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1. INTRODUCTION 

Given a commutative field k, it is well known that the similarity classes 
of central simple k-algebras form a torsion group B(k) called the Brauer 
group of k. When k is of characteristic p # 0, the theory of p-algebras due 
to Albert and others shows that the p-primary component of B(k) enjoys 
some very distinctive properties. Although by means of the Brauer-Noether 
theory of cross products, a cohomological description for B(k) has long been 
given, the same could not be done for the theory of p-algebras because the 
usual Galois cohomology ceases to have any definition for inseparable field 
extensions, while the very statements of many theorems in the theory of 
p-algebras involve inseparability. This difficulty, however, has been recently 
removed by Amitsur. For any algebraic field extension F over k, Amitsur 
introduced a new complex and proved that the second cohomology group 
of this complex is isomorphic to the Brauer group of central simple k-algebras 
split by F [3]. Subsequently, he also showed that the notions of lift and 
restriction as well as the Hochschild-Serre exact sequence can be carried 
over to Amitsur cohomology [q. These results make it possible to state in 
homological terms the theorems in the theory of p-algebras. In this paper, 
we propose to establish these theorems homologically. The key idea which 
we use is due to Zelinsky who in [Z9] deduced, from the work of Cartier 
and Jacobson on logarithmic derivatives, an elegant new proof for Berkson’s 
theorem. As it turns out, almost all the theorems in the theory of p-algebras 
as well as some recent contributions on higher-dimensional Amitsur 
cohomology groups (by Rosenberg and Zelinsky, among others) can be 

* This research was supported in part by National Science Foundation grant 
NSF-GP4022. A substantial part of this paper was presented as a dissertation in 
partial fulfillment of the requirements for the Ph.D. degree, Northwestern University, 
1964. 
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obtained by using similar techniques. These are done in Sections 3 and 4. 
Since the nth cohomology group of Amitsur complex provides a kind of 
higher-dimensional analog of the Brauer group, it is tempting to ask whether 
there is a higher-dimensional theory of p-algebras. This however does not 
seem to be the case, as we shall show in Section 5. In Section 2, for the 
convenience of the reader, some of the basic notions of Amitsur cohomology 
are summarized. 

2. DEFINITIONS 

Throughout this paper, all rings shall be commutative with identity. For 
any ring A, the group of invertible elements of A is denoted by A*. If R is 
an A-algebra, we understand that A C R and both have the same identity. 

Now let A be a ring and R an A-algebra. Put RAn = R @A .** QA R 
(n factors), and for n = 0, set R Ao = A. Following Amitsur [3], we define the 
homomorphism E~ : RAn -+ Rz+l (n > 0) by setting ci(xl @ *.. @ x,,) = 
Xi@***@X&i@l @Xi@...@&. These homomorphisms satisfy the 
relation cici = cj+ici for i < j. So we get two cochain complexes 

V(R/A) : 1 -A*--+R* 
4 

T (RA2)* d,r (RA3)* - ..* 

and 

V+(R/A) : 0 - A - 
4+ 

RzRA2-RA3 - ---, 
1 A*+ 

where the coboundary operators are defined respectively by 

I 

A+% = (+x)(C~)-1 *** (En+lx)‘-l’n 

Ll,x = x 

and 

I 

4+x = (ElX) - (62X) + --* + C-1)” (%+1X) 
Ll,+x = x. 

The cohomology groups of V(R/A) are denoted by H”(R/A); thus H”(R/A) = 
[kernel d,+J/[image An] (n > 0). The cohomology groups of Q+(R/A) 
usually vanish, and therefore need no special notation. 

If F is an R-algebra, and R an A-algebra, then F can also be regarded 
as an A-algebra. The natural injection RAW -+ FAn gives rise to a map from 
@‘(R/A) into V(F/A); we shall refer to the induced map between Hn(R/A) 
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and H*(F/A) as the lift homomorphism and denote it by h.l Next, the canonical 
homomorphism FAn -+ FRn given by xi @A ... aa x,, + x1 OR .a. OR x,, 
induces a map p from H”(F/A) into W(F/R) which will be referred to as 
the restriction homomorphism. 

If P is another A-algebra and z any element in Hn(R/A), we say z is 
split by P if the image of z in Hn(P @ R/A) under the lift homomorphism 
belongs to image (W(P/A) 7 H”(P @ R/A)}. The set of all elements in 
W(R/A) which are split by P is denoted by H”(R/A)r . 

3. EXACT SEQUENCES 

Hereafter we shall let K be a field of characteristic p + 0, and K = K[a] 
a nontrivial, simple, purely inseparable field extension of exponent one 
over K. So there is a derivation d on K given by dol = 1. If R is a k-algebra, 
then d induces a derivation D on V = R @ K2 by means of D(x @ u) = 
x @ du. D in turn gives rise to two more group-homomorphisms 

s: v*+v and [:V-+R 

defined, respectively, by 

St = Dtlt and ZJ = D”lt + t?‘. 

Put J = LJ V) and 1 e c : R -+ V be the natural injection x + x @ 1. So t 
we have the following sequence of groups and mappings: 

l-R* yd--pv ~1-0. (1) 

THEOREM 3.1. The sequence (1) is exact if either one of the following two 
hypotheses is satisfied: 

(i) There is a k-algebra homomorphism y of K into R; 

(ii) R is a Jinite-dimensional k-algebra. 

Under the Jirst hypothesis, we also have J = R. 

Proof. For any t E V*, clearly St = 0 if and only if Dt = 0. So image L 

1 Strictly there should be a subscript on h to indicate its domain and range. We 
omit this subscript in favor of simplicity of notations and trust that there is no con- 
fusion for an attentive reader. The same remark applies to p. 

a Henceforth all tensor-product signs without subscripts will denote tensor product 
over k, thus R @ K = R &K, R” = Rlcn and so on. 
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is always equal to kernel 6. On the other hand, if y is a K-algebra homomor- 
phism of K into R, then for any x E R, [u = x where 

u = (x @ l)[(&P-1 @ 1 - 1 @ cyp-l] 

because up = 0 and DP-‘u = x @ 1. So J = R under i). 
Given z E V, let flz be the mapping V --f V produced by multiplication 

by x. If z = St, then D + dz is the composite (At)-l D(h). Therefore 
(D + (I.+’ = (At)-‘D+‘lt) = 0 b ecause DP = 0. We are going to show 
that the converse is also true, that is, (D + Az)P = 0 implies z E image 6. 

Let K(T) be the (noncommutative) ring of differential polynomials with 
coefficients in K defined by TU = UT + du [.5]. For any f = f(T) EK(T), 
let r(f) be the endomorphism f(D + Ax) on V. Clearly, Y  is a representation 
of K(T) into V. In case (D + (lz)p = 0 the left ideal in K(T) which 
annihilates V contains ~9. Since TP belongs to the center of K(T) and 
K[d] g K(T)/(T~), (D + AZ)* = 0 merely means that V is made into a 
K[d]-module with d acting on V as D + /lx. But K[d] as a subspace of 
Hom,(K, K) coincides with the latter because they are of the same dimension 
over k. Now the modules over matrix rings are well known. Write 
52 = Hom,(K, K); then the formula is V g Hom,(K, V) @ K (see for 
example [6, Proposition A.61). Since each element of Horn&K, V) is 
determined by its action on 1 E K, which must go to an element of V 
annihilated by the new operation of d because in K, d 1 = 0, we have 
Hom,(K, V) = kernel(D + (lz) and V E K @ kernel(D + AZ). Thus 
V = K * kernel(D + AZ). 

