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Abstract Since serious fire occurred frequently in recent years, fire safety of high-rise building has
attracted extensive attention. A National Basic Research Program (973 program) of China has
been set up by Ministry of Science and Technology (MOST) of China in 2012 to meet the research
requirements of fire safety in high-rise buildings. This paper reviews the current state of art of
research on fire dynamics of high-rise buildings, including the up-to-date progress of this project.
The following three subjects on fire dynamics of high-rise buildings are addressed in this review: the
ejected flame and fire plume behavior over facade out of the compartment window, the flame spread
behavior over facade thermal insulation materials, and the buoyancy-driven smoke transportation
characteristics along long vertical channels in high-rise buildings. Prospective future works are
discussed and summarized. c© 2013 The Chinese Society of Theoretical and Applied Mechanics.
[doi:10.1063/2.1304201]
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I. INTRODUCTION

With China’s social and economic development and
urbanization, the number of (ultra-) high-rise buildings
is increasing at an unexpected speed. In China, almost
1.5% high-rise buildings are ultra-high-rise ones. How-
ever, these high-rise buildings bring serious fire risks.
Due to the weakness of fire prevention capability in
high-rise buildings, once a fire begins, human life, ani-
mal life, health, or property are all threatened.

Several large fires which attracted great attention
all occurred in high-rise buildings. In 2009, a mas-
sive blaze happened in the uncompleted Television Cul-
tural Center (TVCC) in Beijing caused one firefighter’s
death, seven injuries and more than 4 billion yuan in
damages. The 2010 Shanghai fire destroyed a 28-story
high-rise building, killed at least 58 people, and injured
over 70 others. In addition, the Harbin Jingwei 360 de-
gree Building fire in 2008, the Shenyang Royal Wanxin
Building fire in 2011, and the World Trade Center fire
in New York in 2001 all resulted in great damages. In
a word, high-rise fire could result in terrible casualties
and serious damages. This issue becomes one of the
most concerned topic in public and calls for researches
in this field eagerly.

Compared to normal room fires, the fire behaviors
in high-rise buildings have some new special features.

(1) The extensive use of the external facade insu-
lation materials brings new fire safety issues. Due to
the demand for energy-saving, wall insulation materi-
als are widely used in high-rise buildings. The exterior
organic insulation materials, such as polystyrene and
polyurethane, are of superior energy-saving insulation
performance. However, once these combustible insula-
tion materials ignited, flame spreads very fast over their
surface, and produce large amount of toxic products.
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Fire safety issues of external facade insulation materi-
als have become a major problem for high-rise building.

(2) Complex building structures and boundary envi-
ronment could also lead to special fire evolution behav-
ior. Once the high-rise building with complex structure
catches a fire, stairwells, elevator shafts and tube wells
in the building can cause stack effect, piston effect, etc.
This will significantly contribute to the spread of fire
and smoke transport processes. Furthermore, if the in-
door fire lead to the rupture of the glass curtain wall
and come out of the window, the fire will not be easily
controlled at all. Existing building fire dynamics model
can not explain and predict this kind of high-rise fire
phenomena and behavior.

(3) Fire also brings threats to the structures of high-
rise buildings. Major structures such as glass walls and
steel structures lead to very complex mechanical load
distribution. The key components and nodes in the
structure system are very likely to fail or even collapse
due to non-uniform heat current in a fire. Once this
happened, a secondary disaster could be unavoidable.
So, the structure safety issue of high-rise buildings has
also attracted a great attention in the research field.

(4) Crowd evacuation in high-rise buildings in case
of a fire becomes a major safety issue. In a fire en-
vironment, personnel evacuation behavior in high-rise
buildings shows complex multi-directional characteris-
tics. For example, in China, since elevators are pro-
hibited in a fire, using stairs becomes the only evacu-
ation way. However, a series of problems come as fol-
lows. How to evacuate if the only escapable stairs are
blocked by smoke? How the elder and the disabled es-
cape through the stairs? How to solve the problem of
blockage caused by crowded evacuation? All these prob-
lems needed to be solved for high-rise fire, otherwise,
this may lead to serious consequences.

In order to meet the above research requirements,
a National Basic Research Program (973 program) of
China entitled “Research on key fundamental aspects
of high-rise building fire protection” has been setup by
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Ministry of Science and Technology (MOST) of China
in 2012. This paper reviews the current state of art
of research on fire dynamics of high-rise buildings, in-
cluding the up-to-date progress of this project. The
following three subjects on fire dynamics of high-rise
buildings are focused in this review: the ejected flame
and fire plume behavior over facade out of the window,
the flame spread behavior over facade thermal insula-
tion materials, and the buoyancy-driven smoke trans-
portation characteristics along long vertical channels in
high-rise buildings. Prospective future works are also
discussed and summarized.

II. FACADE FLAME BEHAVIOR AND PLUME
CHARACTERISTICS FROM WINDOW

A. Facade flame ejecting behavior and plume
characteristics

The basic and classical research on facade plume
characteristics was started in 1960 by Yokoi1 by a
reduced-scale model of 0.4m × 0.4m × 0.2m enclosure
in over-ventilated condition that no combustion outside
the window. A non-dimensional parameter predicting
the axis temperature for various window geometries was
built up as

Θ = ΔTZr
5/3
0

(
Q̇2T∞
C2

pρ
2
Zg

)− 1
3

, (1)

where Θ is the temperature of the spurting gas, sub-
script “Z” is the distance from the window surface along
the axis of the jet where the temperature rise is ΔT , r0
is the equivalent radius of the window and defined as
r0 =

√
HB/(2π) (B and H are width and height of the

window respectively), T∞ is the absolute atmospheric
temperature, Cp and ρ are the specific heat at constant

pressure and density of the spurting gas respectively, Q̇
is the convective heat flow rate at the window, and g is
the gravity acceleration. Experimental data were plot-
ted with the non-dimensional temperature Θ versus the
normalized height from the opening Z/r0, showing three
regions as similar to fire plumes (as shown in Fig. 1).

