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Contactin and TAG-1 are glycan phosphatidyl inositol (GPI)-anchored cell adhesion molecules that
play a crucial role in the organization of axonal subdomains at the node of Ranvier of myelinating
fibers. Contactin and TAG-1 mediate axo-glial selective interactions in association with Caspr-family
molecules at paranodes and juxtaparanodes, respectively. How membrane proteins can be confined
in these neighbouring domains along the axon has been the subject of intense investigations. This
review will specifically examine the properties conferred by the lipid microenvironment to regulate
trafficking and selective association of these axo-glial complexes. Increasing evidences from genetic
and neuropathological models point to a role of lipid rafts in the formation or stabilization of the
paranodal junctions.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Contactin and TAG-1 are glycan phosphatidyl inositol (GPI)-
anchored cell adhesion molecules belonging to the immunoglobu-
lin superfamily (Ig-CAMs) and have been studied extensively for
their function during neuronal development. Contactin and
TAG-1 interact with multiple ligands including Ig-CAMs and extra-
cellular matrix components and participate to neuroblast migra-
tion, axonal growth, fasciculation and guidance, and synaptic
function [1–4]. Another important role of Contactin and TAG-1
was discovered in the organization of axonal subdomains at the
node of Ranvier of myelinating fibers where they mediate axo-glial
selective interactions in association with Caspr-family molecules.
This review will examine this last role with a special focus on
the properties conferred by their lipid anchor and raft-partitioning.

2. Molecular organization of the axonal subdomains at the node
of Ranvier

The node of Ranvier is an attracting model for studying the
mechanisms of membrane segregation along the axolemma
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(Fig. 1A). The formation of nodes is induced by contacts with mye-
linating glial cells that are ensheathing the axon, the oligodendro-
cytes in central nervous system (CNS) and Schwann cells in
peripheral nervous system (PNS). The nodal gap is highly enriched
in voltage-gated sodium and KCNQ channels and the Ig-CAM Neu-
rofascin-186. On both sides of the node, the paranodal junctions
anchor the terminal cytoplasmic loops of the myelin onto the axo-
lemma. The paranodes are characterized by septate-like junctions
that consist in regularly-spaced intermembrane transverse bands.
Paranodal junctions depend on interactions among three CAMs,
Contactin and Caspr/paranodin on the axon and Neurofascin-155
on the glial cell. Next, the juxtaparanodal regions are enriched in
Shaker-type Kv1 channels co-clustered with TAG-1 and Caspr2.
How membrane proteins can be confined in these neighbouring
domains along the axon has been the subject of intense investiga-
tions over the last years [5–7]. Multiple complementary mecha-
nisms may be implicated such as clustering of adhesive complex
mediated by glial ligands, anchoring of CAMs and ion channels
by axonal cytoskeletal scaffolds and/or selective trafficking and
targeting of transport vesicles towards the axonal subdomains [8].

2.1. Role of Contactin at the paranodal region

Deficiency in either Contactin or Caspr/paranodin, induces
severe neurological defects, aberrant organization of the paranodal
region and reduction of nerve conduction velocity [9,10]. In both
these knock-out mice, the septate-like junctions are disrupted
and some terminal loops of the myelin are everted not facing the
axolemma (Fig. 1B). The distribution of Contactin and Caspr are
lsevier B.V. All rights reserved.
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Fig. 1. The axonal subdomains of the node of Ranvier. (A) In wild-type animals, the node of Ranvier (green), which contains high density of voltage-gated sodium channels
(Nav) is flanked by the paranodal junctions (blue). Next, the juxtaparanodes (red) are enriched in Kv1 channels. Phenotype of mutants for paranodal junctions (B) and
juxtaparanodes (C).

