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Abstract. This paper is concerned with the representation of system behaviors by equations 
involving polynomial shift operators. In particular, the question of the elimination of latent (i.e., 
auxiliary) variables from an ARMA representation is considered for the case of multidimensional 
systems. 

1. INTROIXJCTT~N 

In this paper, we consider the question of the representation of system behaviors. In order 
to derive such a representation, it is often useful to introduce auxiliary (latent) variables. 
A well-known example is the introduction of state variables in the description of dynamical 
systems. The question then arises whether it is possible to eliminate the auxiliary variables 
from the original description and, if so, what kind of system representation is obtained after 
this elimination is performed. 

For the case of (1-D) dynamical systems with latent variables which are described by 
polynomial (ARMA) equations, it was shown in [l] that the elimination of latent variables 
is indeed always possible and yields a polynomial (AR) description. This was derived by 
making use of the Smith form for polynomial matrices in one indeterminate. However, when 
trying to generalize this result to N-D systems, we are confronted with the fact that for 
polynomial matrices in several indeterminates the Smith form is not a canonical form under 
unimodular pre- and post-multiplication. 

Here we present a result which allows us to overcome this difficulty and show that the 
elimination of latent variables is still possible in the N-D case. 

2. AR AND ARMA REPRESENTATION OF DYNAMICAL SYSTEMS 

Let us first recall some of the notions and results introduced in [l]. 

A (1-D) dynamical system C defined over a time set T C W, with variables taking values in 
a signal space IV, is essentially characterized by the set B C WT of all the trajectories which 
satisfy the system laws. We will call f3 the behavior of the system and write C = (T, W, B). 

Here we will be concerned with discrete time systems in Q real variables, thus T = Z and 
w = IV. 

Defining the shift u: (FP)’ + (Wq)Z by c w(t) = w(t + l), for all w E (RQ)Z, we will say 
that Z? g (IV)’ is shift-invariant if UB = t3. 
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THEOREM 1. A subspace B of (W)z is linear, shift-invariant and closed (in the topol- 
ogy of pointwise convergence) if and only if it is the kernel of a polynomial shift operator 
R(a) : (Ry + (Rg)z, for some positive integer g, and where R(s) is a real polynomial 
matrix in s. This means that B can be described by a system of behavioral equations of the 

form R(u)w = 0, which we will call an AR-representation. 

In a dynamical system Ca with auxiliary variables, next to the variables whose behavior 
we want to describe (manifest variables), latent (auxiliary) variables are introduced. If the 
latent variables take values in a space A we will write C” = (T, W,A, Ba), where T and W 
are as before and B, E (W x A)T is the extended (latent) behavior. 

The problem of obtaining a description of the external behavior in terms of the manifest 
variables alone is an important issue. The following result states that this always can be 
done. 

THEOREM 2. Let C” = (Z,W, FPe, Ba) be a system with auxiliary variables a E (F@)’ and 

manifest variables w E (W)‘, such that B, is described by behavioral equations of the form 

R(o)w = M(u)a (called ARMA representation), with M(s) and R(s) polynomial matrices. 

Then the behavior B = {w E (W)’ 1 3a E (W’)’ s.t. (w, a) c Ba} ofw can be described in 

AR form. 

This result, to which we refer as elimination of latent variables, is immediately relevant 
in order to characterize, for instance, the behavior of state space and descriptor systems. 

Example 1. Consider three masses ml, mz, and ms = ml connected by two springs of 
constant lc as indicated below. 
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Suppose that we are interested in the relationship between the force F exerted on the 
central mass and the displacement d of this mass from its equilibrium position. In order 
to describe the behavior of F and d, it is useful to introduce as auxiliary variables the 
displacements di and ds , respectively of ml and ma from their equilibrium positions. This 
yields a 1-D system with latent variables CL = (R, W2, W2, B,) with the extended behavior 
B, given by the following ARMA equation: 

[mz”‘2+21 p1] [;I = [-‘“‘%‘-” _,,!,_,I [:;I, 

where u: = d/dt. Premultiplying both sides of this equation by 

U(u):= [B ,$, ;] 0 yields for B, the equivalent representation: 

1 

k 

m2u2 + 2k -“I 

m2rn1u4 + (2ml+ mz)ka2 -(m,u2 + 12) 

] [;I= [mlu;+k ;] [:I. 