Later on, Bohm and Rasmussen2 measured how the
external flame height and radiation on the facade are
affected by the rate of heat energy released outside the
window. Models on ejected flame height were devel-
oped by Thomas and Law3, Seigel,4 and Webster et al.5

Some large-scale6–8 and middle-scale experiments9,10

were carried out on heat flux exposure to facade walls.
The effect of wind,11,12 window soffit,13 and balcony14

on the facade plume behavior outside the window were
addressed. Heskestad,15 Klote and Milke16 proposed
entrainment correlation models for a window facade
plume, and compared with that of an axisymmetric
plume. Yamada et al.17 studied the combustion effi-
ciency and equivalence ratio, and found these two co-
efficients similar with the observation obtained by Got-
tuk et al.18 Yamaguchi et al.19 modified Yokoi’s model
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Fig. 1. Non-dimensinal temperature Θ versus the normal-
ized height from the opening Z/r0

1

by applying the neutral plane concept. It was verified
that the air inflow rate (kg/s) through the window of
an under-ventilated enclosure fire depended on the ven-
tilation factor brought up by Kawagoe20 as

ṁa = 0.5A
√
H, (2)

where A(m2) and H(m) are area and height of the win-
dow respectively. The heat release rate (kW) inside
the enclosure for under-ventilated conditions is then ex-
pressed as

Q̇inside = ṁaΔHox = 3000× 0.5A
√
H =

1500A
√
H, (3)

where ΔHox represents the heat released per mass of
air consumed in the enclosure.

More recently, this relationship were verified by
Lee et al.21–24 through a small-scale model of 0.5m ×
0.5m× 0.5m fire compartment, and meanwhile a mod-
ified model on facade flame height was proposed based
on characteristic length scales

Zf − Zn

�1
= f(Q̇∗ex) = f

(
Q̇ex

ρ∞CpT∞
√
g�

5/2
1

)
, (4)

�1 = (A
√
H)2/5, (5)

Q̇ex = Q̇− Q̇inside, (6)

where Zf is the mean (50% intermittency) flame height,
Zn is the location of the neutral plane, and �1 is the
characteristic length scale. These equations depict a
simple physical mechanism that flame ejecting behavior
is due to the mixture of excess fuel outside the fire com-
partment when the heat release rate inside surpasses
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the critical value. The behavior of facade flame height
is found to fall into two regimes according to the non-
dimensional excess heat release rate Q̇∗ex, i.e., the “wall
fire” regime and the “(half) axisymmetric fire” regime.
Another two characteristic length scales were also de-
fined as �2 = (AH2)1/4 and �3 = (AH4/3)3/10, rep-
resenting the competition of momentum to buoyancy
strength, and length of flames when it turns from hori-
zontal to vertical.

Delichatsios et al.25 also proposed a new correlation
for gas temperature inside enclosure based on energy
balance. Later, Tang et al.26 carried out reduced-scale
model experiments with a 0.8 m cubic enclosure model.
Their experimental data claim that the temperature in-
side the enclosure can be expressed as

ΔT =
1 500A

√
H/AT

hc + 0.5CpA
√
H/AT

, (7)

where AT represents the total surface area of the en-
closure, and hc represents the overall effective heat loss
coefficient.

In addition, a virtual origin model was introduced26

in correlating the vertical temperature profile of facade
fire plume

Θ = 8.66

(
Z − Zn − Z0

�1

)−5/3

, (8)

where Z0 is the location of the virtual origin, calculated
by dimensionless convective heat release rate Q̇∗conv as

Z0

�
= 2.2(Q̇∗conv)

2/5 − 4.14. (9)

Hu et al.27 also have derived a Gaussian-based
mathematical model theoretically to describe the lat-
eral temperature profile of a spill buoyant plume from
window of a compartment fire as

ΔTx

ΔTaw
=

exp

[
− β

x

�2 + α
2K + 1

2
(Z − Zn − Z0)

]
, (10)

where ΔTx is temperature rise above the ambient, ΔTaw

is maximum temperature rise above the ambient at adi-
abatic wall surface, β is Gaussian profile constant, and
α is the entrainment coefficient. Meanwhile, the effec-
tive plume thickness is deduced by accounting for the
entrainment rate from the non-constrained sides

L = �2 + α

(
2K + 1

2

)
(Z − Zn − Z0). (11)

Additionally, a transitional phase where flames are
ejected from the window intermittently has been found
by Hu et al.28 from the over-ventilated phrase (no flame
ejected) to the full under-ventilated phrase (continu-
ous flame ejected). A probability index is induced to
describe the intermittency of flame ejection, which is
ranged from 0 to 1 as a function of non-dimensional
excess heat release rate as well as the ratio of heat
generation to heat loss inside the enclosure in terms
of P = function(Q̇∗ex, ρ∞CpA

√
gH/(hcAT)).

