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Abstract

We propose a pattern for designing algorithms that run in polynomial time by construction and under-
approximate the winning regions of both players in parity games. This approximation is achieved by the
interaction of finitely many aspects governed by a common ranking function, where the choice of aspects and
ranking function instantiates the design pattern. Each aspect attempts to improve the under-approximation
of winning regions or decrease the rank function by simplifying the structure of the parity game. Our
design pattern is incremental as aspects may operate on the residual game of yet undecided nodes. We
present several aspects and one higher-order transformation of our algorithms — based on efficient, static
analyses — and illustrate the benefit of their interaction as well as their relative precision within pattern
instantiations. Instantiations of our design pattern can be applied for local model checking and as pre-
processors for algorithms whose worst-case running time is exponential. This design pattern and its aspects
have already been implemented in [16].
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1 Introduction

A parity game G (e.g. [7]) specifies sets of finite or infinite plays between two players
0 and 1 on directed graphs (V, E) with non-empty, finite 5 set of nodes V and edge
relation E ⊆ V × V . Each node v ∈ V is labeled with a priority χ(v), a value in
the set {0, 1, . . . , d − 1} where d ≥ 0 is the index of parity game G. Furthermore,
the set of nodes V is partitioned into V0, the set of nodes owned by player 0, and
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5 We restrict our attention to finite parity games in this paper, although our ideas should transfer to
computable settings for infinite parity games.
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V1, those nodes owned by player 1. 6 Plays π = v0v1 . . . in game G are sequences of
configurations (which are simply nodes) and may start at any node v0 ∈ V :

• The player who owns v0 needs to choose some v1 with (v0, v1) ∈ E as the next
configuration. If no such v1 exists, we then call v0 a dead end, the player who
owns v0 loses that play.

• From configuration v1 the play proceeds as in the previous item with v1 now
taking the role of v0, resulting either in an infinite play, or a finite play if one
player gets stuck in a dead end and loses the play.

The winning conditions for an infinite play π = v0v1 . . . are derived from the
priorities it accumulates. Let Inf(π) be the set of those priorities that occur infinitely
often in the sequence χ(v0)χ(v1) . . . . Then play π is won by player 0 if max Inf(π)
is even. Play π is won by player 1 if max Inf(π) is odd.

Example 1.1 Consider the parity game in Fig. 1. A possible infinite play π is
v7v0v7v0 · · · = (v7v0)ω with Inf(π) = {0, 1}. Thus π is won by player 1 as the largest
priority that occurs infinitely often in that play is 1 and therefore odd.

As customary, we write σ to denote any of the players or values 0 and 1 and set
σ̄ = 1− σ. Memoryless strategies for player σ are partial functions f : W ∩ Vσ → V

for some subset W of nodes where f(v) is defined iff v ∈ W ∩ Vσ is not a dead end;
in which case (v, f(v)) ∈ E. Such a strategy is winning for W if all plays starting
in W are won by player σ if played according to that strategy: at any configuration
v ∈ W ∩Vσ that is not a dead end, player σ chooses f(v) as the next configuration.

Parity games are determined [6]: each player σ has a winning region Winσ(G) of
nodes in G for which she has a memoryless winning strategy, and these two regions
Win0(G) and Win1(G) form a partition of the set of nodes in G.

Example 1.2 Reconsider the parity game in Fig. 1. The winning region for player
0 is {v4, v5, v6}, and the winning region for player 1 is {v0, v1, v2, v3, v7}; both sets
partition V . A memoryless winning strategy for player 0 consists of “If at node v6

or at node v4, move to node v5.” Note that player 0’s behavior at nodes v0 and v2

is irrelevant as these nodes are within the winning region of player 1.

Designing algorithms for the computation of winning regions in parity games is
an important theoretical problem as the corresponding decision problem “is a node
won by player 0?” is in UP and coUP [12] but not known to be in P. Designing such
algorithms is also important for applications since determining winning regions in
parity games is equivalent, in polynomial time, to other important problems — we
mention model checking formulas of the modal mu-calculus [9,7].

Traditional approaches design algorithms that compute the exact winning re-
gions of parity games, see e.g. the survey in [8]. These algorithms are then either
revealed not to be in P — by constructing defeating, worst-case input games — or
it is presently not known whether they are in P. In this paper we take a comple-

6 In this paper a partition of a non-empty set Y is a set of pairwise disjoint sets {Pi | i ∈ I} such that Y
is the union of all Pi but where some Pi may be empty.
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Fig. 1. A parity game, taken from [10]. Circled (resp. squared) nodes are owned by player 0 (resp. 1).
Directed edges indicate possible game moves. Priorities of nodes are provided within nodes, e.g. χ(v6) = 1.

mentary approach. Instead of designing an algorithm that computes exact winning
regions but has complexity that is unknown or known not to be in P, we present
a design pattern for algorithms that are in P by construction but compute only
subsets of winning regions by partitioning the set of nodes into three regions:

• known wins of player 0: a set W0 contained in Win0(G)
• known wins of player 1: a set W1 contained in Win1(G)
• and nodes whose winning status is unknown: the set V \ (W0 ∪ W1).