Fig. 2. Segregation of ion channels and CAMs in distinct axonal subdomains of the
node of Ranvier in the CNS. Members of the Ig-CAM family show broad binding
activity (arrows). Their selective association requires fine-tuning by N-glycosylation
(Contactin), alternative splicing (Neurofascin) or raft-partitioning.
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interdependent at paranodes. Indeed, in Caspr-deficient mice,
Contactin is not detected at paranodes and becomes enriched at
the nodal gap in the CNS. Reciprocally, in Contactin�/� mutant
mice, Caspr is not addressed to the axolemma. In the two types
of mutants, the clustering of sodium channels at the nodal region
is still observed, which is displaying an enlarged distribution. In
addition, the distribution of Caspr2 and Kv1.1/1.2 channels is
strongly modified since these components are found at paranodes
instead of juxtaparanodes. Therefore, paranodal junctions act as a
fence separating the lateral domains enriched in sodium and
potassium channels. As a consequence, the velocity of nerve con-
duction is decreased. Genetic disruption of Neurofascin-155
expression in myelinating glial cells prevents clustering of the ax-
onal Caspr/Contactin complex and results in alteration of paranod-
al junctions [11–13]. In the different genetic animal models
generating disruption of septate-like junctions (mutant mice for
Caspr, Contactin or Neurofascin-155), axonal swelling and degen-
eration is observed in Purkinje cells. Axonal transport seems to
be disturbed with mis-orientation of microtubules and neurofila-
ments together with accumulation of mitochondria and smooth
endoplasmic reticulum (ER) at the paranodal region [14]. These
observations indicate a correlation between the disruption of sep-
tate-like junctions and axonal degeneration.

2.2. Role of Contactin at the nodal gap

Expression of axonal CAMs at paranodes and juxtaparanodes is
similar in the PNS and CNS, but differs at the node. Neurofascin-
186 is found at the node both in the CNS and PNS, Contactin is
present at the node only in the CNS and NrCAM only in the PNS
[12,15]. In the PNS, the nodal extracellular matrix protein gliom-
edin is secreted by Schwann cell microvilli and binds Neurofa-
scin-186 and NrCAM on the axon initiating the clustering of the
voltage-gated sodium channels through ankyrinG scaffolding [16].
In the CNS, the nodal extracellular matrix contains Versican V2 se-
creted by the perinodal astrocyte, which assembles tenascin-R and
phosphacan [17,18] (Fig. 2). This complex of matrix components by
virtue of its ability to bind Neurofascin-186 and Contactin may be
crucial for the clustering of the voltage-gated sodium channels. In-
deed, Contactin displays a broad activity of binding and interacts
with the b1-subunit of the voltage-gated sodium channels, Neuro-
fascin-186, tenascin-R, and phosphacan/RPTPßz [19–21].

Neuronal sodium channels are heterotrimers composed of the
pore-forming a-subunit and two auxiliary b-subunits. The b-sub-
units contain an extracellular Ig domain with homology with CAMs
that allows binding with CAMs and extracellular matrix compo-
nents. The b2-subunit displays homology with Contactin [22] and
interacts with tenascin-C and tenascin-R [23,24]. The b1-subunit
shares similarity with the myelin CAM Po and interacts with
Neurofascin-186, RPTPß and Contactin [21,25,26]. Contactin co-
transfected in mammalian fibroblasts together with the a- and
b1-subunits of the sodium channel Nav1.2, increases the sodium
currents due to a higher density of sodium channels at the surface
membrane as assessed by 3H-saxitoxin binding [27]. These results
point out the role of Contactin for enhancing sodium channel
expression at the cell surface through interactions with the b1-sub-
unit, by increasing channel insertion or stabilization in the
membrane.