B. Facade flame behavior and plume characteristics
with external boundary wall constraints

In the last 30 years, there are also large amounts of
research on the flame ejecting behavior under various
external boundary wall constraint conditions induced
by, for example, window eave, facing wall or side walls.

In 1990, a series of full-scale experiments were con-
ducted with two kinds of external structures applied to
the facade, i.e., a horizontal window eave, or two side
walls parallel located at both sides of the window. It
was concluded that the window eaves can strongly de-
crease the fire exposure to upper facade walls. However,
the presence of side walls increases the heat flux upon
the facade wall significantly. Later in 2005, Yamaguchi
and Tanaka19 carried out some experiments and found
out that the facade fire plume started to derivate from
the original plume axis as a result of the increase in eave
widths.

Effect of side wall constraints has also been
addressed19,29–31 to show that the presence of side wall
can not influence the temperature inside the enclosure
and the critical heat release rate 1 500A

√
H kW. Re-

cently, Tang et al.32 have carried out experiments on
the facade flame heights with side walls based on a
small-scale model of 0.4 m cubic as well as scaling anal-
ysis on the plume entrainment change due to the side
walls. It was found that the side walls can restrict the
entrainment from side direction so that for “(half) ax-
isymmetric fire” the facade flame height changed with
their separation distance. In contrast, for “wall fire” the
entrainment mainly occurs from the front direction nor-
mal to the facade, thus the facade flame height seemed
to be irrelevant to side walls. A global parameter K
was then deduced to describe such difference

K =
ZD

Z0

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, Q̇∗ex � 1.3,

�1 + 0.4�2

�1

[
1 + 0.4

(
�2
�1

− �2
D

)] , Q̇∗ex > 1.3. (12)

Here ZD means the flame height with side walls at sep-
aration distance of D.

The study on the effect of facing wall was conducted
by Yanagisawa et al.33 in 2008. It was found that when
the distance from the facing wall to the facade decreased
to a critical value, the entrainment from front direc-
tion was strongly restricted and the facade flame height
was increased. Then, based on non-dimensional scaling
analysis, Lee et al.21–23 suggested the critical length to
be the characteristic length scale �3 in 2009 which has
also been verified by Hu et al.34
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C. Facade flame behavior and plume characteristics in
a reduced pressure atmosphere at high altitude

Previous studies are mainly carried out in default in
the normal atmosphere pressure at sea level. The first
study on facade flame behavior and plume character-
istics at high altitude was carried out recently in 2011
in Tibet Plateau (Lhasa, China, altitude 3 650 m, air
pressure 0.64 atm (1 atm = 1.01× 105 Pa)) by Tang et
al.35,36 A serials of comparative experiments have been
carried out correspondingly both in Lhasa, China and
Hefei, China (altitude 50 m, air pressure 1 atm) based
on a small-scale model. It has been revealed that the
flame is easier to be ejected out of the window, and
the vertical temperature of the plume near the facade
is much higher in the reduced pressure atmosphere, and
the temperature decays faster laterally (normal to the
facade) in the plume, than those in the normal pressure.
The air mass inflow rate (kg/s) was modified as a result
of the lower air density, and the corresponding critical
heat release rate (kW) was changed accordingly

ṁa = 0.13ρ∞Ag1/2H1/2 ≈ 0.35AH1/2, (13)

Q̇inside = 0.133
ΔHox

CpT∞
CpT∞ρ∞Ag1/2H1/2

= 3 000× 0.35AH1/2 ≈ 1 000AH1/2, (14)

in which ρ∞ is the density of air.
They have also found that the entrainment strength

of the facade fire plume is weaker in reduced pressure
atmosphere, with the entrainment coefficient in Lhasa,
China (0.64 atm) to be 0.8 times of that in Hefei, China
(1 atm).

The above models and characteristic length scales
have built a solid base for facade fire behavior research.
Future prospective works should be done for such facade
fire behaviors under more special boundary conditions,
for example, with a slope constraint for hillside build-
ings, or with external wind flow of different directions
relative to the facade.

III. FLAME SPREAD BEHAVIOR OVER FACADE
THERMAL INSULATION MATERIALS OF HIGH-RISE
BUILDINGS

A. Classic flame spread models over solid
combustible surfaces

Flame spread behaviors over solid surfaces are the
combined results of the heat and mass transfer in solid
and gas phases, the pyrolysis in solid phase and the
chemical reaction in gas phase. These processes result
in the complexity of flame spread behaviors. In the real
fire scenario, flame spread behaviors are affected by lots
of factors, such as the ambient flow velocity, the oxygen
concentration, the pressure, the radiation intensity, and
so on. The controlling mechanisms of flame spread be-
havior are different in different external conditions. The

flame spread models can be classified according to their
features: (1) the heat transfer models and the chemical
kinetic models, according to in which model the chemi-
cal kinetic reaction are considered (the chemical kinetic
process can be ignored in heat transfer model, and the
heat transfer process is dominant); (2) the opposed flow
flame spread models and the con-current flame spread
models, based on whether the direction of flame spread
is the same with the ambient flow direction; (3) the hor-
izontal flame spread models, the upward flame spread
and the downward flame spread models, based on the
direction of flame spread relative to the gravity direc-
tion.