That is to say, we mean to under-approximate both winning regions Win0(G)
and Win1(G), and propose to do so through efficient and sound static analyses.

Our approach has practical relevance for at least two reasons.

(i) In local model checking [15] one is only interested in whether a particular
state satisfies a formula. This corresponds to determining which player wins a
particular node, something our algorithms may well achieve.

(ii) Our algorithms can be used as efficient pre-processors for existing algorithms:
due to the invariants satisfied by Wσ (detailed in Sec. 3), existing algorithms
can run directly on the residual parity game induced by V \ (W0 ∪ W1).

Related to the last point, our invariants guarantee that our design pattern can
operate in a completely incremental way by ignoring W0 ∪ W1 in the continuation
of computation. We refer to [7,17] for more background material on parity games
but strive to make this article self-contained.

Outline of paper.
In Section 2 we recall some basic concepts for parity games. Our design pattern,

its invariants, and correctness are discussed in Section 3. Three aspects, with which
our design pattern can be instantiated, are presented and proved to be correct in
Section 4. In Section 5, the beneficial interaction of aspects are investigated and a
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precision-enhancing transformation for our algorithms are proposed. Related work
is featured in Section 6. Plans for future work are revealed in Section 7, and we
conclude in Section 8.

2 Basic concepts

A set Y ⊆ V of nodes determines its σ-attractor in G, denoted by Attrσ(G, Y ), the
set of those nodes v ∈ V for which player σ has a memoryless strategy ensuring
that all plays started at v either reach a node in Y or a dead end for player σ̄. In
particular, Y ⊆ Attrσ(G, Y ). We call Y a σ-attractor in G iff Y = Attrσ(G, Y ). Such
σ-attractors Y satisfy the following, characterizing, closure properties: if v ∈ Vσ and
(v, v′) ∈ E for some v′ ∈ Y , then v ∈ Y . Dually, if v ∈ Vσ̄ and for all (v, v′) ∈ E we
have v′ ∈ V , then v ∈ Y .

Example 2.1 The attractor Attrσ(G, {}) consists of those nodes v from which
player σ can ensure that a dead end for player σ̄ is reached. These attractors
are empty for the parity game in Fig. 1 as no dead ends are present. In that parity
game, we have Attr0(G, {v4, v5}) = {v4, v5, v6}.

A set of nodes T ⊆ V is called a σ-trap in G iff for all nodes v ∈ T ∩ Vσ and all
(v, v′) ∈ E we have v′ ∈ T ; and for all nodes w ∈ T ∩ Vσ̄ we have some (w, w′) ∈ E

with w′ ∈ T . It is easy to establish that, for a σ-attractor Y , the complement V \Y

is a σ-trap in G.

Example 2.2 For G in Fig. 1, the set {v4, v5, v6} is a 1-trap but {v4, v5, v6, v7} is
not: player 1 can escape that set through (v7, v0) ∈ E as v7 ∈ V1.

A set of nodes P ⊆ V is called a σ-paradise in G iff P is a σ̄-trap in G and
player σ has a memoryless strategyf : P ∩ Vσ → V such that she wins all plays
beginning in any node in P if played according to strategy f . It is not hard to
see that Attrσ(G, P ) is a σ-paradise in G whenever this is so for P . The union of
σ-paradises is a σ-paradise so Winσ(G) is the largest σ-paradise in G.

Example 2.3 Sets {}, {v5, v6}, and {v4, v5, v6} are 0-paradises for G in Fig. 1.

For a set of nodes W ⊆ V , the parity game G[W ] has W as set of nodes,
(W ×W )∩E as edges, and χ restricted to domain W as priority function. We say
that G[W ] is a sub-game of G iff all w ∈ W that are dead ends in G[W ] are also
dead ends in G. It is easy to see that G[W ] is a sub-game in G whenever W is a
σ-trap in G, for any player σ.

Example 2.4 For G from Fig. 1, G[{v4, v5, v6}] is a sub-game in G but G[{v0, v1}]
is not: v1 is a dead end for player 1 in G[{v0, v1}] but not in G.

A cycle in a directed graph (V,E) is a finite word v0v1 . . . vn over V with n ≥ 1
such that v0 = vn and, for all i = 0, . . . , n− 1, we have (vi, vi+1) ∈ E. In particular,
self-loops at v — which are edges (v, v) ∈ E — determine a cycle vv.
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The work reported in this paper benefits from an explicit representation of re-
dundancies in parity games. This leads to the notion of lax parity games.

Definition 2.5 A lax parity game with index d is a parity game G with index d,
with two adjustments and one requirement:

• The function χ maps nodes v to elements of {0, 1, . . . , d − 1} ∪ {X}, where X is
a priority expressing “don’t care”.