2.3. Role of TAG-1 at the juxtaparanodes

TAG-1/Axonin-1/Contactin-2, originally described as a protein
transiently expressed in axons during development [3], is the jux-
taparanodal counterpart of Contactin (48% amino acid identity),
which has the particularity to be expressed by both neurons and
myelinating glial cells [28]. The phenotype of TAG-1-deficient mice
indicates that this protein is crucial for juxtaparanodal organiza-
tion and required for Caspr2 and Shaker-type Kv1 channels enrich-
ment in this region in the CNS and PNS (Fig. 1C) [29]. Similarly,
Caspr2-deficient mice display alteration of TAG-1 and Kv1 cluster-
ing at juxtaparanodes [30]. From these studies, a tripartite complex
has emerged at juxtaparanodes formed by cis-interaction (hetero-
philic) between TAG-1 and Caspr2 within the axolemma and by
trans-interaction (homophilic) of neuronal TAG-1 with TAG-1
present on the glial membrane. The nodal gap and paranode orga-
nization do not appear to be affected in both the sciatic and optic
nerves of TAG-1-deficient mice [29], but recently some more quan-
titative studies indicated shorter internodes in particular in the op-
tic nerve [31,32]. Interestingly, the myelin sheath thickness and
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compaction are not modified in TAG-1�/� ventral spinal cord [29]
whereas the TAG-1�/� retinal ganglion cell axons appear hypomye-
linated, revealing region-specific cues for TAG-1-induced myelina-
tion [32]. The behavioural phenotype of TAG-1-deficient mice is
characterized by an increased sensitivity to convulsive stimuli
attributed to upregulation of adenosine A1 receptors in the hippo-
campus [33] and also by an impairment in learning and memory as
assessed by the Morris water maze and novel object recognition
tests [31]. This last neuro-behavioural abnormality might be linked
to juxtaparanodal disorganization in the hippocampus and entorh-
inal cortex known to be involved in learning and memory [31]. This
link between an abnormal axonal subdomain organization and
neurological behaviours is quite surprising. Nevertheless, another
study recently described a link between abnormal paranodal orga-
nization, decreased conduction velocity and schizophrenia-related
behaviours in proteolipid protein 1 transgenic (plp1tg/�) mice [34].
3. Mechanisms for the segregation of the GPI-anchored CAMs
along myelinated axons

3.1. Cooperation between cis- and trans-interactions to generate
adhesive complexes

The homophilic binding activity of TAG-1 is mediated through
two distinct binding sites in the Ig and Fibronectin type III-like
(FNIII) domains and a model of multimodal interactions has been
proposed [35]. The formation of a cis-dimer via the fourth FNIII re-
peats may strengthen trans-binding via the Ig1-4 domains simulta-
neously [35–37]. In transfected cells TAG-1 associates in cis with
Caspr2, but it is unknown whether this association is mediated
via the FNIII or Ig domains of TAG-1 and whether the cis-hetero-
meric association with Caspr2 may favor the trans-homophilic
interaction of TAG-1. The sequential assembly of the juxtaparanod-
al complex is unknown. In contrast to Caspr, which requires asso-
ciation with Contactin before ER exit, Caspr2 can reach the plasma
membrane without TAG-1. Thus, it is unknown whether Caspr2
and TAG-1 associate in cis at the axonal membrane as a prerequi-
site for their clustering by the trans-interaction with glial TAG-1 at
juxtaparanodes. In addition, as TAG-1 also interacts with several
CAMs, N-CAM, NrCAM, L1, b-integrin, and the proteoglycans neu-
rocan and phosphacan/RPTPb/z [38–41], these various molecular
interactions may regulate its function during axogenesis and mye-
lination [32].