The common thermal insulation materials in high-
rise buildings are thermoplastic material, such as
the extruded polystyrene (XPS) and the expanded
polystyrene (EPS). These materials would melt, and
then the melted materials drop and flow. These be-
haviors caused the differences of flame spread behaviors
over the thermoplastic material from the common ther-
mosetting material. Considering the flame spread be-
havior differences between these two kinds of materials,
the classic flame spread models over solid surface are re-
viewed from the aspects of thermoplastic materials and
the thermosetting materials.

1. Flame spread models over thermosetting materials

(1) The deRis model37

deRis has built still now the most basic theory on
flame spread over combustible surface. Two dimen-
sional conservation equations are solved to develop a
basic understanding of the flame propagation mech-
anism. Figure 2 shows the “triple-flame” structure
postulated by deRis, where Uf and U∞ are velocities
of the flame spread and the opposing flow. He has
distinguished the materials as either thermally thin or
thermally thick, and derived the flame spread speed
model, respectively as

Vf,thin =

√
2λg

psdsd

Tf − Tv

Tv − T∞
(for thermally thin), (15)

Vf,thick = Vr
λgρgcg
λsρscs

·
(Tf − Tv)

2

(Tv − T∞)2
(for thermally thick), (16)

where ρs, cs, λs are the density, specific heat, the
thermal conductivity of the solid, ρg, cg, λg are the
density, specific heat, the thermal conductivity of the
gas, Tf , Tv, T∞ are the thermal enthalpies of flame, the
fuel, the ambient, and d is the thickness of the fuel.

(2) The Quintiere model38

The direction of flame spread is the same with the
flow direction in con-current flame spread, which is
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different from the opposed flow flame spread. Flame
spread model of Quintiere is a classic concurrent flame
spread model.

Primary flame front

(diffusion flame)

Secondary flame

 front (rich)

U∞

Secondary flame 

front (lean)

U f

Fig. 2. The flame spread model by deRis.37

Figure 3 shows the illustration of concurrent flame
spread over solid surface. The solid materials including
three parts in flame spreading: the burned zone, the py-
rolysis zone, and the preheated zone. The front of the
burned zone is xb, and the front of the pyrolysis zone
is xp. The preheated zone means the distance from the
pyrolysis front to the point where its temperature is the
ambient temperature, which is represented by δph. The
length of preheated zone depends on the flame length,
and it usually equals to the distance from the pyrolysis
front to the flame front (xf − xb). The following con-
current flame spread model could be obtained by the
energy balance analysis on the preheated zone.

Vf =
dxp

dt
=

xf − xp

tig
,

tig = ρCpd

(
Tp − Ts

q̇
′′
f

)
(for thermally thin), (17)

tig =
π

4
kρCp

(
Tp − Ts

q̇
′′
f

)2

(for thermally thick),

where Tp is the ignition temperature, Ts is the surface

temperature, q̇
′′
f qf is the flame heat flux, k is the ther-

mal conductivity of solid, tig is the required time for
the temperature rise of solid combustible material from
Ts to Tp. Usually, we supposed that the flame length
xf have the following relationship with the heat release
rate per width

xf − xb = K[Q̇′]n, (18)

Q̇′ =
∫ xp

xb

Q̇′′(ξ)dξ, (19a)

where Q̇′ and Q̇′′ are the heat release rate per unit width
and per unit area. Supposing xb = 0, Eq. (19a) could
be rewritten as

Q̇′(t) = xp(0)Q̇
′′
(t) +

∫ t

0

Q̇
′′
(t− s)V (s)ds. (19b)

Combining Eqs. (17), (18) and (19b), an integration
model of concurrent flame spread rate over solid surface
can be established.

Burner face Pyrolysis Pre-heating

Control body

g

fV

Vg

xb

f

px

d

x

δph

q
c, ∞

.
q c, p

.

q
f

.′′

′′ ′′

Fig. 3. Flame spread model of Quintere.38

2. Flame spread model over thermoplastic materials

Delichatsios39 established a flame spread model over
thermoplastic material in opposed flow. In this model,
enough heat is required for the melting and pyrolysis
of the material to maintain the flame spread behaviors
over thermoplastic materials. The following energy con-
versation equation of flame spreading over thermoplas-
tic materials is established

ρsvf
{
δv,s
[
cs(Tm − T∞) + Lm

]
+

δv,lcl(Tp − Tm)
}
=

((q̇
′′
c )crit − (ṁ

′′
)critL)δg, (20)

where δv,s is the melting depth, and δv,l is the pyrolysis
depth. The terms in left hand includes three parts: the
heat for rising the temperature of thermoplastic mate-
rial from the initial temperature to the melting temper-
ature Tm, the melting latent heat Lm of thermoplastic
materials, and the heat for rising the temperature of
the melting material from the melting temperature to
its pyrolysis temperature.

Then, the flame spread model over thermoplastic
material can be calculated by√

vfρscsks
vaρgcgkg

=
(B − r)L

cg
[
Lm/cs + (Tm − T∞)

]
≈ Tf − Tp

Lm/cs + (Tp − T∞)
, (21)
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where va is the velocity of the opposed flow.
Zheng et al.40 established a numerical model of

flame spread over thermoplastic material, in which the
influences of the latent heat of phase change, the heat
capacity of liquid and the heat conduction are consid-
ered. Figure 4 shows the illustration of flame spread
over thermoplastic materials in opposed flow.