• For an infinite play π = v0v1 . . . in G, the set Inf(π) is defined as all those priorities
other than X that occur in χ(v0)χ(v1) . . . infinitely often.

• We then require that Inf(π) is non-empty for all infinite plays π in G.

Example 2.6 Fig. 6 and 7 depict lax parity games. The parity game in Fig. 10
can be turned into an equivalent lax parity game by changing the priorities of nodes
v0 and v2 to X. No further X labels are then allowed as otherwise there will be
infinite plays π with empty set Inf(π).

All notions discussed for parity games, in particular strategies and winning re-
gions, apply verbatim to lax parity games. Clearly, every parity game is a lax parity
game where X is not in the image of χ. Conversely, for any lax parity game Gl

we can construct, in linear time and logarithmic space, an equivalent parity game
G that is simply Gl except that all nodes that were labeled with priority X are
now labeled with 0. It is easy to see that G and Gl have the same winning re-
gions. In particular, lax parity games are determined. By abuse of language we
will refer to lax parity games as parity games subsequently, unless there is a specific
need to highlight laxness. The evaluation of maxima and sums containing X, e.g.
max{0, 3, X} = 3 and 0 + 2 + 1 + X + 3 = 6, treats X as being 0.

Using standard techniques we can transform, in logarithmic space and linear
time, a parity game G with node set V into a parity game G′ with node set V ′

containing V such that G has no dead ends, no self-loops, and Winσ(G) = V ∩
Winσ(G′); see Sec. A of the appendix. Due to their simplicity, these transformations
won’t increase the computational burden on our algorithms. Thus we have:

Assumption of paper.
Without loss of generality parity games have no dead ends and no self-loops.

3 Design pattern

Our design pattern is depicted in Fig. 2. The design pattern first initializes W0 and
W1 to {}. Next a cache for the rank function of the parity game is set to be 0.
The while-statement that follows employs a standard termination pattern for the
rank function. Its body iterates the execution of k > 0 many aspects A#i that run
in polynomial time and potentially increase the sets Wσ, or decrease the rank of G

in other ways. When that while-statement terminates (when no aspect decreases
the rank), the final value of Wσ represents those nodes that are known to be won
by player σ, whereas V \ (W0 ∪ W1) contains those nodes whose winning status
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W_0 = W_1 = {};
cache = 0;
while (rank(G) != cache) {
cache = rank(G);
for (i=1; i++; i <= k) { A#i; }

}
return (W0,W1);

Fig. 2. Design pattern for algorithms that under-approximate winning regions of parity games in polynomial
time. Instantiations of this pattern require a rank function that is polynomial in |E| , |V | , and d — where
we write |Y | for the cardinality of set Y — and k ≥ 0 many aspects A#i that run in polynomial time and
may soundly increment sets Wσ or decrease rank(G).

the (instantiation of the) design pattern cannot classify. See Fig. 3 for illustration.
This pattern is inspired by Zielonka’s constructive proof of determinacy for parity
games [17], except that our pattern is symmetric and non-recursive.

Definition 3.1 Subsequently we write U for the set V \ (W0 ∪W1) of nodes whose
winning status is yet undecided, and EU for the edge relation E intersected with
U × U . Also, χU = {χ(v) | v ∈ U} \ {X} is the set of priorities other than X that
occur in set U . All these notions have state in our design pattern.

We list the basic invariants for this pattern, which all instantiations need to
honor before and after any iteration of the for-statement. If these iterations change
state we use primes to denote state after an iteration. The four invariants for our
design pattern are:

(P) Wσ is a σ-paradise in G, and so a σ̄-trap in G

(A) Wσ is a σ-attractor in G and W0 and W1 are disjoint 7

(L) G[U ] is lax (i.e. there are no cycles labeled with X only) and contains neither
self-loops nor dead ends for either player

(F) Winσ(G) = Winσ(G′)

Invariant (P), for “Paradise”, states that Wσ is a σ-paradise in G and therefore
must be contained in Winσ(G), the largest σ-paradise in G; and a σ-paradise is a
σ̄-trap by definition. Invariant (A), for “Attractor”, states that Wσ is a σ-attractor
in G. Invariant (L), for “Loops”, “Liveness”, and “Laxness”, states that the sub-
graph of yet undecided nodes has no node that is a dead end or contains a self-loop,
and that the sub-game for these undecided nodes is lax. Invariant (F), for “Frame
Condition”, states that the winning regions of parity game G don’t change. This
frame condition is a non-trivial constraint as the aspects A#i may change structure
of G; e.g. add/remove edges or nodes, modify the priority function χ, etc. The
initialization Wσ = {} in our design pattern clearly secures all invariants.