3.2. The differential binding affinities of Ig-CAMs may underlie their
segregation in neighbouring adhesive complexes

In contrast to TAG-1, Contactin does not exhibit any homophilic
binding activity. Contactin displays a broad binding specificity for
Ig-CAMs (L1, NrCAM, Neurofascin, b1-subunit of the Na+ channels)
[1,21,42] or extracellular matrix components (tenascin-R, tenas-
cin-C, phosphacan/RPTPb/z) [19,20,43]. Due to their high homol-
ogy, TAG-1 and Contactin share a series of common binding
partners expressed by glial cells like Neurofascin, phosphacan/
RPTPb/z, and as recently reported mCD24 [44]. This raises the puz-
zling question of the molecular basis for the efficient segregation of
neighbouring axo-glial complexes at the node, paranode or juxtap-
aranode (Fig. 2). CAMs may cluster together depending on their rel-
ative binding affinities and in a determined cis- or trans-
configuration. For example, both TAG-1 and Contactin can interact
with Neurofascin as analyzed in vitro [45]. However, the homo-
philic binding affinity of TAG-1 when associated with Caspr2 at
the juxtaparanode may be favored. Likewise, the glial Neurofa-
scin-155 may display a much higher affinity for Contactin associ-
ated with Caspr at the paranode than for Contactin expressed at
the node. In addition, the generation of specific splice variants,
such as the glial isoform Neurofascin-155 expressed at paranodes
and the neuronal isoform Neurofascin-186 at the nodal gap, pro-
vides a way to regulate the binding activities of Neurofascin [46].
The presence of other extracellular ligands such as tenascin-R,
phosphacan or versican at the node may also modulate interac-
tions between Ig-CAMs at that site [17,18,45].

3.3. The selective processing and N-glycosylation of Caspr/Contactin
underlie their targeting at paranodes

Other types of mechanisms may be crucial for the segregation of
membrane domains at the node of Ranvier, such as the selective
trafficking and exocytosis of CAMs along the axons. The trafficking
of Caspr and Caspr2 strongly differs. The cell surface delivery of
Caspr is a tightly controlled process, which requires N-glycosyla-
tion and depends on the lectin chaperones calnexin/calreticulin
[47]. Chaperone-based ER retention is a widely used mechanism
that prevents the cell surface delivery of unassembled subunits
of membrane channels or receptors. The cis-association of Contac-
tin with Caspr is strictly required for its ER exit and transport to the
cell surface via the lipid rafts [48]. A motif consisting in Pro-Gly-
Tyr (PGY) repeats in the Caspr ectodomain is responsible for its
ER retention and deletion of this motif results in the cell surface
targeting of Caspr in the absence of Contactin. Interestingly, struc-
tural prediction studies suggest that the PGY region has the ability
to adopt a stable organized b-sheet structure. Since Contactin does
not interact directly with PGY, an attractive hypothesis would be
that Contactin might act as a chaperone and induce a disorder-
to-order transition of the PGY-rich sequence, allowing to by-pass
the calnexin/calreticulin checkpoint before ER export [49].

Caspr associated with Contactin may traffic via an unconven-
tional pathway that leads to the expression of the two glycopro-
teins exhibiting mannose-rich N-glycans at the cell surface [47].
By contrast, the Contactin glycoform expressed at the node may
bear complex N-glycans [15]. Mutant CHO lines affected in the pro-
cessing of N-linked carbohydrates have been used to decipher
whether Neurofascin-155 may specifically interact with Contactin
bearing either high-mannose residues or complex oligosaccharide
chains. The Lec1 and Lec23 lines mutated for the N-acetylglucosa-
mine transferase I and a-glucosidase I, respectively, produce
N-glycans with the high-mannose configuration [50]. Neurofa-
scin-155 strongly binds Contactin expressed by these mutated
lines by comparison with Contactin expressed by control CHO cells.
Thus the relative affinity of Neurofascin-155 for Contactin
associated in complex with Caspr at paranodes may be strongly in-
creased due to their specific N-glycan processing [49] (Fig. 2).
4. Role of rafts in the paranodal complex clustering and
formation of septate-like junctions