vf
u∞

=
ρgCpgkg
ρlCplkl

(
Tf − Ti

Ti − Tm

)2

·

erf

(
c

√
1

2

as
al

)2

, (22)

where Ti is the flame temperature in the interface, c is
the constant and usually represents the path of the in-
terface between liquid phase and the solid phase. When
c decreases to 0, Tm becomes closer to Ti. When the
phase change of thermoplastic material happens, the
Stephen number St = Cps(Tm − T∞)/Lm changes into
the non-dimensional parameter. The Stephen num-
ber means the ratio of the heat which rising the solid
temperature from the ambient to the melting temper-
ature to the melting latent heat. When St → ∞, Eq.
(8) changes into the flame spread rate formula without
phase change, and it also could be described by the de-
Ris model. Therefore, the flame spread rate increases
with the increasing of St. It is also seen that the flame
spread would increase with the decrease of the specific
heat Cpl or the heat conductivity kl of the melting liq-
uid.

u∞

T∞

Ts Tl Tm

x

y
g

sy

Flame 

Fluid 

Phase front

Gas

Solid

Ts

T∞Tg

0

u∞

Fig. 4. Flame spread model over thermoplastic material in
opposed flow by Zheng.40

B. Flame spread over XPS and EPS

XPS and EPS are the common thermal insulation
materials in high-rise buildings, and are also the main
factors causing the high-rise building fire. Guyot,41

Levchik and Weil42 have reviewed the research results of
the pyrolysis properties of polystyrene, and Gurman et
al.43 and Paabo44 have reviewed the research results of

the toxicity of polystyrene and the polyurethane form.
Kemmlein et al.45 has showed that the smoke genera-
tion rate increase with the increasing of the bromine
number in bromide flame retardant addition to the in-
sulation material (including EPS and XPS). The fire
hazards of EPS has been studied by Doroudian and
Omidian46 in which the toxic gas and the flame spread
rate are deemed to be the most dangerous factors of in-
sulation materials in fire. Cleary and Quintiere47 have
found that the melting effect and the caused radiation
by pool fire would increase the flame spread rate over
horizontal EPS.

Ohlemiller et al.48 have found that, in the combus-
tion tests over vertical EPS, the heavy smoke gener-
ated adheres to the material surface, and then prevents
the further spreading and the flowing of the melting
polystyrene. Griffin et al.49 have found that the fixed
method of sandwich panel plays a very important in-
fluence on the prevention of the flowing of the pyrolysis
gases and the melting EPS, which can limit flame spread
and the occurrence of flashover furthermore according
to ISO9705 and ISO13784-1. Crescitelli et al.50 have
found that flame spread rate does not show invert ra-
tio to the thermal diffusion coefficient when metal and
inert powders were added into the polystyrene. The
heat conductivity of material had an important influ-
ence on flame spread rate, that is, flame spread rate in-
creased with the increasing of heat conductivity. Blasi
and Wichman51 have conducted experiments to test the
solid-phase properties on flames spreading over compos-
ite materials.

Recently, quite a number of high-rise building fires
in China occurred due to the thermal insulation ma-
terials, so the fire properties of the insulation material
attracted focused attentions of the Chinese researchers.

Ji et al.52,53 have carried out extensive combustion
tests of the external wall thermal insulation system ac-
cording to GB/T 8625-2005. The influence of the depth
of the thermal insulation material on the flame spread
behaviors are explored. Jiang54 has studied the flame
radiation properties of polystyrene fire under ventila-
tion and found that the soot in flame and the heat
release rate depends on the ventilation. Zou et al.55

experimentally studied the flame spread behaviors over
several kinds of horizontal combustibles under external
radiation, and they obtain the influence of radiation in-
tensity.

Huang et al.56,57 have conducted extensive works on
flame spread property over the thermal insulation ma-
terials. Sun et al.56,58 explored systematically the in-
fluence of the sample size (sample depth, sample width,
etc.) on flame spread over EPS and XPS. They found
that flame spread rate over XPS and EPS increased with
the sample depth, which is different from the behav-
iors over the normal thermosetting material. However,
the sample width effects of EPS and XPS are similar
with the normal thermosetting material, that is, the
flame spread rate drops firstly and then rises with the
sample width. Zhang et al.59 pointed out that this re-
sult was caused by the different dominant regimes in
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flame spreading: the convection regime and the radia-
tion regime.

Xie et al.60 have explored the flame spread over the
thermal insulation material according to the standard
of ISO9705. Xie et al.60 studied the influence of the
flowing on flame spread behaviors over the insulation
materials, and they pointed out that the melting and
flowing properties are important factors which affected
fire development. They also found that pool fire is much
easier to be formed in PS fire.

Cheng61 and Qi62 have measured the ratio of heat
released rate and the average combustion heat of EPS
and XPS in the ISO0705 experimental setup. Then they
established the risk assessment model of external wall
thermal insulation system considering the fire develop-
ment rate and the fire intensity, and obtained the 2D
risk map of flame spreading. Moreover, they compared
the flame spreading risk of EPS and XPS with other
thermal insulation materials under different heat flux
levels. Cui63 has studied the heat flux distribution in
flame spreading over PS. Cui has found that the distri-
bution of heat flux depends on the material density and
the adherence of flame to wall. The density affects the
time of melting of material, meanwhile the adherence of
flame to wall affects the angle of flame upon material.

C. Flame spread over XPS and EPS under special
boundary conditions

Flame spread behaviors over the thermal insulation
materials depend on the material properties and also on
the ambient conditions, such as the ambient pressure (or
the altitude) and the surface inclination angle.