We claim that the intersection of kernel (D + rlz) with V* cannot be 
empty if V = K * kernel(D + Ax). This can easily be shown if there is a 
k-algebra homomorphism v of K into R: Assume V = K * kernel(D + (lx), 
then 

1 = c tt( 1 @ Ui) 

for some ti E kernel(D + /lz) and ui E K. But D + flz is (R @ R)-linear, 
the left-hand side of the equation 

c t&4 @ 1) = 1 + 1 t&w 63 1 - 1 c3 Ui> 

is an element in kernel (D + clx) while the right-hand side is the sum of 1 
and a nilpotent element which must be a unit in V. We assert that the same 
conclusion can still be established provided R over k is a finite-dimensional 
vector space. 

Since V is now a finite-dimensional k-algebra, a well-known classical 
theorem says that V is a finite direct sum of local rings with nilpotent 
maximal ideals, e.g., V = V, @ a-* 0 V, . Let V~ : V --+ Vi be the ith 
projection. If for some fixed i, the ith component of every element in 

481/5/3-z 
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kernel(D + cls) is a non-unit in Vi , then by virtue of the equality 
V = K * kernel(D + AZ), the ith component of every element in V as a 

linear combination of nilpotents with coefficients in K must be a non-unit 
in Vi , a contradiction. So for each i, there is some yi E kernel(D + 4~) 
such that rriyi is a unit in Yi . Let y be an element of kernel(D + AZ). 
If y is not a unit in V, then there is some i such that rriy is not a unit in Vi . 
Since D + AZ is K-linear, y + cyi is in kernel(D + clx) for any c in k. 
We would like to show that suitable c can be chosen from k such that 
y + cyi has at least one more invertible component than y does. Let Nj be 
the maximal ideal of Vj . The field V,/N, can be regarded as an extension 
field of K. If rriyi is a unit in Vj , let cj E Vj be such that ~$(y + ciyi) is 
zero modulo Nj . For a fixed j, all possible cj determine a unique element 
in the field V,/Nj . Since K is an infinite field, we can surely choose c from 
K such that c and ci are distinct elements in Vj/Nj for all j whenever njyi 
is a unit. If xjy is a unit, so is nj(y + cyi). Moreover, n((y + cy,) is a unit. 
If we let y be an element in kernel(D + (lz) such that the number of 
invertible components of y is maximal, then y must be a unit in V. This 
completes our proof that the intersection of kernel(D + /lz) with V* cannot 
be empty if V = K * kernel(D + 4~). 

If u is an element of V* such that u-l = v E kernel(D + /lz), then 
z = -Dv/v = Dulu because Dulu + Dv/v = D(uv)/uv = Dl = 0. This 
shows image 6 = {z E V j(D + flz)p = O}. An application of the formula 
(D + flz)” = A(Dp-lz + zp) due to Jacobson [8, p. 201, (36)] completes 
the proof of the theorem. 

COROLLARY 3.2. If R is a k-algebra which satisjes one of the following 
fwo hypotheses : 

(i) R contains a k-algebra homomorphic image of K, 

(ii) [R : k] is Jinite, 

then there is an exact sequence of cochain complexes 

0 -+ G?(R/k) -+ V(R @ K/K) -+ V+(R @ K/K) + #(R/k) -+ 0, (2) 

where $(R/k) is the image of GF+(R @ K/K) in g+(R/k) under 5. All cochain 
groups of %(R/k) of dimensions greater than xero coincide with those of %+(R/k) 
in case hypothesis (i) holds. 

Proof. According to Theorem 3.1, for each integer m = 0, 1,2 ,..., there 
is an exact sequence obtained from (1) by substituting Rm for R: 

1 - (Rm)* 7 (Rm @ K)* 6, R2” @I K 7 J”(R/k) - 0.3,4 

s Hereafter R” @ K will be identified with (R @ K)Km. 
’ Notice Jo = JO(R/k) is independent of R. 
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In case R contains a k-algebra homomorphic image of K and m > 0, the 
subgroup J”(R/k) of R” actually coincides with the latter. So it suffices to 
prove that all the mappings involved are cochain complex mappings. That 
{Lo} commutes with the coboundary operators of V(R/k) and V(R @ K/K) 
is, of course, obvious. Given any u E (Rm @ K)*, we have 

sm+lAmu = s,+,[(e1u)(e2u)-1 *a- (E,+lu)(-l)m] 

= 4n+1(v4 - %n+,(~P) + *** + (-1)” 4?2+1(%+14 

= &&) - &$7P) + -** + (-1)” %+1(4nu) 

= A+,&+ 

This shows (8,) also commutes with the coboundary operators. Similar 
straightforward verification gives the same result for (5,). 

THEOREM 3.3. Let K = k[ol] (as usual) be a simple nontrivial purely 
inseparable extension field of exponent one over k. Then the map k + (K3)* 
defined by6 

x + exp[(or”-l ~1~1-1~~“-‘~1)(1~or~1-1~1~or)x] 

induces an isomorphism 5 between k/Jo and H2(K/k), where Jo is the additive 
subgroup {dp-4 + xr 1 x E K} of k. The inverse of .$ is given by 

c ui @I vi @ wi + --cl 
K 

1 ui @ qdw, 
)I( 

c ui @ viwi 
)I 

. 

We shall prove Theorem 3.3 simultaneously with 

THEOREM 3.4. Let E be a purely inseparable extension field of k, and let 
R be an E-a&ebra. Then Hfl(R/k) is isomorphic to Hn(R/E) under the restriction 
homomorphism for all n > 2. When n = 2, there is an exact sequence 

0 - H2(E/k) y  H2W9 ye H2(R/E) - 0. (3) 

Proof. Let us make a temporary assumption that E over k is finite 
dimensional. So there is a finite ascending chain 

kCK= E,C.-CE,-,CE, = E 

such that E,+= over Ei is a simple, nontrivial, purely inseparable field 
extension of exponent one. In view of the acyclicity of %‘+(R/k) and 

6 As usual, if R is an algebra Over GFCp) and t in R satisfies t’ = 0, then we define 
exp t = 1 + t/l! + . . . + P-l& - l)! 
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V+(R @ K/K) [1.5, Lemma 4.11 as well as the triviality of Hr(R @I K/K) 
[7, Theorem 11, if we pass the exact sequence (2) to cohomology, we see that 
Hn(R/k) is isomorphic to Hn(R @ K/K) for all n > 2, and when n = 2 there 
is an exact sequence 

0 + k/Jo + H2(R/k) --f H2(R @ K/K) --f 0. 