Invariants (A) and (P) together guarantee that our design pattern can operate in
a completely incremental manner: aspects can effectively ignore set W0∪W1 and its
incoming and outgoing edges and execute on the residual game G[U ]. Invariants (P),
(A), and (F) refer to game G not to the incremental game G[U ] so our correctness

7 This disjointness holds if invariant (P) is true, but some of our arguments only rely on invariant (A).
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set of positions decided to be won by player 1

1-attractor and 0-trap

set of positions decided to be won by player 0

0-attractor and 1-trap

W0

W1

sub-game of yet undecided positions

Fig. 3. Computing safe winning regions of parity games: the set V of nodes is partitioned into regions W0,
W1, and the complement of their union. That partition satisfies invariants (P), (A), (L), and (F).

proofs will not always be incremental themselves. The next lemma establishes the
facts needed for realizing such incrementality in our algorithms.

Lemma 3.2 Let G satisfy invariant (A). Then G[U ] is a sub-game in G and

Attrσ(G, Wσ ∪ Z) = Wσ ∪ Attrσ(G[U ], Z) ∀Z ⊆ U (1)

If, additionally, G satisfies invariant (P), then

Winσ(G[U ]) = U ∩ Winσ(G) (2)

Proof. First, we show that G[U ] is a sub-game in G. Let v ∈ U ∩ Vσ such that
there is no (v, v′) ∈ E with v′ ∈ U . We need to show that there is no (v, v′) ∈ E at
all.

• Proof by contradiction: Assume that there is some v′ ∈ V with (v, v′) ∈ E. Since
v is a dead end in G[U ] we have v′ ∈ Wσ ∪ Wσ̄. We show that v′ is in Wσ̄.
· Proof by contradiction: Assume v′ ∈ Wσ. Then v ∈ Vσ and (v, v′) ∈ E imply

v ∈ Attrσ(G, Wσ) = Wσ by invariant (A). This contradicts v ∈ U .
Therefore all v′ with (v, v′) ∈ E have to be in Wσ̄. But then v ∈ Attrσ(G, Wσ̄)
follows, and the latter set is Wσ̄ by invariant (A). This contradicts v ∈ U .

Second, we show (1). Let Z ⊆ U .

• Let v ∈ Attrσ(G, Wσ ∪ Z). We need to show that v ∈ Wσ ∪ Attrσ(G[U ], Z). If
v ∈ Wσ, this is the case. But v cannot be in Wσ̄ as this is a σ-trap disjoint
from Wσ ∪ Z by invariant (A). So the case v ∈ U remains to be considered. By
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assumption, player σ has a memoryless winning strategy f , in G, such that all
plays from v in G that are played according to f either reach a dead end for
player σ̄ or a node in Wσ ∪ Z.

Now consider any play in G[U ] from node v where player σ plays according to
f . That such plays are played according to f is indeed possible since any node w

that is reachable from v in G[U ] in such a play (including possibly v itself) and is
in Vσ must satisfy that f(v) is defined (as f is winning) and not in Wσ (as that
set is a σ-attractor and w ∈ U). But then any such play in G[U ] looks to player
σ like a play in G played according to f . Therefore any such play either reaches
a dead end for player σ̄ or a node in Wσ ∪ Z. But since these plays are in G[U ],
they never reach node set Wσ. This shows v ∈ Attrσ(G[U ], Z) as desired.

• Let v ∈ Wσ ∪Attrσ(G[U ], Z). We need to show v ∈ Attrσ(G, Wσ ∪ Z). If v ∈ Wσ,
we are done as Y ⊆ Attrσ(G, Y ) for all Y ⊆ V . It remains to consider the case
when v ∈ Attrσ(G[U ], Z). Then player σ can force, in G[U ], all plays from v to
either reach a dead end for player σ̄ or a node in Z. But then player σ can force,
for all plays from v in the larger game G, to either reach a dead end for player σ̄

or a node in Wσ ∪ Z. This is so since
· Wσ̄ is a σ̄-attractor in G by invariant (A) so no node in U ∩Vσ̄ has an edge into

Wσ̄

· and so player σ̄ can avoid both, a dead end for him and node set Z, only by
either player choosing an edge into Wσ.
This shows v ∈ Attrσ(G, Wσ ∪ Z).

Third, we show (2). Since σ is 0 or 1 and since parity games are determined it
suffices to show that Winσ(G[U ]) ⊆ Winσ(G). Let v ∈ Winσ(G[U ]). Then v ∈ U .
Consider any play π = v0v1 . . . obtained when player σ plays a winning strategy for
v ∈ Winσ(G[U ]) in G[U ] (until and if π reaches W0 ∪ W1 when player σ plays her
winning strategy in Wσ and whichever way in Wσ̄) and player σ̄ plays any strategy
in G. Then π cannot reach the set W0 ∪ W1 unless π is won by player σ, as can be
seen by a case analysis of the ownership of any node vn reached in that play:

• If vn is owned by player σ, then his winning strategy in G[U ] will pick some
vn+1 ∈ U with (vn, vn+1) ∈ E.

• If vn is owned by player σ̄, he also needs to pick some vn+1 with (vn, vn+1) ∈ E.
If that chosen vn+1 is in Wσ, then π is won by player σ as she will trap π in its
σ-paradise Wσ in G by invariant (P). On the other hand, vn+1 cannot be chosen
from Wσ̄ as this contradicts that Wσ̄ is a σ̄-attractor in G and vn ∈ U ∩ Vσ̄.