Huang et al.64,65 have carried out experiments on
flame spread behaviors over EPS and XPS with various
sample depths and sample widths at high altitude in Ti-
bet, China. It was revealed that higher pressure benefits
to flame spread rate over EPS. Moreover, the increasing
trend of flame spread rate with sample width become
gentle, and flame spread rate over EPS is almost inde-
pendent of sample depth in the normal pressure, while
have an obvious increase with sample width in the re-
duced pressure.

Zhang et al.66 have also carried out a series of com-
parison experiments of flame spread over XPS in Hefei,
China (1 atm) and Lhasa, China (0.64 atm), respec-
tively. It was revealed that the flame spread process
over thermoplastic XPS underwent three stages: the
pre-heated stage, the melting stage, and the pyrolysis
stage. All the durations at the three stages in Lhasa,
China (reduced pressure) are longer than those in Hefei,
China (normal pressure), and that might be the reason
of the smaller flame spread rate in Lhasa, China.

Moreover, Huang et al.65 also explored the inclina-
tion angle effects on flame spread over EPS and XPS.
Results showed that the behaviors of flame spread over
EPS and XPS are obviously different from those over
thermosetting materials. For example, (1) flame spread

rate drops firstly and then rises with the increasing in-
clination angle, rather than rises monotonously; (2) es-
pecially in the case of the downward flame spread, flame
spread rate increases with the increasing of inclination
angle (this is attributed to the enhancement of heat
transfer to the unburned zone due to the flowing down
behavior of the melting EPS and XPS); (3) a second
ignition is found in the flame spreading over XPS under
the large inclination angle. Zhang et al.66,67 have stud-
ied numerically flame spread behaviors over the vertical
EPS and XPS surfaces, and they have found that flame
spread rate follows the laws of vp = 1/(α+ βt).

The above models have well characterized the con-
trolling mechanisms, such as chemical reaction rate,
heat loss, etc., of flame spread over solid surface as
well as over the thermal insulation materials under
different conditions. To well understand the three-
dimensional flame spread behavior along facade, how
the flame spreads from outside facade into the building
interior through the window with the external wind flow
is needed to be quantified in the future work.

IV. BUOYANCY-DRIVEN SMOKE TRANSPORTATION
BEHAVIOR IN LONG VERTICAL CHANNELS OF
HIGH-RISE BUILDINGS

A. Vertical channels in high-rise buildings and special
smoke transportation behaviors

High-rise buildings have extensive long vertical
channel, such as stairwells, elevator shafts, cable shafts,
etc. In most occasions, indoor air temperature in
high-rise buildings is higher than that outdoor, which
means the air density inside is lower than that out-
side. This density differences leads to the well-known
“stack effect”68–74 driven by buoyancy in a vertical
channel. Such stack effect accelerates the smoke trans-
portation along the vertical channel remarkably in case
of a fire.69,75 However, “reverse stack effect” will hap-
pen when indoor air temperature is lower than that of
the outdoor, which may be caused by air-conditions.
It is known that “stack effect” plays an important role
in smoke transportation in long vertical channels, that
this behavior receives focused research attention in the
past. Among all shafts, smoke movement research in
stairwells is most focused on. That is due to the fact
that stair shafts are important channels for evacuation.
In this section, the following three subjects will be ad-
dressed and reviewed: (1) smoke transportation behav-
ior in vertical shaft, (2) smoke transportation behavior
in stairwells, and (3) smoke control by pressurization in
stairwell.

B. The smoke transportation behavior in vertical shaft

The research about the smoke in vertical shaft that
generated by compartment fire in high-rise building be-
gan in 1980s by Marshall75 using a 1/5 scale model as
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shown in Fig. 5. The entrainment coefficient α of the
fire plume in the shaft was amended to αb denoting the
entrainment coefficient at the bottom of the shaft

α̇b = α cosω. (23)

An empirical correlation about plume entrainment be-
tween HRR and temperature rise had been deducted in
Ref. 75 as

xsΔTcor/Q̇
2/3
cor = (0.048Ṁu/Ṁcor)− 0.071. (24)

The linear relation between xsΔTcor/Q̇
2/3
cor and

Ṁu/Ṁcor has been confirmed by experiments.
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Fig. 5. Smoke flow in vertical shaft in Marshall model.75

In vertical shafts, two kinds of mechanisms domi-
nates the flow pattern and hence the smoke transporta-
tion behavior.76 One is the so-called “stack effect”, and
the other is turbulence mixing mechanism which is a
mixing process between hot gases and air, relating to
Rayleigh–Taylor mixing.77 A simplified model of stack
effect was illustrated by Harmathy78 in 1998. An equa-
tion calculating air pressure difference between the air
inside and outside the building was deduced as

Pa − Ps =
1

2
ρ0aT0

(
u2
w√
TaTi

+
u2
s

Ti

)
, (25)

where Ti is the air temperature inside the building, Ta

is the temperature of the external air, uw is the air
velocity that leaks from the building wall, and us is the
air velocity that leaks through the shaft wall.

Klote and Fothengill79 deduced equations to calcu-
late neutral plane location in vertical shaft in different

opening circumstances (including continuous opening in
lateral wall, top and bottom opening in lateral wall, top
opening and bottom opening), and explored a calcu-
lation procedure STACK. In a vertical shaft, ambient
cold air flows into the shaft through the opening below
the neutral plane and hot smoke flows out of the shaft
through the openings above the neutral plane.

