas, New results on the algebraic theory of linear systems: the solution of the cover problems, Linear Algebra Appl.

50 (1983) 1–43.
[3] J. Barría, D.A. Herrero, Closure of similarity orbits of nilpotent operators I. Finite rank operators, J. Operator Theory 1 (1979)

177–186.
[4] H. den Boer, G.Ph.A. Thijsse, Semi-stability of sums of partial multiplicities under additive perturbation, Integral Equations

Operator Theory 3 (1) (1980) 23–42.
[5] C.I. Byrnes, The moduli space for linear dynamical systems, in: R. Hermann, C.F. Martin (Eds.), 1976 Ames Conference on

Geometric Control Theory, Math. Sci. Press, Brookline, MA, 1976, pp. 229–279.

[6] C.I. Byrnes, N.E. Hurt, On the moduli of linear dynamical systems, Adv. Math. Studies Anal. 4 (1979) 83–122.
[7] H. Cartan, Elementary Theory of Analytic Functions of One or Several Complex Variables, Dover Publications, New York, 1995.

[8] C.T. Chen, Linear System Theory and Design, Oxford University Press, New York, 1984.
[9] K. Clancey, I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators, Birkhäuser Verlag, Basel, Boston,

Stuttgart, 1981.
[10] P.A. Fuhrmann, Algebraic system theory: an analyst’s point of view, J. Franklin Inst. 301 (1976) 521–540.

[11] P.A. Fuhrmann, Linear Operators and Systems in Hilbert Space, McGraw-Hill, New York, 1981.

[12] P.A. Fuhrmann, U. Helmke, On the parametrization of conditioned invariant subspaces and observer theory, Linear Algebra
Appl. 332–334 (2001) 265–353.

[13] P. Fuhrmann, J.C. Willems, Factorization indices at infinity for rational matrix functions, Integral Equations Operator Theory
2/3 (1979) 287–301.

[14] F.R. Gantmacher, The Theory of Matrices, Chelsea Publishing Company, New York, 1959.
[15] R. Godement, Cours d’algèbre, Hermann Éditeurs, 2005.

[16] I. Gohberg, M.A. Kaashoek, F. van Schagen, Partially SpecifiedMatrices and Operators: Classification, Completion, Applications,
Bikhäuser, Basel, 1995.

[17] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.

[18] J.M. Gracia, I. de Hoyos, I. Zaballa, Perturbation of linear control systems, Linear Algebra Appl. 121 (1989) 353–383.
[19] M. Hazewinkel, Moduli and canonical forms for linear dynamical systems II: The topological case, Math. System Theory 10

(1977) 363–385.
[20] M. Hazewinkel, R. Kalman, On invariants, canonical forms and moduli for linear, constant finite-dimensional, dynamical sys-

tems, Lecture Notes in Econ-Math. System Theory, vol. 131, Springer-Verlag, New York, 1976, pp. 48–60.
[21] U. Helmke, The topology of a moduli space for linear dynamical systems, Comment. Math. Helv. 60 (1985) 630–655.

[22] U. Helmke, Topology of the moduli space for reachable linear dynamical systems: the complex case, Math. Systems Theory 19

(1986) 155–187.
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