In conclusion, π is won by player σ in U or in Wσ. �

The lemma above means that it suffices to analyze the winning status of yet un-
decided nodes v ∈ U by performing these analyses in the sub-game G[U ], effectively
ignoring the sets Wσ and their incoming and outgoing transitions. In particular,
aspects that can increase Wσ maintain invariants (A) and (P) in a completely incre-
mental manner by computing the right-hand side of (1) as new value of Wσ whenever
Z ⊆ U has been revealed as a σ-paradise in G[U ]. We will follow this incremental
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approach in aspect A3 discussed below. This incremental approach will also allow
an incremental computation and storage of memoryless winning strategies in our
design pattern which, for sake of brevity, we will not discuss in this paper. Adding
such functionality is a routine matter.

4 Aspects

Aspects only have to maintain the invariants (P), (A), (L), and (F) and ensure that
their instantiations in our design pattern run in polynomial time. In this paper we
explore a few salient aspects, based on efficient static analyses, which have one or
more of the following features:

• An aspect may abstract away the role of players by exploiting the cyclic structure
in the directed graph (U, EU ) labeled by χ in order to change and simplify χ.

• An aspect may abstract, soundly for wins of one player, sets of priority values
into a single priority value in order to increase Wσ.

• An aspect may be deterministic or contain non-deterministic choices. In the latter
case, a scheduler is needed to resolve such non-determinism.

Aspect A1

Aspect A1 ignores the role of players and exploits cycles in the directed graph
(U, EU ) to modify the priority function χ. It checks, for each node v ∈ U with
2 ≤ χ(v) 
= X, whether no cycle in (U, EU ) through v contains some node w with
χ(w) = χ(v) − 1. If there is indeed no such cycle, it decrements χ(v) to χ(v) − 2.
This aspect gets rid of “gaps” in χU . For example, χU = {0, 1, 3}, which may occur
on-the-fly, would change eventually to {0, 1}.
Example 4.1 • For G in Fig. 1 with Wσ = {} there are only two nodes v4 and v5

with priorities larger than 1. But their priority is 2 and each of these nodes has
a cycle on which priority 1 occurs. Thus aspect A1 has no effect on G.

• Consider the parity game G in Fig. 4. Only node v1 has priority strictly larger
than 1, namely 3. Since there is no node with priority 2, aspect A1 re-sets χ(v1)
to 1 on empty Wσ, reducing the index of G.

We prove the correctness of aspect A1.

Theorem 4.2 Let G satisfy invariants (P), (A), (L), and (F). Any decrement of
χ according to aspect A1 maintains these invariants.

Proof. Let G satisfy the invariants (P), (A), (L), and (F). Let v be a node in U

such that no cycle in (U, EU ) through v contains a node with priority χ(v)− 1. Let
G′ be the game resulting from G by assigning priority χ(v) − 2 to v and leaving G

unchanged in all other regards. We have to prove that the invariants still hold.
For invariant (P), since the game graph of G′ is that of G and since χ did not

change within Wσ we infer that Wσ is (still) a σ-paradise in G and in G′. A similar
reasoning applies to invariants (A) and (L). (For example, G′[U ] is a lax parity game
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Fig. 4. A parity game G for which aspect A1 re-sets χ(v1) from 3 to 1, thereby decreasing the index of G.

since G[U ] is, the game graph of G′[U ] is that of G[U ], and the inverse image of X

is the same for χ and χ′.)
It remains to show invariant (F), i.e. Winσ(G′) = Winσ(G). Since invariant

(P) holds for G′, it suffices to show that Winσ(G′[U ]) = Winσ(G[U ]) by (2). Let
pv = χ(v) mod 2. Since aspect A1 only made χ(v) smaller by 2, any node z that is
won by player pv in G[U ] is certainly still won by that player in G[U ]′. Since parity
games are determined it therefore suffices to show that any node z that is won by
player pv in G[U ] is still won by player pv in game G′[U ].

Proof by contradiction: Let z be won by player pv in game G′[U ] and let π be the
play starting in z and obtained when player pv plays her strategy for winning z in
G[U ], and player pv plays his strategy for winning z in G′[U ]. Since the only change
from G[U ] to G′[U ] is a decrement of χ by 2 at node v, this therefore means that
χ(v) − 1 has to be in Inf(π) in G[U ]; otherwise player pv could not win π in G′[U ].
But then χ(v) − 1 is the maximal parity in Inf(π) in G′[U ] and so the maximal
parity in Inf(π) in G[U ] has to be χ(v) and occurs only since v occurs infinitely
often in π; otherwise player pv would not win π in G[U ] and player pv could not
win π in G′[U ]. To summarize, there is an infinite play π in U from z such that v

occurs infinitely often in π and χ(v) − 1 is in Inf(π). This implies that there is a
cycle C in (U, EU ) through v containing a node wC satisfying χ(wC) = χ(v) − 1, a
contradiction to the application criterion for aspect A1 at node v in G. �

We remark that aspect A1 can be implemented to run in polynomial time. For
each v ∈ V with 2 ≤ χ(v) 
= X, consider the set

T = {w ∈ U | χ(w) = χ(v) − 1}

We then have to check, in (U, EU ), whether there is some t ∈ T that is reachable
from v; and from which v is in turn reachable in (U, EU ). If there is no such t ∈ T ,
we can decrement the priority of v by 2.