The Caspr2/TAG-1 and Caspr/Contactin complexes, in spite of
their high degree of homology, give rise to different ultrastructural
axo-glial contacts. It would be instructive to understand the molec-
ular basis for such difference. Their selective partitioning into the
lipid rafts may be of importance. The mode of association of GPI-
anchored proteins to the lipid rafts is still unclear. It is proposed
that the lipid remodelling of GPI-anchored proteins within the Gol-
gi that generates saturated acyl chains is essential for their incor-
poration into lipid microdomains [51]. Also, oligomerization of
GPI-anchored proteins depending on cholesterol may induce their
stabilization in the lipid rafts. In addition, TAG-1 has been shown
to interact with gangliosides GM3, GM1, GD1B and GD3 [52,53].
As expected for GPI-anchored proteins, Contactin and TAG-1 ex-
pressed alone in COS cells are partitioned within the low-density
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Triton-X100-insoluble fractions which corresponds to the lipid
rafts. Association with Contactin drives Caspr within the low-
density lipid raft fractions whereas on the contrary, TAG-1 is con-
strained by Caspr2 in the high-density fractions [29,48]. The glial
partner for Caspr/Contactin, Neurofascin-155, is recruited into
the lipid rafts due to its palmitoylation [54]. The partitioning of
Neurofascin-155 in the detergent-insoluble fraction increases with
brain maturation and may be correlated with the formation of axo-
glial junctions [55]. The paranodal glycoproteins on both sides of
the axo-glial junctions are partitioning with rafts. The selective
recruitment within lipid rafts of the paranodal but not juxtaparan-
odal components may participate to their lateral segregation. As
detailed in the following paragraphs, increasing evidences from ge-
netic and pathological models point to a role of the lipid rafts in the
formation or stabilization of paranodal axo-glial junctions.

4.1. The MAL-deficient mouse

MAL (myelin and lymphocyte protein) is a tetraspan proteolipid
characterized as a raft component implicated in the apical secretion
of membrane proteins in epithelial cells [56]. In MAL-deficient
mice, the initial formation of paranodes is normal but the axo-glial
junctions become altered in adult animals [57]. A reduction of the
clusters positive for Caspr and Neurofascin-155 is observed at para-
nodes of myelinated tracts and at the ultrastructural level, some
paranodal loops are everted and the typical transverse bands disor-
ganized. These data indicate that the glial MAL proteolipid may be
critical for the trafficking of Neurofascin-155 to the paranodal loops
and that such trafficking may occur through the raft-machinery.

4.2. The CGT-deficient mouse

Alterations of the paranodal junctions have been reported in
mutant mice for the ceramide galactosyl transferase (CGT), in-
volved in the biosynthesis of myelin galactocerebroside and sulfa-
tide (the oligodendrocyte antigen markers GalC and O4,
respectively), with absence of transverse bands, and diffuse
expression of Caspr along the internode [58,59]. The mechanisms
underlying the paranodal defects in these mice are not well under-
stood, but the galactolipids might be implicated either in cell–cell
interactions or in the targeting of paranodal components. The frac-
tion of Neurofascin-155 partitioning with the lipid rafts is de-
creased in the CGT mutant brain [55]. Since galactolipids are
enriched in rafts, they might be implicated in the raft-dependent
clustering of Neurofascin-155.

4.3. The ganglioside-deficient mouse

Autoantibodies to the gangliosides GM1 and GD1 are implicated
in a subtype of Guillain-Barré syndrome, an acute neuropathy that
disrupts nodes of Ranvier in peripheral motor nerves and causes
acute limb weakness [60]. The mutant mice deficient for the b1,4-
N-acetylgalactosaminyltransferase lack complex gangliosides and
have abnormally lengthened nodes and alteration of paranodal
junctions [61]. In these mutant mice, some paranodal loops are fac-
ing away from the axon, and transverse bands are missing in the
innermost loops correlated with attenuation of Caspr and Neurofa-
scin-155 immunostaining at paranodes. GM1 which is a raft-com-
ponent enriched at paranodes might be involved in the raft
partitioning of both axonal Caspr/Contactin and glial Neurofascin-
155.

4.4. The ether lipid-deficient mouse

Defects in myelination and paranode disorganization have been
reported in knock-out mice for the peroxisomal dihydroxyacetone-
phosphate acyltransferase [62]. This enzyme is required for the
biosynthesis of ether-linked glycerolipids, including essentially
plasmalogens. In addition, selected GPI-anchored proteins contain
at the sn-1 position, a long alkyl ether chain in their GPI-anchor
and their synthesis or raft distribution may be altered in the ether
lipid-deficient mouse [63].