The amount of the hot smoke that flows out is

mout =
2

3
K0CW (Hc −Hn)

3/2 ·√
2ρcgKp(ρ∞ − ρc), (26)

where Hc is the height of the shaft, Hn is the height of
the neutral plane of the window. The amount of the
cold gas that flows into the shaft is

min =
2

3
K0CWH3/2

n

√
2ρ∞gKp(ρ∞ − ρc). (27)

When the flows are stable, the air amount flowing in
equals the air amount flowing out, and combining the
ideal gas equation, the position of the neutral plane can
then be calculated as

Hn

Hc
=

1

1 + (Tc/T∞)1/3
. (28)

In real fire, the uniform temperature distribution as-
sumption in the shaft is not applicable because the tem-
perature near the fire source is much higher than other
areas. Based on Klote model,79 the modified neutral
plane position is

(Hc −Hn)
3/2 =

(Hf)
3/2(Tc/Tf)

√
(Tf − T∞)/(Tc − T∞) +

(Hn −Hf)
3/2
√
Tc/T∞. (29)

As for the turbulence mixing mechanism, Zukoski80

employed the concept of transient local turbulence mix-
ing rate and the Boussinesq approximation (assuming
the smoke density of the upstream is approximately the
air density in diffusive equation), and established the
relation of turbulence diffusive rate as

�t ∝ d2
(
L

d

)1/4
√

1

ρ∞

(
∂ρ

∂Z

)
g, (30)

where d is tube diameter. Through deduction, there is
a linear relation between the normalized time and the
ratio which equals the square root of the initial tem-
perature in the shaft with the square root of transient
temperature difference

√
ρ∞ − ρini/

√
ρ∞ − ρ, and this

linear relation has been confirmed by experiments.80,81

Chow and Fong82 established the dimensionless
model of the rising velocity of smoke front in vertical
shaft. The dimensionless velocity is

V =
v√
gD

∝
(

Q̇

Cpρ∞T∞
√
gD

)1/3(
DZ

A

)1/3
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= Q̇∗1/3
(
DZ

A

)1/3

. (31)

The dimensionless time is

τ =

(
t

√
g

D

)
Q̇∗1/3, (32)

where D is a characteristic size taken as the cross-
section length in this case, and Q̇∗ is the dimensionless
fire heat release rate. In the equations, it was assumed
that the density variations through the smoke in the
shaft to the ambient air were small, i.e., ρ ≈ ρ∞.
(1) When fire source located at the bottom of the shaft,

τ = 8.66Z2/3. (33)

(2) When fire source located in the adjacent room of
the bottom of the shaft,

τ =

⎧⎪⎨
⎪⎩

7.9Z2/3, Z > 2.5,

4.3Z7/6, Z � 2.5.

(34)

The significant assumption that ρ ≈ ρ∞ applied in
Chow’s model would bring large error in practical smoke
flow in vertical shaft, especially when the shaft is rel-
atively high. By employing the virtual origin concept
in Heskestad plume model and virtual origin method in
Harrison spill plume model, Sun68 further developed the
plume characteristics model especially for the “plume
entrance region” near fire source in vertical shaft as
shown in Fig. 6. A one-dimensional model is built
by temperature ΔT , dimensionless temperature Θ(Z),
density ρ(Z), dimensionless density φ, velocity v, plume
front zf as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔT = T − T0 = (Ti − T0)e
−βZ/H ,

Θ(Z) =
Ti − T0

T0
e−βZ ,

ρ(Z) =
p0/R

∗

(Ti − T0)e−βZ + T0
,

φ = 1− T0

(Ti − T0)e−βZ + T0
,

v =
R∗ṁ
Ap0

[(Ti − T0)e
−βZ + T0],

zf =
C4t

2/3 + C5t
2

C3
1n

(
Ti

T0
· eC2t − Ti − T0

T0

)
,

(35)

where C2 =
ρ0h

4DCp
, C3 =

Ah

4DCp
, C4 = 0.071α2/3, C5 =

1.92× 10−3 · α2, β =
h

Cp

A

ṁ

H

4D
=

4hH

4DCp

1

ṁ
.

The factor β is related to initial conditions and the
size of the vertical shaft and can be calculated by anal-
ysis of the fire source. During the rising process, this
parameter varies with time, i.e., plume temperature,
density, and rising velocity are all functions of time. In
one-dimensional steady smoke motion model, the ex-
pressions of the smoke parameters are similar to those
in smoke rising model. However, during the steady
progress, the parameter β is only related to the initial
conditions and the size of the vertical shaft while do not
change with time.

C. Smoke transportation behavior in stairwells

Ergin-Ozkan et al.83 performed the earliest studies
on the formation of interface between the hot and cold
air above the inclined stair. Reynolds et al.77,84 further
analyzed the mechanism of thermal buoyancy-driven air
flow and proposed dimensionless relations

FrRe1/3 ∝ St1/3, (36)

ΔT/T ∝ Re1/3St2/3, (37)

in which Fr is Froude number, Re is Reynolds number,
and St is Stanton number.

Marshall85 carried out an experiment on the behav-
ior of hot gases flowing in a 1/5 scale model of five-story
staircase. It was observed that the incoming gases from
the room swirl in the stairwell affected by the stair-
case and mix with air all the way to go up. A large
amount of smoke mixes with abundant entrainment air
in the inclined overflow section between burning room
and stairwell. There is no distinct gas layer interface in
stairwell compared with that in shafts with no blocks.
Marshall’s model is sufficiently enough to explain the
smoke movement and the entrainment of air with door
openings in the ground and top floors, however, it did
not account heat transfer between hot gases with stair-
well wall.