Now the kernel of the contraction map R @ K + R is nilpotent, so 
Hn(R @ K/K) is isomorphic to ZP(R/K) for n > 0. [16, Proposition 3.3.1 
This shows p : Hn(R/k) ---f Hn(R/K), n > 2, is an isomorphism, and the 
sequence 

0 - k/Jo - H2VW p- H2(R/K) - 0 

is exact. The special case R = K of the last statement is the assertion of 
Theorem 3.3 (it is a routine matter to verify that .$ is the map involved). 

Moreover from what we already know, we have 

H”(R/k) e H”(R/E,) g .a. z Hn(R/Emel) gg H”(R/E), n > 2. 

This shows p : Hn(R/k) --+ H”(R/E), n > 2, is an isomorphism because the 
composite of restrictions is again a restriction. On the other hand, if we 
pass the commutative diagram 

0 -+ %‘(K/k) -+ V(K @ K/K) + ‘X+(K @I K/K) + $(K/k) + 0 

n n n n 

0 + %(R/k) + V(R @ K/K) + V+(R @I K/K) + f(R/k) --f 0 

to cohomology, we get another commutative diagram 

0 

II 

O-k/Jo- H2(K/k) - H2(K/K) - 0 

Ii 1 A 1 
O-k/JO- H2(R/k) p- H2(R/K) - 0. 

The exactness of its horizontal sequences shows that the sequence 

0 - H2(K/k) 7 H2W) p- H2(R/K) - 0 (4) 



P-ALGEBRAS AND COHOMOLOGY GROUPS 287 

is exact. In particular, the third column of the commutative diagram 

0 0 0 
1 1 1 

0 + HZ(E,/k) -+ HZ(Ei+Jk) --+ H2(Ei+JEi) -+ 0 

1 1 1 
0 -+ HZ(E,/k) + H2(R/k) + HZ(R/Ei) -+ 0 

1 1 1 
0-t 0 + H2(R/E,+,) + H2(R/E,+1) + 0 

1 1 1 
0 0 0 

is exact. Let us assume that the second row is exact for all R. If we regard 
each column as a cochain complex, we have a short exact sequence of 
complexes, two of which are acyclic, so the middle column must be exact. 
Therefore, the exactness of (4), together with an obvious inductive argument, 
shows (3) is exact in case [E : k] is finite. 

If E over k is not finite, then E is the direct limit of all k-subalgebras 
E’ of E such that E’ is a finite purely inseparable extension over k. Clearly 

R,“s+R;,, @(R/E) g lim V(R/E’). 
--IF+ 

Since homology functor commutes with direct limit, we have Hn(R/E) z 
lim H”(R/E’) f or all n > 0. The exactness of direct limit as a functor 
&bined with the fact that p : H”(R/k) -+ H*(R/E’), n > 2, is an isomor- 
phism implies that p : H”(R/k) -+ H%(R/E), n > 2, is also an isomorphism. 
This proves the first assertion of Theorem 3.4. By the same token, one 
can establish the second statement of the theorem without any finiteness 
restriction on [E : k]. 

The next goal of this section is to prove the following two theorems. 

THEOREM 3.5. Let F over k be an algebraic separable jield extension and 
E over k be a purely inseparable field extensibn. Then 

0 - H2(F/k) -p H2(F @ E/k) p H”(F @ E/F) 

is exact. 

THEOREM 3.6. Let F over k be a finite-dimensional separable jield extension, 
and K = k[or] over k be a simple, nontrivial, purely inseparable Jield extension 
of exponent one. Then the &morphism f given by Theorem 3.3 induces an 
isomorphism between [ Jl(F/k) n k]/ Jo and H”(K/k), . 

We shall first assume the validity of Theorem 3.5 and give the following 
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Proof for Theorem 3.6. According to Corollary 3.2 the sequence 

0 + V(F/k) + V(F @ K/K) --+ %+(F @ K/K) ---t $(F/k) --t 0 

of cochain complexes is exact. If we pass it to cohomology, and using the fact 
that Hi(F @ K/K) as well as all the cohomology groups of Q+(F @ K/K) 
are trivial [7, Theorem 11, [15, Lemma 4.11, we get the long exact sequence 

0 + [Jl(F/k) n k]/J” --t H2(F/k) + H2(F @I K/K) -+ Hl(F/k, 8) 

+ H3(F/k) + H3(F @I K/K) + H2(F/k, f) -+ *-*, (5) 

where W(F/k, $) is the ith cohomology group of /(F/k). Now both the 
horizontal and the vertical sequence of the diagram 

0 - HZ(K/k) h’ H2(F @l K/k) p- H2(F @ K/K) 

0 

are exact (Theorem 3.4, Theorem 3.5), so H2(K/k)F is isomorphic to 
H2(F/k)1y, which in turn is isomorphic to [JI(F/k) n k]//O. To see that the 
composite effect of the sequence of maps 

[J’VP) n 4/J” - H2(F/k) 7 H”P 8 K/k) y H2(K/4 
is t, let us pass the commutative diagram 

0 -+ %‘(F/k) + V(F@K/K) 

1 1 

--t %+(F @ K/K) -+ &f/k) -+O 

1 
0 -&(F@K/k) +([F@Kj@K/K) -A?+( [F@K]@K/K) -+$(F@K/k) + 0 

t t t t 
0 -+ V(K/k) -+ V(K@K/K) + V+(K@K/K) + ,#(K/k) -+O 

to cohomology. The commutativity of the resulting diagram 

0 - [J1F/4 n 4/P - H2(F/k) - --- 

o- k/JO ----+ H2(F@K/k)---+ ..- 

o- k/Jo p- H2(K/k) - --. 

shows that 5 is indeed the correct map. 

This being so, we shall now take up the following 
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Proof for Theorem 3.5. In view of the direct limit argument given in the 
proof of Theorem 3.4, it suffices to prove the theorem under the assumption 
that [F : K] and [E : K] are finite. Let L = @#I] be a simple (nontrivial) 
purely inseparable field extension of exponent one over E. For simplicity 
of notations, we set 

P=F@E, Q =F@L. 

PrQs shall be understood as Pr @Q”. If a is the P-derivation on Q 
given by @ = 1, then a induces a derivation D on PrQs+l by means of 
D(x@u@y)=x@&@y(x~Pr,y~Q~,~~Q).Asbefore,welet 

6 : (PQ*+l)* + PrQs+l and 5 : PrQs+l --f pra Q 8 

be the group-homomorphisms given by 

6t = Dtlt and 5” = D”-‘t + t’. 

So, according to Theorem 3.1, the sequence 

1 _t (1”“Q”)* 7 (PrQs+l)* T pQ*+l 5- /;+I - 0 

is exact (notice PrQs+l g [Pr+lQ8] &Q), where I is the map x -+ X, and 
J:+’ = Ji+‘(Q/k) is the image of 5. 