Now, as coJ([mru2 + k 01, [k k]) is a surjective operator, the two first equations in the 
representation above do not impose restrictions on the variables d and E. Thus, the external 
behavior of the system is described by the AR equation: 

(mzmlu4 + (2ml+ m2)ku2)d = (mlu2 + k)F. I 
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3. STATEMENT OF THE MAIN RESULT 

The proof given in [l] for Theorem 2 relies strongly on the fact that the operators R(C) 

and M(a) are polynomial operators, and that, moreover, polynomial matrices in one inde- 

terminate admit a Smith canonical form. This turns out to be a shortcoming when trying 
to generalize the elimination of latent variables to multidimensional systems, since the same 
does not hold for polynomial matrices in several indeterminates. 

As we will see the theorem below provides a powerful tool to overcome this difficulty and 
generalize Theorem 2 to the multidimensional case. 

THEOREM 3. Let q1 and q2 be two positive integers and consider the spaces (lV1)p, (rS’JD)’ 
equipped with the topology ofpointwise convergence. Then, any continuous linear operator 

c: (i?‘)P + (FVz)n maps a closed linear subspace of (F?ql)z onto a closed linear subspace 

of (wqQ)Z * 

PROOF: It is not difficult to check that Vk: E N, Fp” equipped with the usual topology is a 
linearly compact space. Moreover, the topological product of a countable number of linearly 
compact spaces is still linearly compact (cf. [2], $10.9 (7)). Consequently, (Wk)’ equipped 
with the product topology (which coincides with the pointwise convergence topology) is 
linearly compact. Finally, every continuous linear operator from a linearly compact space 
into another maps closed subspaces into closed subspaces (cf. [2], $10.9 (1)). I 

4. APPLICATION TO 2-D SYSTEMS 

Generalizing the notion of (1-D) dynamical systems to the 2-D case, we will define a 2-D 
system C as a triple C = (T, IV, Z?), with T c R2 the two-dimensional index set, W the 

signal space and f? E WT the system behavior. We will consider in particular systems of 
the form C = (Z2, Fpq, S), involving q real valued variables defined over the discrete grid Z2. 

The analoges of the time shift u will now be the down-shift ~1 and the left-shift ~72, defined 

by ui: (Wq)w’ ---) (Wq)Za(i = 1,2), with alw(tl,tz): = w(tl + l,t2) and aaw(tl,tg): = 

w(tl,tz+l) for all w E (Rq)‘. W e will say that a 2-D behavior B C (R’J)Za is shift-invariant 

if aiB = f3 (i = 1,2). 
As it was shown in [3], the result of Theorem 1 over the existence of an AR representation, 

can be extended to the 2-D case. In other words, the behavior 23 c (Rq)‘” is a linear, shift- 
invariant and closed subspace (in the topology of pointwise convergence) if and only if it 
can be described by means of a 2-D AR-representation R(al, 62) w = 0, where R(sl, sg) is 
a real polynomial matrix in the indeterminates s1 and ~2. 

Here, we will be concerned with the generalization of Theorem 2. As a first step we will 
see that: 

THEOREM 4. A polynomial 2-D shift operator P(u~,Q): (R’)” + (FUg)z’ maps a linear 

shift-invariant and closed subspace of (WL)z’ onto a linear shift-invariant and closed subspace 

of (W)z”. 

PROOF: Let 0: Z2 + Z be a bijection. For every positive integer p, define the map 

0,: (R~)pa + (Wf’)p which associates with every 2-D trajectory a E (fV’)Z’ a 1-D trajec- 

tory r2rp(a) E (Rp)Z such that 12lp(a)(t) = a(0-l(t)), for all t E Z. Equipping (WP)” 

and (I+‘)n with the topology of pointwise convergence, we have that 0, is an isomor- 
phism between topological vector spaces. This implies that P(ul,u2) maps closed linear 

subspaces of onto closed linear subspaces if and only if the same holds true for P: = 

0, 0 P(Q) uz) 0 0;’ : (R’)’ + (fV)n (here, as usual, o denotes the composition and 0;’ 

the inverse of 0,). It is not difficult to check that this is indeed the case, once ? is a 
linear continuous operator and therefore Theorem 3 can be applied. The claim about shift- 
invariance is obvious. I 

The elimination of auxiliary variables for 2-D systems is now a simple corollary of the 
above result. 
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THEOREM 5. Let C” = (Z’, IV, RC, Ba) be a 2-D system with auxiliary variables a E 

(R’)” and external variables w E (W)“, such that f3a is described by the 2-D ARMA 
representation R(ol, us)w = M(al, u2)a (obvious g&eralization of the 1-D case). Then 

the behavior B = {UP E (RQ)” 1 3 a E (Fit)” s.t. (w, a) E B,) of the external variables 
w can be described in 2-D AR form R'(u1, 62) w = 0, for some 2-D polynomial matrix 

R’(s1, a). 