Qin et al.73,74 have discussed the effect of different
heat release rates on entrainment of air, average oxygen
concentration, average temperature in stairwell, as well
as maximum differential pressure in and out of stairwell
using large eddy simulation (LES). Peppes et al.76 per-
formed experiments and simulations on mass and energy
transfer processes induced by temperature differences in
a three-story stairwell and discovered that flow velocity
is steady in the horizontal opening within stairwell be-
tween floors. Quantitative analysis demonstrates that
the flow velocity is proportional to (ΔT/T )0.3.

More recently, Ji et al.86 have carried out exper-
iments on one-third scale model showing that smoke
rise time of open stairwell and closed stairwell is re-
spectively proportional to 1.227 power and 2.135 power
of non-dimensionless rise time, and both inverses pro-
portional to 1/3 power of source power (as shown in
Fig. 7).
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Fig. 6. Plume parameter profiles in “plume entrance region” of the source in vertical shaft change with plume height Z.68

D. Smoke control by pressurization in stairwell

Pressurization technique by air supply is widely
used in stairwells of high-rise buildings, as to produce
pressure difference between the stairwell and the fire
space to prevent smoke from spreading into the stair-
well. To fulfill that goal, the pressure in stairs must be
higher than that in front chambers, and the pressure in
front chambers must be higher than that in aisles.

Klote and Fothergill79 carried out theoretical
derivation about pressurization requirements in 1983.
The relation of ΔPSB (pressure difference between the
stairwell and the building) versus ΔPSO (pressure dif-
ference between the stairwell and outside) is

ΔPSB = ΔPSBb +
3 460(1/TO − 1/TS)Z

1 + (ASB/ABO)2
, (38)

ΔPSB =
ΔPSO

1 + (ASB/ABO)2
. (39)

The air flow rate from the stairwell to the building is
then calculated by

QSB = Kq
NASB√

ρ

(
ΔP

3/2
SBt −ΔP

3/2
SBb

ΔPSBt −ΔPSBb

)
, (40)

where ΔPSBt is the pressure difference between the
stairwell and the building, ΔPSBb is pressure difference
between the bottom part of the stair and the building,
and Kq=0.613 is a constant coefficient.

Further, Evans and Klote87 state that total air flow
into the stairwell equals to the total amount leakage
from the stairwell into the building and that to the out-
side of the building. A temperature influence factor is
introduced as

B = 3 460

(
1

TO + 273
− 1

TB + 273

)
, (41)

where TB and TO are respectively the indoor tempera-
ture and outdoor air temperature. Then the pressure
difference between the stairwell and outside is

ΔPSO = ΔPb

[
1 + (ASB/ABO)

2
]
+BHbd, (42)

whereHbd is the height from the bottom of the stairwell
to the center line of door facing outside.

More recently, Sun et al.68 discussed and analyzed
systematically the effect of other factors, such as instal-
lation positions of fan, air supply volumes, fire source
positions, floors with open door, and widths of the crack
of the first and second door, etc., on the pressurization
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Fig. 7. Smoke rise time versus fire source power (heat release
rate).83

performance. It revealed the following facts. (1) When
the width of the crack of the first and second door is
small, the pressure in the stairwell does not change a lot,
and maintains at relative high value. However, when
the width increases to 6 cm, the pressure decrease obvi-
ously and a critical crack width is suggested as between
4 cm and 6 cm. (2) With the increase in the volume
of pressurization air, the pressure in the stairwell arises
apparently, and the steady positive pressure above the
fire floor increases linearly with the pressurization air
volume. (3) The pressurization opening is better to be
installed at the top than at the below positions of the
stairwell.

The above models have well characterized the smoke
transportation behavior inside the high-rise build-
ings through long vertical channels. Under the spe-
cial three-dimensional smoke transportation (inside-
outside-inside), it remains to be answered and quan-
tified that how the flow condition inside the building is
affected by the external wind flow once the window is
broken by the fire, and how the outside facade fire smoke
is pushed back into the building through the wind by
the external wind flow remain to be answered and quan-
tified.

V. CONCLUDING REMARKS

Fire safety of high-rise building has attracted ex-
tensive attention and focus due to serious fire accidents
recently in China. This paper reviews the current state
of art of research on fire dynamics of high-rise buildings
addressing the following three important subjects: (1)
the ejected flame and fire plume behavior over facade
out of the compartment window, (2) the flame spread
behavior over facade thermal insulation materials, and
(3) the buoyancy-driven smoke transportation charac-
teristics along long vertical channels in high-rise build-
ings.

The current models can well characterize the above
separate processes in the three-dimensional fire spread
behavior of high-rise buildings. However, to understand
the whole process of this three-dimensional fire spread
behavior, additional mechanisms connecting these sep-
arate processes need to be quantified in the future. For
example, how the flame and smoke of the outside fa-
cade fire can spread into the building with external
wind flow? And how the combustion, flow dynamics and
smoke transportation behavior are affected by the exter-
nal wind flow when the wind is broken by the fire? All
of these important issues are ongoing research works in
the 973 program Research on key fundamental aspects
of high-rise building fire protection. A special issue in-
cluding the most up-to-data research progress of this
973 program on thermal insulation material ignition by
firebrands, structure fire safety and human crowd evac-
uation behavior will be reported in the future.

This work was supported by National Basic Research

Program of China (2012CB719702).
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