For any r 3 0, let us denote by V,(Q/K) the subcomplex 

1 + k* + P* + ... + (P’)* -+ (P’Q)* + (P’Q”)* --+ ... 

of %(Q/k). Moreover, we let 

A; s-1 : PrQs + p7Q8+l (s > 1) 

be the homomorphism 

(-l)r+l(%+2 - %+3 + ‘-* + (-1)8-1%+8-l), 

where l i : Q+* -+ Qr+s+l is the face operator defined in Section 2. 
A:0 : P’Q ---f PrQz shall be understood as the injection x + (-l)Z+l x @ 1. 
So we have a new complex j,+(Q/k): 

Finally, we let V,(Q/k) be the subcomplex 
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of V,+(Q/k). Since 8cix = 0 for any x E (PrQ8)* and any i < I + 1, it is 
clear that the diagram 

(p’Q”)* d,+,, (fWQs+l)* 

6 
1 1 

6 

FQS 7 PrQs+l 
A,,*-1 

is commutative. Thus we have an exact sequence of cochain complexes: 

0 + ~,+,(QIk) + VAQQIk) + Vr+(Qlk) -+ A(Q/k) -+ 0. (6) 

Now V,+(Q/k) is obtained from V+(Q/k) by tensoring the latter with PTQ, 
the acyclicity of V+(Q/k) [25, Lemma 4.11 implies that %‘,+(Q/k) is also acyclic. 
If we let Hp*(Q/k) be th e nth cohomology group [kernel d,+,]/[image A,] 
of V,(Q/k), and for 12 > Y, set 

f(.YQ/k, 27 = [kernel ~&J/[image d&-J 

then the exactness of (6) together with the triviality of H,‘(Q/k, f) shows 
that the sequences 

0 -+ H:+,(QIk) --t f$‘(Q/N + 0, (7) 

0 -+ H;;;(Q/k) -+ H;+‘(Q/k) + 0, (8) 

0 + H;$;(Q/k) + fJ:+2(Q/k) --f fJ;+YQ/k, $1 

+ H;$(Q/k) + Hj+3(Q/k) + --- (9) 

are exact. But H,n(Q/k) = Hn(P/k) for all n < Y. (7) and (8) combined 
therefore show 

Hr+l(P/k) = H;$(Q/k) = H;;f(Q/k). WY 

Putting Y = 0 in (9), it is now obvious that 

0 -+ WV) --) WQ/k) + ffo’(QIk, $1 (11) 
is exact. 

Now the map Q+l ---f QF+’ = Q BP ..* BP Q (n + 1 factors) defined by 

x0 0 *.a @ x,, -+ x0 BP a** @ x,, gives rise to a commutative diagram: 

1 - (PQ”)” 1; L+@n+1>* L+p+1 __f PQ” 

1 1 1 1 

1 - (P C&Q;)* ---p (Q;+l)* 7 Q;+‘” 7 P Op Qpn, 
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which in turn gives rise to another commutative diagram: 

0 - 'ip,(QIk) - gtQl4 - go+(Qlk) - A(Q/k) - 0 
1 1 1 1 

0 - wdQ/P> - Y(Qlf') - go+(QP) - A(Q/P) - 0. 

Passing to cohomology and applying (1 l), we have the commutativity of 

0 - H2(P/k) & H2(QP) - %YQlk A 

1 1 P 1 

0 - H2(P/P) - H2(QlP) 3 HoYQIP, A 

II 
0 

(12) 

where the rows are exact. As an immediate consequence, we see that the 
composite map ph is zero. To show that 

0 - H2(P/k) 7 H"(Q/k) p- H"(QIP> (13) 

is exact, we therefore need only to show that H,,l(Q/k, f) - H,,l(Q/P, f) 
is l-1. Now according to Theorem 3.1, 5 : p+l- P @p p (n > 0) is 
onto, so H,,l(Q/P, 8) is the homology group of 

Jo1 2 POPQ~ POPQ OPQ, 
0.0 0.1 

and hence is equal to P/ J,,l. But H,I(Q/k, f) as the homology group of 

Jo1 do+0 Jo2(Qlk) x Jo”(QP) 

is equal to ([Jo~(Q/~)I n PthV’)IYJol C fGYQ/P, 9) because 

PTPQ 7 PQ” 0.0 0.1 

is exact. So (13) is exact. In particular, 

0 - H2(F/k) ---p H2(F @ K/k) p- H2(F @ K/F) (14) 
is exact. 
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Now in the commutative diagram 

0 0 

1 1 

0 - H2(F/k) -L H2(F @ E/k) -% H2(F @ E/F) 

II 4 1 1 b 

0 - H2(F/k) y  H2(F @L/k) 7H2(F @L/F) 

p2 1 1 k 

H2(F @L/F @ E) = H2(F @L/F @ E), 

the middle column is exact, by (13); the third column is exact, by (3). We 
would like to show that the exactness of the first row implies the exactness 
of the second row. In view of (14) an induction on the degree [E : k] would 
then complete the proof of the theorem. 

So let z be an element in kernel p. Obviously, p2z = pspz = 0; hence 
z = X,z’ for some z’ E H2(F @ E/k). Now h,p,z’ = ph,z’ = pz = 0; hence 
piz’ = 0 because h, is l-l. Since the first row is assumed to be exact, 
z’ = h,z” for some z” E H2(F/k). From z = h,z’ = h,h,z” = hz”, we see 
that kernel p C image h. 

On the other hand, for any y  E H2(F/k) we have &y = X&X,) y = 0. 
This shows kernel p = image h. 

Finally, h = h,X, as a composite of monomorphisms must be a monomor- 
phism itself. 

Remarks. A particular case of Theorem 3.4 is that if E over k is purely 
inseparable and of exponent one, then Hn(E/k) is trivial for all n > 2. This 
is due to Berkson [7, Theorem 41 who proved it by means of the machinery 
of regular restricted Lie algebra extensions. In [29], a special case of 
Theorem 3.1 was established by Zelinsky so as to deduce a shorter proof 
for Berkson’s theorem. Theorem 3.4 proper is due to Rosenberg and 
Zelinsky [16, Theorem 6.1, Corollary 6.21. Their proof makes use of Berkson’s 
theorem (as the first step of an inductive argument) as well as the technique 
of spectral sequences. In the language of algebras, the epimorphism part 
of (3) means that every central simple E-algebra is obtained by extending 
the scalar field of some central simple algebra over k. The latter statement 
is due to Hochschild [12, Theorem 51. Theorem 3.3 gives an explicit 
determination for the Brauer group of central simple k-algebras split by K, 
this is due to Jacobson and Hochschild [2Z], [II, p. 4891. Actually, the 
result of Jacobson and Hochschild is more general. They gave a determination 
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for the Brauer group of central simple K-algebras split by a given (not 
necessarily simple) purely inseparable field extension of exponent one. By 
suitably extending Theorem 3.1 which, as it now stands, constitutes only 
a partial generalization of Jacobson’s theorem [13, Theorem 151, it is 
possible to recover the result of Jacobson and Hochschild cohomologically, 
although we prefer to not do so as there is no occasion for us to use it. 
Theorem 3.5 is a special case of the fundamental exact sequence established 
by Amitsur [4, Theorem 4.11. Since Amitsur’s proof involves double com- 
plexes, we thought it more in the spirit of this paper to deduce a proof for 
the case we need from our own method. Some of the results in this section 
can be extended to commutative rings. See [Z8] for details. 