PROOF: Suppose that R(ui, 62): (Ipq)Za -+ (IV)” and M(ul, 62): (rSL)z’ + (F@‘)za. 
Clearly, B is the inverse image by R(ui, ~2) of M : = im M(ul , 62). It follows from Theo- 

rem 4 that M is a linear, shift-invariant and closed subspace of (F&J)“, and as R(ur, us) is 

continuous, also f3 will be a closed subspace of (Wq)“. Moreover, it is clear that /3 is linear 
and shift-invariant, and therefore it admits an AR description. I 

Example 2.1. Let C, = (Z”, R2, R,f?‘) be the 2-D system with auxiliary variables de- 
scribed by the ARMA representation R(ur , u2)w = M(ul, u2)a, with R(sr ,s2) = I and 

M(Si,SZ) = co/( si - ST, s2 - s1 + 1). (In th e particular case where R = I we call the above 
representation an MA representation.) By Theorem 5, the behavior of the external variable 
w has an AR representation, say R’(q) us) w = 0. This implies that for the auxiliary variable 
a there holds R’Ma = 0, and, as a is a free variable, we must have R’M = 0. In this case we 
say that R’ is a left-annihilator of M. On the other side, if R” is any other left-annihilator 
of M there will also hold that R”w = R”Ma = 0, and therefore kerR’ C kerR”. This 
means that R’ is a minimal left-annihilator of M, i.e., for every left-annihilator R” of M 
there exists a 2-D polynomial matrix in the shifts and their inverses L(sl, sg, sr’, sy’) such 
that R” = LR’. Now, as .sz - s: and s2 - sr + 1 do not have common factors, it is clear that 

R’(si, ~2) = [(sz - si + l)(s: - s;)l is a minimal left-annihilator. Thus the behavior of the 
external variable w will be given by the AR representation below. 

(62 - ui + l)Wi + (u: - u,“)?& = 0. I 

Example 2.2. Suppose now that in the foregoing example we had R(sl, ~2) = 

col([u2 + 01 + 1 01, [l u1 + 11) instead of R = I. This yields the ARMA representa- 

tion: 

[ 

u2 +a1 + 1 0 
1 UlSl w= 1 [ u; - a: 

us-or+1 1 a. 

Introducing a new auxiliary variable v := Rw , this equation can be rewritten as: 

{ 

v=Ma 

Rw = v 

or equivalently, by eliminating the latent variable a (cf. Example 2.1), as 

[-“; ;] [:I =O. 

I R’ 
Premultiplying the above equation by o I gives 

[ 1 

and hence the behavior of the external variable w is described by the AR representation 

R’(ui, ~2)R(uz, u,)w = 0, 

i.e., 

pa2 + l)Wl + (61 + l)(uf - u&2 = 0. I 

Clearly, the procedure of elimination of latent variables illustrated in the foregoing example 
still applies for general ARMA representations yielding the following result. 
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THEOREM 6. Let C” = (Z2, R’J,R’,B”) b e a 2-D system with auxiliary variables repro- 
sented by the ARMA equation R(ol, ~2) w = M(ol, ~72)~. Let further N(sl, 9) to a min- 

imal left-annihilator of M(sl, ~2). Then the external behavior I? = {w E (Rq)Za13a E 

(Rf)z’ s.t. (w, a) E fP} ’ d IS escribed by the following AR equation: N(al, ~)R(al, ~72)~ = 
0. 

REMARK. Similar results about the elimination of the latent variables have been obtained 
in [4] using an algebraic approach. 

5. CONCLUSION 

The main result in this paper states that any continuous linear operator C: (FP)’ -+ 
(Rq~)z maps closed linear subspaces onto closed linear subspaces. This technical fact as- 
sumes special importance in the study of the representation of system behaviors, as it allows 
to extend the results of [l] over the elimination of auxiliary variables from an ARMA repre- 
sentation to the case of multidimensional systems. Although we have only considered here 
the case of 2-D systems, it is easy to see that our reasonings still hold for N-D systems with 
N > 2. 
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