Aspect A2

Aspect A2 asks whether, for any v ∈ U with χ(v) 
= X, all cycles C in (U, EU )
through v have some wC 
= v in C with χ(v) ≤ χ(wC) 
= X. If so, aspect A2 re-sets
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Fig. 5. A parity game for which aspect A2 has non-deterministic choices that result in different lax parity
games upon the scheduling of execution for this aspect.
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Fig. 6. A lax parity game computed by aspect A2 when it prefers to change the priority at v2 over changing
that of v1. Changing one preempts any subsequent change of the other.

χ(v) to X. 8

Example 4.3 • Reconsider the parity game G in Fig. 4. Since all cycles in the
game graph of G have to pass through v1, aspect A2 computes the same lax parity
game G′ regardless of the order in which priorities are re-set to X. In G′ all states
except v1 have priority X. (Since χ(v1) mod 2 = 1, this means V = Win1(G).)

• Non-determinism of aspect A2 is not always confluent. Applying aspect A2 to
the parity game in Fig. 5 results in the parity games depicted in Fig. 6 and 7.

We prove the correctness of aspect A2.

Theorem 4.4 Let G satisfy invariants (P), (A), (L), and (F). Any change of χ in
aspect A2 maintains these invariants.

Proof. Let G satisfy the invariants (P), (A), (L), and (F). Let v be a node in U

with χ(v) 
= X such that all cycles C in (U, EU ) through v contain some node
wC 
= v with χ(v) ≤ χ(wC) 
= X. Let G′ be the game resulting from G by assigning
priority X to v and leaving G unchanged in all other regards. We have to prove

8 This aspect has a strict version A<
2 based on χ(v) < χ(wC) �= X instead of χ(v) ≤ χ(wC) �= X but

defined like A2 in all other regards. We will not discuss A<
2 further in this paper.
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Fig. 7. A lax parity game, different from the one in Fig. 6, computed by aspect A2 when it prefers to change
the priority at v1 over changing that of v2.

that the invariants still hold. For invariant (P) and (A), and for the dead-end and
self-loop part of invariant (L) we reason in the same manner as for aspect A1.

For the remaining part of invariant (L), the laxness of G[U ], consider any infinite
play π in G[U ]. If v does not occur infinitely often in π, then Inf(π) is the same set
for G[U ] and for G′[U ] and so non-empty as G[U ] is lax. If v does occur infinitely
often in π, then by assumption on the applicability of aspect A2 at v there is a cycle
C through v contained in π that has some wC 
= v in C with χ(v) ≤ χ(wC) 
= X in
G. So χ(wC) is in Inf(π) in G[U ] and in G′[U ].

For invariant (F), we reason as for aspect A1 and so it suffices, by (2), to show
that Winσ(G′[U ]) = Winσ(G[U ]). Let z ∈ Winσ(G[U ]). Since σ ∈ {0, 1} and since
parity games are determined it remains to show z ∈ Winσ(G′[U ]). Consider π, the
play starting in z and obtained when player σ plays her strategy for winning z in
G[U ], and player σ̄ plays any strategy. It remains to show that π is won by player
σ in G′[U ]. By invariant (L) for G′[U ], the play π is infinite and in U . Since the
change from G to G′ concerns only the priority of node v, we are done if v does
not occur infinitely often in π. Otherwise v occurs infinitely often in π. But then,
since π is in U , there is a cycle C through v in (U, EU ) such that all of its nodes
are on π. By the application criterion for aspect A2 at v there is some wC 
= v in
C with χ(v) ≤ χ(wC) 
= X. But then χ(v) and χ(wC) are in Inf(π) in G[U ] and so
setting the priority of v to X does not affect the winning condition for π in G′[U ] as
v 
= wC and the priority value of v in G[U ] has χ(wC) as an upper bound in G[U ].�

Aspect A2 can be implemented to run in polynomial time by checking, for v ∈ U ,
the negation of this aspect’s applicability criterion: that there is a cycle C in (U, EU )
through v such that all nodes w 
= v in C satisfy “χ(w) = X or χ(w) < χ(v)”. By
invariant (L) the edge (v, v) is not in E so this can be reduced to a reachability
analysis that checks whether there is a cycle through v in the full subgraph of
(U, EU ) for node set