4. THE THEORY OF P-ALGEBRAS 

In this section we present a homological formulation for the theory of 
p-algebras. The reference following the statement of a theorem indicates 
the location in Albert’s book [I] w h ere the corresponding statement about 
p-algebras can be found. 

LEMMA 4.1. Let K = k[or] b e a simple nontrivial purely inseparable field 
extensi~ of exponent one over k. Then any nonxero element x in H2(K/k) has 
a splittingfieMF which is Galois over k and [F : k] = P.~ [I; p. 57, Theorem 17 
and p. 105, Lemma 10.1 

Proof. Let u E k be such that &i = z, where ri is the element in k/Jo 
determined by u (Theorem 3.3). Let F = k[w] where w is a root of the 
equation Xp - X = ~9%. Since 

u = w”/cP - W/CYP = [,((c+“) @ 19-l) E Jl(F/k) n k, 

an application of Theorem 3.6 completes the proof of the Lemma. 

LEMMA 4.2. If k has no Galois extensicm of degree p, then H2(E/k) = 0 
for all purely inseparable extensions E ower k. [Z; p. 105, Theorem 23.1 

Proof. Assume that for some purely inseparable extension E over k, 
H2(E/k) is not trivial. In view of the direct limit argument given in the 
proof of Theorem 3.4, we may assume that E over k is finite-dimensional 
with minimal [E : k]. Let M be an intermediate field between k and E with 
[E : Mj = p. According to Theorem 3.4, H2(E/M) z H2(E/k) # 0 because 

6 By using the simplified cochain complexes for cyclic field extensions [9, Section 161, 
it is easy to show that the image of z in H*(F/k) g k*/N,I,(F*) under the composite 
of maps W(K/k) 7 H’(K @F/k) f  H*(F/k) is precisely 0~9. 
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W(M//z) = 0. So by Lemma 4.1, there is a galois extension F, of degree p 
over M. If F is the separable closure of k in F0 , then F is a galois extension 
of degree p over k [I, pp. 102-1031. Th is contradiction establishes the 
assertion of the Lemma. 

Let k, denote the algebraic closure of k. Let k, be the separable, k, the 
purely inseparable, closure of k in k, . Theorem 3.5 combined with Lemma 4.2 
gives the following 

THEOREM 4.3. The l$t homomorphism A : H2(k,/k) ---f H2(k,/k) is an 
Gomorphism [I; p. 57, Theorem 18 and p. 62, Corollary]. 

Proof. First we know that H2(k,/k,) = 0 because there is no galois 
extension over k, . Now it is well-known that k, can be identified 
with k, ok, (see for example [I, p. 102, Lemma 7]), the exactness of 
0 - H’(k,/k) --y H2(k&) 7 H2(k,/k,) therefore completes the proof 
of the Theorem. 

Let F be an algebraic field extension of a field L. According to [4, Theorem 
2. lo], Hn(F/L) (n > 0) is always a torsion group. If we denote by Hn(F/L), 
the q-primary component of Hn(F/L) (q any prime number), we have the 
following simple 

LEMMA 4.4. If L is a perfect jield of characteristic p, then Hn(F/L), = 0 

(n > 0) for any algebraic Jield extension F over L. [I; p. 104, Theorem 22.1 

Proof. Since F is also perfect, the map rr : F--f F, xx = xp, is an 
automorphism on F. rr induces an automorphism rr++ on W(F/L), which 
in turn gives rise to an automorphism w* on H”(F/L). But in order that m* 
is l-l, H”(F/L) cannot have any element of order p, hence H%(F/L), = 0 
for all n > 0. 

THEOREM 4.5. The image of the monomorphism h : H2(k,/k) + H2(k,/k) is 
H2(k,/k), . [I; p. 104, Theorem 21.1 

Proof. According to Lemma 4.4, the p-component of H2(kJk,) is 
zero. By [4, Theorem 2.101, HYk,/k) is p-torsion. The exactness of 
0 - H2(k,/k) 7 H2(kIk) pr W(k,/k,) (Theorem 3.4) completes the 
proof. 

THEOREM 4.6. Let E = k[orl ,..., CY~] be a finite-dimensional purely insepa- 
rable field extension over k. Then H2(E/k) = n:=, H2(k[orJk). [I; p. 108, 
Theorem 28 and p. 107, Theorem 26.1 

Proof. Let us first assume that E over k is of exponent one. According 
to Theorem 3.3, every 2-cocycle for E over K[ar, ,..,, +J is cohomologous 
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to a normalized one of the form 

exp[(a;-l @ 1 @ 1 - 1 0 a;-l 0 l)(l @ clr 0 1 - 1 0 1 @ ar) X] 

with x in K[a, ,..., a,-i] and the tensor product over K[a, ,..., a,.-,]. Now 

(~ap-~)P - x = d~el(xa~-l) + (Xa,“-‘)” E Jo (= ]O(E/k[a 1,..., a,-,]), 

where d,. is the K[ai ,..., a,-J-d erivation on E given by d,a, = 1. So we 
can actually assume that x is an element of k. In other words, the composite 
map ph : ZP(K[a,]/K) -+ H2(E/k) --f H2(E/k[a, ,..., a,-i]) is an epimorphism. 
The exactness of the sequence (Theorem 3.4) 

0 - H2(K[q ,...) a7-J/k) ---p H2W) p- H2(E/k[cu, ,..., a,.-J) - 0 

therefore shows 

H2(E/k) = H2(k[al ,..., a,J/k) * H2(k[a,IIk) = fi H2(khllk). 
i=l 

We shall now proceed to complete the proof by taking induction on the 
exponent e of E over k. So let us assume that the theorem is true for e < s, 
and let E over k be of exponent s + 1. From what we have just proved, 
we know 

H2(E/k[alp,..., a,P]) = fi H2(k[alP ,..., ar~][ai]/k[alP ,..., aT*]). 
i=l 

Repeating the argument we used before, it is clear that the composite map 

pX : H2(k[aJk[atP]) -+ H2(k[a,p,..., a7”][ai]/k[aiP]) 

+ H2(k[alp ,..., a,.P][ai]/k[al” ,..., (yyp]) 

is an epimorphism. Since p : H2(k[aJk) + H2(k[ai]/k[aiP]) is also epimor- 
phic, the exactness of the sequence 

0 + H2(k[a,p,..., a,*]/k) + H2(E/k) + H2(E/k[a1P,..., a,.“]) + 0 

shows 

H2W) = [a H2(4c4/~)] * H2(G?‘,.-~ arpl/4 = fi H2V+41k) 

because 

H2(k[a P 1 ,..., a?p]/k) = fi H2(k[q*]/k) C fi H2(k[ori]/k). 
i=l i-l 

This completes the proof of the theorem. 
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For each integer r > 0, let us denote by Ur) the set of all x in K, such 
that xP’ E K. If {yl}lCI is a p-basis for Ku) over k, and yz,? is the p’th root 
of y1 , then the set of all “monomials” 

5 % 
yz1,7 *** Yl*.r (0 B ei <p’, s = 1, 2,...) 

form a (vector space) basis for K(r) over K. Moreover, if we set 

we see that the set of all monomials 

(24;; ?I;;, a** (?.p $a) 8 I (0 < 7)i , ei < p’, s = 1,2, 3 )...) 

form a basis for C7) @ E7) @ kc+) over K(T) @ K @ K. On the other hand, in 
view of Theorem 3.4, it is clear that the union of all H2(K(‘)/k), Y  > 0, is 
exactly Ha(K,/K). We shall need these remarks in the proof of the following 

THEOREM 4.7. Let f  be a given element in H2(k,/k). Let e be the minimal 

integer such that f  E H2(k@)/k). Then the order of I [as an element in the 
Abe&an group H2(k,/k)] is precisely pe [I; p, 109, Theorem 321. 