The ether lipid-deficient mouse displays alterations of the
paranodal junctions with an increased paranodal length and the
lack of transverse bands in some paranodes. In addition, axonal
swellings and ER accumulation in Purkinje cell axons were ob-
served like in mice deficient for Caspr or Contactin. Other altera-
tions have been reported in the cerebellar cortex including
defects in the foliation patterning, delay in the granule cell migra-
tion, and alteration of the Purkinje cell innervation by both climb-
ing and parallel fibers. These last defects point to a neuronal
contribution for the mutant phenotype. Strikingly, since Contactin
is expressed at the synaptic level and implicated in the cerebellar
microorganization [64–68], it may be a good candidate to account
for part of the alterations generated by the ether lipid-deficiency.

In the ether lipid-deficient mouse, it seems that Caspr and Cont-
actin are clustered at paranodes even when the typical transverse
bands are partially or completely missing in some paranodal junc-
tions. This raises the intriguing question of whether Contactin
might be specifically ether-linked with glycolipids to allow organi-
zation of the junctional complex into septate-like arrays.

4.5. Paranodal junctions as a target for multiple sclerosis

Neurofascin autoantibodies have been identified in patients
with multiple sclerosis (MS) [69] and early alteration in Neurofa-
scin-155-positive paranodal structures occurs within and adjacent
to actively demyelinating white matter lesions that are associated
with damaged axons [70]. In chronic experimental allergic enceph-
alomyelitis (EAE), an animal model for MS, the concentration of
Neurofascin-155 is not changed but its raft-association is reduced.
In addition, the immunoreactivity of Neurofascin-155 is dramati-
cally increased in EAE lesion sites indicating an enhanced epitope
accessibility that may be due to the breakdown of blood–brain
barrier and fibronectin infiltration [71,72]. In cultured oligoden-
drocytes, fibronectin perturbs the membrane localization and
raft-association of Neurofascin-155. Therefore, it is likely that
alteration of raft assembly may induce abnormality of paranodal
junctions in EAE lesions.

5. MS and TAG-1

Recently, Edgar Meinl and his colleagues identified TAG-1 as an
autoantigen recognized by both autoantibodies and T helper Th1/
Th17 T cells in MS patients [73]. The adoptive transfer of
TAG-1-specific T cells is sufficient to induce EAE in the rat with a
preferential inflammation in the grey matter of both spinal cord
and cortex. However, in this TAG-1-induced EAE, demyelination
and axonal injury were only observed when MOG (myelin oligo-
dendrocyte glycoprotein)-specific antibodies were added. TAG-1-
induced EAE is the first animal model for cortical grey matter
involvement in MS patients revealing a new role for TAG-1 in
anti-neuronal immunity [74].
6. Evolutionarily conserved function of GPI-anchored molecules

Contactin and TAG-1 belong to the Contactin subfamily that in-
cludes six genes in mammals [4] and a single representative in Dro-
sophila. Drosophila Contactin plays a conserved function in the
formation of septate junctions, the fly counterparts of vertebrate
paranodal junctions [75,76]. Septate junctions have been first char-
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acterized in invertebrates and act as a paracellular barrier between
epithelial cells and between glial cells insulating axons. The CAMs
implicated in the formation of Drosophila septate junctions in-
cludes Contactin, Neurexin IV, the homolog of Caspr, and Neurog-
lian, the homolog of Neurofascin-155 [77]. Whether the
establishment or stabilization of fly septate junctions depends on
lipid rafts is still unknown. Despite the chemical differences be-
tween Drosophila and mammalian lipids, detergent-insoluble frac-
tions have been isolated in Drosophila, which contain ergosterol,
sphingolipids and GPI-linked proteins [78,79]. This raises the pos-
sibility that rafts may play preserved functions across widely sep-
arated phyla in providing a special microenvironment that
regulates protein trafficking or anchoring and allows future genetic
analyses in Drosophila.
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