{v} ∪ {w ∈ U | χ(w) = X or χ(w) < χ(v)}
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n := max { chi(v) | v in U };
s := n mod 2;
for (k = 0; k++; 2*k <= n) {
Z_s = checkInfFin({n,n-2,...,n-2*k}, {n-1,n-3,...,n-2*k+1}, s);
if (Z_s != {}) { W_s := W_s + Attr_s(G[U], Z_s); }
Z_{1-s} = checkInfFin({n-1,n-3,...,n-2*k-1}, {n,n-2,...,n-2*k}, 1-s);
if (Z_{1-s} != {}) { W_{1-s} := W_{1-s} + Attr_{1-s}(G[U], Z_{1-s}); }

Fig. 8. Pseudo-code for aspect A3. It computes maximal priority n occurring in U and its parity s. Then it
has �n/2� iterations in which intervals of odd (resp. even) priorities are abstracted into a single odd (resp.
even) priority and fed to a parity game checkInfFin over U with index 3, of which only the non-empty
winning region for its argument player σ(= s) is added to Wσ and closed under σ-attraction in G.

Aspect A3

Aspects A1 and A2 may simplify χ but won’t change Wσ themselves. In an
attempt to increase Wσ, aspect A3 retains the role of players in the game graph
(U, EU ) but abstracts intervals of odd (resp. even) priorities into an odd (resp.
even) priority and solves, in polynomial time, a game for each such abstraction. Its
pseudo-code is given in Fig. 8 where + denotes set union, {x,..,y} is interpreted
as {} whenever x < y, and the method checkInfFin(I,F,p) returns those nodes
in U for which player p ∈ {0, 1} can win all plays in the game graph (U, EU ) of
sub-game G[U ] with the new winning condition

“priorities set I is met infinitely often, and priorities set F only finitely often”

for all infinite plays. This can be expressed as a parity game of index 3 over that
game graph (U,EU ). 9 Note the incremental computation of Wσ in aspect A3 as
Wσ ∪ Attrσ(G[U ], Zσ), which is sound due to (1) .

Example 4.5 For G in Fig. 1 let U = V and Wσ = {} initially. We execute the
pseudo-code for aspect A3. The maximal priority in U is n = 2 and its parity s = 0.
The for-statement has two iterations. For k = 0, two games are being played:

• In game checkInfFin({2},{},0) the set Z0 gets assigned those nodes in U from
which player 0 can force priority 2 to occur infinitely often in the game graph
of G[U ] = G. Then Z0 = {v4, v5, v6} follows and W0 is the union of {} and
Attr0(G[U ], {v4, v5, v6}), which is {v4, v5, v6} and equals Win0(G).

• In game checkInfFin({1},{2},1) the set Z1 is comprised of those nodes where
player 1 can force 1 to occur infinitely often while, at the same time, ensuring
that 2 only occurs finitely often in the sub-game G[U ] which now equals G[V \
{v4, v5, v6}] = G[{v0, v1, v2, v3, v7}]. Since priority 2 does not occur in G[U ], and
since 1 ∈ Inf(π) for all plays π is G[U ], we get Z1 = {v0, v1, v2, v3, v7} and so W1

computes to {v0, v1, v2, v3, v7} = Win1(G).

Therefore further iterations won’t add anything. 10

9 The choice of index 3 is somewhat ad-hoc as similar versions of aspect A3 for any fixed and finite index
i > 3 can be designed. Alternatively, one can “tune up” A3 with probe of Sec. 5.
10This paper will not discuss any optimizations of algorithms as this is best left for future work on imple-
mentation and experimentation with this design pattern. For example, aspect A3 may check itself whether
cache equals rank(G) and, if so, terminate global execution.
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Note that it is sound not to re-compute n and s in, or in between, iterations
with aspect A3 when U has become smaller, as seen in Example 4.5. We illustrate
aspect A3 with a more complex example.

Example 4.6 The algorithm in [13] is among the most efficient ones known for
solving parity games. Jurdziński demonstrated in loc. cit. that this algorithm has
exponential running time in the worst case. Fig. 9 shows an instance of his param-
eterized family of worst-case input games (in our paper presented with a maximum
parity acceptance condition), the parity game H3,4 of loc. cit. The maximal priority
occurring in the initial U = V is n = 7. Its parity is s = 1.

• First iteration, k = 0:
· In game checkInfFin({7},{},1) player 1 cannot win any nodes in U as player

0 can simply move to the right from any node v4, v6, and v8.
· In game checkInfFin({6},{7},0) player 0 wins nodes v0, . . . , v9 as player 0

can simply move to the right from any node v4, v6, and v8. Thus W0 becomes
{} ∪ Attr0(G[V ], {v0, . . . , v9}) = {v0, . . . , v9}.

• Second iteration, k = 1:
· In game checkInfFin({7,5},{6},1) player 1 cannot win any nodes in U =
{v10, . . . , v36} as player 0 can simply move to the right from any node v21, v23,
and v25.