Proof. Let m : k@) -+ k@) be the map defined by TX = xP*. Obviously 
the endomorphism on H2(k@)/k) induced by r carries everything to the 
identity element. This shows that the order m of i is equal to pe’ with e’ < e. 

Now let x be a 2-cocycle in V(k@)/k) representing 5. ZP as a 2-coboundary 
is therefore equal to d(Zxi, @ xi2) for some xij E kfe). Set 

and assume that zi is an element of kfr) @ kcr) @ kfr). So we can write 
z, as 1 @ 1 @ 1 + f, where f is a linear combination (with coefficients in 
k(‘) @ k @ k) of the monomials 

Since fm = x1 m - 1 @ 1 @ 1 = 0, we know that all monomials occur in f 
must contain an exponent ni or ~9~ not less than ~r-~‘. In other words, the 
image of zi under the map kcr) @ k(T) @ kc’) -+ ktr) &I~,) kc’) C&W) kc+‘) 
defined by c, Ok cs @a cs ---t ci &.v c2 c&+,, ca is precisely 1 @ 1 @ 1. 

The exactness of the sequence 0 -+ H2(k@‘)/k) --+ Ha(ktr’/k) + H2(k(r’/k(6’)) 
therefore shows that f  is in H2(k@‘)/k). This shows e’ > e, and hence 
e’ = e as desired. 
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LEMMA 4.8. Let kp] b e a simple purely inseparable field extension of 

exponent e over k. Then every element in H2(k@p]/k) has a pth root in 

H2W.P1/k). 
Proof. Let v  : k[fi] -+ k[j3*] be the map given by x + xp. It is clear 

that the diagram 

is commutative, where rri* is the map induced by ZT.~ We are supposed to 

prove that v,,* is an epimorphism. The case e = 1 is of course trivial. Let f  

be an element in H2(Kpp]/k) and assume that e = 2. According to 
Theorem 3.3, there is a representative z for i such that 

z = exp[(/P(p-l) @ 1 @ 1 - 1 @ fi”‘“-1’ @ l)( 1 @ 8” @ 1 

- 1 @ 1 @ /P)($“‘“-I))“] (X E k). 

Let 9 be the element in H2(k[/3]/k[$3p]) determined by the 2-cocycle 

y  = exp[(j?P-l aL 1 & 1 - 1 & /P-l & I)( 1 or. /I & 1 

- 1 OL 1 OL B)(4p’“-1’)1, 
where L denotes the field k1Bp]. It is easy to see that rri*y = Z. This shows 
in case e = 2, rri*, and hence n,,* = xi*p is an epimorphism. 

Now let us assume that n,-,* is epimorphic whenever the exponent is less 
than e > 2. So 7r2* is onto. Since p is also onto, there is some fl in H2(kLjSl/k) 

such that 7r2*pR = pi. From the commutativity of the above diagram, it is 
clear that p(Z - ?~,,*f) = pf - 7r2*pf = 0. In other words, f  - ps*f is 
an element of H2(kp”-‘l/k) (Theorem 3.4) hence there is some 
5’ E Ha(k[rs”“-“l/k) C H2(k@]/k) such that ~,,*f’ = f  - n,,*E. So 

f  = ?r()‘o*(Lf + n’>, 

no* is epimorphic as desired. 

According to Theorem 4.7, the set of all z in H2(k,/k) such that ZP = 1 
is precisely H2(k(l)/k). I f  we regard the latter group as a vector space over 
the finite field of p elements, and denote its dimension by h(k), we have 
the following 

7 q* is not defined unless e = 2, but this will have no effect on the proof. 
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THEOREM 4.9. The group H2(k,/k) is isomorphic to the direct sum of h(k) 
copies of Z(p”“) where Z(p*) is the p-primary component of Q/Z (= rationals 
mod&o the integers). Moreover, h(k) is equal to h(E) for any E over k which 
is purely inseparable and of finite exponent. 

Proof. In view of Lemma 4.8 and Theorem 4.6, it is clear that H2(k,/k) 
is a divisible group. The first half of the theorem therefore follows easily 
from the usual structure theorem about divisible groups [20, p. 10, 111. 

Now let E over k be a purely inseparable field extension of finite exponent. 
So H2(E/k) is of bounded order, which implies h(k) must be equal to h(E) 
because the sequence 

0 + H2(E/k) -+ H2(k,/k) --t H2(k,/E) -+ 0 

is exact. This establishes the second half of the Theorem. 

Let C, 3 C, r) k be a tower of separable field extensions such that [C, : k] 
is a power of p. The argument given in the proof of Theorem 4.5 shows 
that the lift homomorphism H2(k,/k) ---f H2(C, @ k,/k), i = 1,2, is an 
isomorphism which in turn implies the lift homomorphism 

H2(C2 0 k/k) + H2(G 0 k/k) 

is also an isomorphism. The commutativity of the diagram 

H2(W) --f WC, 0 W) 
t t 

H2G14 -+ H2(C2 0 k/k) 

therefore implies that X : H2(C2/k) -+ H2(CI/k) is l-l, because by Theorem 
3.5 the horizontal maps are l-l. In other words, we may identify H”(C,/k) 
as a subgroup of H2(CI/k). 

Let us now call a cyclic p-extension of k any galois field extension over k 
whose galois group is a finite cyclic p-group. We shall need the following. 

LEMMA 4.10. Let C, 3 C, 3 k be a tower of cyclic p-extensions over k 
with [C, : C,] = m. Then, for every element f in H2(C2/k), there exists an 
element j? in H2(C,/k) such that 9” = f. 

Proof. According to [15, Theorem 11, the Amitsur cohomology for C, 
over k coincides with its galois cohomology. So it suffices to prove the 
Lemma for the latter cohomology groups.* Let G be the galois group, and 
7 a fixed generating automorphism for C, over k. Let H be the subgroup 
of G which leaves C, fixed. Put n = [C, : k] and let f be an element in 

8 The definitions as well as elementary properties about galois cohomology groups 
needed in the following can be found in [IO]. 
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H2(G/H, Cs*). It is well-known that a representative z for I may be chosen 
such that 

Zli,rf = 
I 
1, i+j<n, 

4 i+j>fb 

where F is the residue class in G/H determined by r, b is a constant in k*, 
The image of f  in H2(G, C,*) under the lift homomorphism therefore has 
as its representative the 2-cocycle f defined by fTt,.+ = TZ,~,~, . 

Now let us associate to every 2-cocycle g of G into C,* the element 
ny=:g7i,7 belonging to k*. It is known that this association induces an 
isomorphism between H2(G, C,*) and k*/N,I,,(C,*). Since f is associated to 

E f7i,r = jj fi fp+i,, = bm, 
r=o i=l 

if y  is the 2-cocycle of G into C,* defined by 

1, 
Y.,“,$ = b 

I, 

i+j<mn, 
i+j>mn, 

it is clear that the element 7 in H2(G, C,*) determined by y  satisfies the 

requirement jj” = f.  This completes the proof of the lemma. 

Let C be any cyclic p-extension over k. So H2(C/k) may be identified 
as a subgroup of H2(k,/k) by means of the lift homomorphism 

X : H2(C/k) -+ H2(C @ k,/k) = H2(k,/k). 

THEOREM 4.11. The group H2(k,/k) is gene-rated by the set of subgroups 
{H2(C/k)} where C runs through all the cyclic p-extensions of k. [I; p. 109, 
Theorem 301. 

Proof. We are supposed to show that to every element x in H2(k,/k) 
there always exist some cyclic p-extensions Ci over k such that z can be 
written as a finite product Hi zi with Xi E H2(Ci/k). We shall establish this 

by an induction on the order of a. The case where zp = 1 is a simple con- 
sequence of Theorem 4.7, Theorem 4.6, and Lemma 4.1. So let us assume 
that the assertion is true for all elements in H2(k,/k) of orders not greater 
than pe, and let z E H2(k,/k) be of order pe+l. This means ZP can be written 
as a finite product n, zi’ with zi’ E H2(C,‘/k), where Ci’ is some cyclic 
p-extension over k. Since we are assuming [Ci’ : k] > 1, a well-known 
theorem due to Albert [2, p. 6301 asserts that there is a cyclic p-extension 
Ci over k which contains Ci, as a proper subfield. But then Lemma 4.8 
says that there is some yi in H2(Ci/k), the pth power of which is equal to zi’. 
Put y  = nI( yi . The obvious fact that (y-%)p = 1 together with the 
equation z = y(y%) therefore completes the proof of the theorem. 

4W5/3-3 
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THEOREM 4.12. The group H2(k,/k) is the union of the set of subgroups 
{H2(E/k)}, where E runs through all simple purely inseparable field extensions 
ower k [I; p. 109, Theorem 31 and p. 107, Theorem 261. 

Proof. Let C be a given cyclic p-extension over k, and E any simple 
purely inseparable field extension over k. Let z be an element in H2(C/k). 
We claim that there is a simple, purely inseparable field extension L over k 
which splits x and contains E as a subfield. Owing to the isomorphism 
between H2( C/k) and k*/N,,,(C*) mentioned before, it suffices to show 
that for any a E k* there exists a simple, purely inseparable extension field L 
over k such that a is an element in the norm group NcaLIL(C @L)* and 
such that E is contained in L. Now it is known [I, p. 103, Lemma 93 that 
there is some p in C @ E with the property that the norm b = NCOEIE(j3) 
generates E. Hence so does c = ab, E = k[c]. Put L = k[cl’“]. We get 
a = cb-1 = N cB:LIL(clIm/I), as asserted. So, in particular, every element in 
H2(C/k) has a simple, purely inseparable splitting field (put E = k, b = 1). 
Now every element y in H2(k,/k) can be written as a finite product yr *.. yr+r 
with yi E He(CJk) where Ci is some cyclicp-extension over k (Theorem 4.11). 
If we let E be a simple, purely inseparable field extension which splits 

Yl ..* yT , we see that there is an L which is also simple, purely inseparable 
over k and which splits yr . . . yr yr+r . An induction on r therefore completes 
the proof of the theorem. 

5. HIGHER-DIMENSIONAL AMITSUR COHOMOLOGY GROUPS 

PROPOSITION 5.1. Let F over k be an algebraic field extension. Let F’ be 
the separable closure of k in F. Then H”(F’/k), is isomorphic to Hn(F/k), under 
the lift homomorphism for all primes q # p and for all n > 0. 

Proof. It is sufficient to prove the case where [F : k] is finite. The general 
case follows from this by taking direct limits. However, when [F : k] is 
finite, there exists a natural number e such that xpe E F’ for every x in F. 
Let T : F-F’ be the map vx = xpe. v induces a map rr* : H”(F/k) -+ Hn(F’/k). 
Now for any prime number q # p, it is clear that AZ-* and rr*h are automor- 
phisms on H*(F/k), and Hn(F’/k), , respectively (YZ > 0). This establishes 
the proposition. 

We would like to point out that the above proposition does not hold for 
the p-primary components. As a counter-example, let F’ be a separable field 
extension over k such that [F’ : k] isapowerofpandputF=F’@k,. 
So for n > 2, H”(F/k) G Hn(F/k,) is p-t orsion [4, Theorem 2.101 and hence 
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must be trivial (Lemma 4.4). But P(F’/k) is certainly not always zero. 

(Cf. [16; p. 238, Remark I].) We do, however, have the following 

THEOREM 5.2. Hn(k,/k) is isomorphic to H”(kJk) under the lift homomor- 

phism for all n > 2. [14, Corollary 3.41s 

We shall precede the proof of Theorem 5.2 by 

LEMMA 5.3. I f  F over k 6 a finite-dimensional galois jield extension with 
group G, then 

Hl(F/k, $) s [B(FKIF)lG/Tr[B(F~/F)l, 
Hn(F/k, $) c H“-l(G, B(FK/F)), n > 1, 

where B(FK/F) is the abbreviated notation for F/JI(F/k). 

Proof. Following [15, Section 21, to each x = C xi,, @ **- @ xi, E Fn+l 
we associate a (set-theoretical) map 

vs: G” = G@...@G--+F 
by means of 

‘pz(Q ,***I Tn) = c X&lXil) **+ (71 *-* TnXsn). 

It is shown in [Z5] that x + vz is a ring isomorphism from Fn+l onto 
M(G”, F) (= the ring of all set-theoretical mappings from G* into F). Now 
for any T in Gn, let T, denote the map from G” into F which is 1 on T 
and 0 otherwise. T, is an idempotent in the ring M(G”, F); let er be the 
corresponding idempotent in F n+l. Given f  in M(G”, F), the inverse image 
of f  under y  is therefore CT Lf( T) @ 1 @ *** @ l] eT . I f  f(T) belongs to 

PW4, w-f(T) = KW ui 0 4 f or some Cg--’ ui @ ori in F @ K, then 

If(T) @ 1 @ ‘*’ @ 11 eT = [n+l [(eT @ 1) “c” Ui @ 1 @ ‘*’ @ 1 @ d] 
0 

is in Jn+l(F/k). This shows v  maps J”+l(F/k) isomorphically onto 
M(Gn, Jl(F/k)). Since the latter is the set of all nonhomogeneous n-cochains 
of G with coefficients in JI(F/k), it follows that H*(F/k, /) E Hn(G, Jl(F/k)) 
for all n > 0 (cf. [Z5, Section 21). 

Now 0 + Jl(F/k) + F ---f B(FK/F) + 0 is an exact sequence of G- 
modules with its middle term being cohomologically trivial [27, p. 158, 

@ The proof given in [14] uses the theory of simple algebras as well as the technique 
of spectral sequences. 
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Proposition 11, so W+l(G, jl(p/K)) E H”(G, B(FK/F)) for n > 0, and 
Hl(G, Jl(F/k)) g [B(FK/F)]G/Tr[B(FK/F)] [17, p. 1361, where 

[z~($‘K/F)]G = {V E B(FK/F)I TV = v  for all T E G}, 

This completes the proof of the Lemma. 

COROLLARY 5.4. If F over k is a (not necessarily finite-dimensional) galois 
field extension with group G, then there is an exact sequence10 

HO(G, B(FK/F)) --f H3(F/k) --+ H3(F @ K/K) + HI(G, B(FK/F)) + ..a. 

Proof. Since HO(G, B(FK/F)) z [B(FK/F)IG [17, Chapter 7, Section 21, 
Lemma 5.3 combined with (5) shows the above sequence is exact in case 

[F : k] is finite. So let us assume F over k is infinite-dimensional. Let L C F 
be an arbitrary finite-dimensional galois extension over k with G(L/k) as the 
galois group. It is clear that G = @ G(L/k), F = lim_ L, Jl(F/k) = 

lim Jl(L/k). The exactness of 0 --t J’(F/k) -+ F + B(FK/F) -+ 0 therefore 

implies B(FK/F) is equal to lim B(LK/L) b ecause direct limit is an exact 
functor. An application of &zformula 

H”(G, B(FK/F)) = 5 H”(G(L/k), B(LK/L)) 

[Z7, p. 1621 completes the proof of the Corollary. 

From Corollary 5.4 we now deduce the following. 

Prooffor Theorem 5.2. By Theorem 3.3, we know B(k$/k,) is isomorphic 
to H2(k, @ K/k,). The latter group is trivial because k, is separably closed 
(Lemma 4.2). Hence Hn(k,/k) s H”(k, @ K/K) for all n > 2. Now let E 
over k be a finite-dimensional, purely inseparable field extension. So there is 
a finite ascending chain of subfields of E : k C K = E, C *** C Ernp1 C E, = E 
such that Ei+l over Ei is a simple, purely inseparable field extension of 
exponent one. Since k, @ Ei is the separable closure of Ei, and 

(4 0 Ed OE< -&+I cz k, 0 Ei+l, 

we readily have 

H”(k,/k) G H”(kO @ El/E,) E 1.. E H”(k, @E/E) E H”(ko @E/k) 

for all n > 2, the last isomorphism is merely an application of Theorem 3.4. 

lo In view of Theorem 3.3 this is a special case of [14, Corollary 3.31. 
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A direct limit over all finite, purely inseparable extensions E over K completes 
the proof. 

THEOREM 5.5. Hn(k,/k), = Hn(k,/k), = fP(k,/k) = 0 for all n > 2. 

Proof. According to Theorem 3.4, fP(k,/k) = 0 and F(k,/k) =ZP(k,/k,) 
for all n > 2. Since k, is a perfect field, Lemma 4.4 says that the p-primary 
component of Hn(kol/kL) must be trivial. An application of Theorem 5.2 
completes the proof. 

ACKNOWLEDGMENT 

I should like to take this opportunity to express my great appreciation for Professor 
Daniel Zelinsky’s constant encouragement and useful suggestions during the prepara- 
tion of this paper. I am especially grateful for the privilege of reading [19] prior to 
its publication. It was from this paper we learned the technique so important for 
the present work. 

RBFBRENCES 

1. ALBERT, A. A. Structure of algebras. American Mathematical Society Collo- 
quium Publications, Vol. 24, New York, 1939. 

2. ALBERT, A. A. Cyclic fields of degree p” over F of characteristic p. Bull. Am. 
Math. 5%~. 40 (1934), 625-631. 

3. AMITSUR, S. A. Simple algebras and cohomology groups of arbitrary fields. 
Trans. Am. Math. Sot. 90 (1959), 73-112. 

4 AMITSUR, S. A. Homology groups and double complexes for arbitrary fields. 
J. Math. Sot. Japan 14 (1962), l-25. 

5. AMITSUR, S. A. Differential polynomial and division algebras. Ann. Math. 59 
(1954), 245-278. 

6. AUSLANDER, M. AND GOLDMAN, 0. Maximal orders. Trans. Am. Math. Sot. 97 
(1960), l-24. 

7. BERKSON, A. J. On Amitsur’s complex and restricted Lie algebra. Trans. Am. 
Math. Sot. 109 (1963), 430443. 

8. CARTIER, P. Questions de rationalite des diviseurs en geometric algebrique. 
Bull. Sot. Math. France 86 (1958), 177-251. 

9. EILENBERG, S. AND MACLANE, S. Cohomology theory in abstract groups: I. 
Ann. Math. 48 (1947), 51-78. 

10. HOCHSCHILD, G. Local class field theory. Ann. Math. 51 (1950), 331-347. 
II. HOCHSCHILD, G. Simple algebras with purely inseparable splitting fields of 

exponent one. Trans. Am. Math. Sot. 79 (1955), 477-489. 
12. HOCHSCHILD, G. Restricted Lie algebras and simple associative algebras of 

characteristic p. Trans. Am. Math. Sot. 80 (1955), 135-147. 
13. JACOBSON, N. Abstract derivations and Lie algebras. Trans. Am. Math. Sot. 

42 (1937), 206-224. 
14. PAREIGIS, B. AND ROSENBERG, A. Addendum to “Amitsur’s complex for insepar- 

able fields.” Osaka Math. /. 16 (1964), 33-44. 



304 WAN 

15. ROSENBERG, A. AND ZELINSKY, D. On Amitsur’s complex. Trans. Am. Math. 
Sot. 97 (1960), 327-356. 

16. ROSENBERG, A. AND ZELINSKY, D. Amitsur’s complex for inseparable fields. 
Osaka Math. J. 14 (1962), 219-240. 

17. Sxnax, J.-P. “Corps Locaux.” Hermann, Paris, 1962. 
18. YUAN, S. On the Brauer group of local fields. Ann. Math. 82 (1965), 434-444. 
19. ZELINSKY, D. Berkson’s theorem. Israel J. Math. 2 (1964), 205-209. 
20. KAPLANSKY, I. “Infinite Abelian Group.” University of Michigan Press, Ann 

Arbor, 1954. 
21. JACOBSON, N. p-algebras of exponent p. Bull. Am. Moth. Sot. 43 (1937), 667-570 

The author regrets that, in a recent note of his [18], this paper by Jacobson 
was not quoted. 