· In game checkInfFin({6,4},{7,5},0) player 0 wins nodes v20, . . . , v26 in U

as player 0 can simply move to the right from any node v21, v23, and v25. Thus
W0 becomes {v0, . . . , v9} ∪ {v20, . . . , v26}.

• Third iteration, k = 2:
· In game checkInfFin({7,5,3},{6,4},1) player 1 cannot win any nodes in

U = {v10, . . . , v19} ∪ {v27, . . . , v36} as player 0 can simply move to the right
from any node v31, v33, and v35.

· In game checkInfFin({6,4,2},{7,5,3},0) player 0 wins nodes v30, . . . , v36 in
U as player 0 can simply move to the right from any node v31, v33, and v35.
Thus W0 becomes V \ {v10, . . . , v16} and U becomes {v10, . . . , v16}.

• Fourth iteration, k = 3:
· In game checkInfFin({7,5,3,1},{6,4,2},1) player 1 wins all nodes in U =
{v10, . . . , v16} as player 1 can simply move to the right from any node v11, v13,
and v15. So W1 becomes {v10, . . . , v16} and U becomes {}, meaning that aspect
A3 cannot compute anything further and solves that game completely.

We show the correctness of aspect A3.

Theorem 4.7 Let G satisfy the invariants (P), (A), (L), and (F). Then the exe-
cution of aspect A3 maintains all of these invariants.

Proof. Let G satisfy the invariants (P), (A), (L), and (F) and let G′ be the result
of executing aspect A3 on G.

For invariant (P), by Lemma 3.2 it suffices to show that all sets Zσ computed in
A3 are σ-paradises in G[U ]. This is so since Wσ satisfies (P) and since σ-paradises
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Fig. 9. A parity game H3,4 for which the algorithm in [13] has exponential running time, as shown in loc.
cit.. Nodes with priority values 3, 5, and 7 omit ownership of players as Winσ(H3,4) isn’t impacted by this.

in G are closed under unions and σ-attractors in G. Let 0 ≤ 2k ≤ n.

• Let v ∈ Zs for the Zs computed for that value of k. Then player s has a memory-
less strategy for which all plays π in G[U ] beginning at v and following that strat-
egy satisfy Inf(π)∩{n, n−2, . . . , n−2k} 
= {}, Inf(π)∩{n−1, n−3, n−2k+1} = {},
and trap player s̄ in set Zs. Therefore, all these plays are won by player s in G[U ].

• A similar reasoning applies to v ∈ Zs̄ to show that Zs̄ is contained in Wins̄(G[U ]).

Invariant (A) is enforced by appealing to (1). Invariants (L) and (F) hold as the
game graph and priority function of G won’t change.

�

Note that aspect A3 has a straightforward implementation in polynomial time
as it involves at most n games checkInfFin — parity games of bounded index
3 — and n computations of σ-attractors in G[U ].

5 Interaction

By abuse of notation, we write Ai1Ai2 . . . Aik for the algorithm that instantiates
our design pattern with each A#i being Aik . In particular, A#i may equal A#j if
i 
= j. We write {Ai1Ai2 . . . Aik} if we mean any of the k! algorithms obtained by
permutations of these aspects Aij .

Fundamental questions are whether the interaction of these aspects commutes,
whether swapping two aspects is in some sense confluent, and whether certain as-
pects can’t aid the progress of certain others. These questions are similar to the
“phase ordering problem” in the design of optimizing compilers, and won’t be ad-
dressed further in this paper due to space limitations.

For each instantiation, a suitable rank function has to be determined. A rank

A. Antonik et al. / Electronic Notes in Theoretical Computer Science 225 (2009) 115–139 129



0 1

3 2

v0

v1

v2v3

Fig. 10. A parity game for which the instantiation A3 of our design pattern returns Wσ = {} but for which
the instantiations {A2A3} solve the game completely.
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Fig. 11. A parity game of index 3 for which {A1A2A3} returns Wσ = {}.

function for A3 is
rank(G) = |U|

A rank function for {A1A3}, {A2A3}, and {A1A2A3} is 11

rank(G) = |U| +
∑

v∈U

χ(v)

The interaction of aspects can improve the precision of algorithms derived from
our design pattern. We illustrate this point by means of a simple example.

Example 5.1 For the parity game G in Fig. 10, the instantiation A3 of our design
pattern computes empty sets Wσ, whereas {A2A3} completely solves this parity
game: aspect A2 re-sets χ(v2) from 2 to X and then checkInfFin({3,1},{2},1)
easily determines within aspect A3 that player 1 wins all nodes.

We now show the incompleteness of {A1A2A3}, even for parity games of index
3. This illustrates a potential weakness of our design pattern when all its aspects
limit the role of players to a bounded scope of alternation.

11Although this rank function is sound, an implementation may want to note that turning some χ(v) from
0 to X decreases the rank, which the function as stated does not do.
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Example 5.2 Parity game G in Fig. 11 has index 3. Aspect A1 has no effect
as any cycle through v0 passes through v1. Aspect A3 won’t increase any Wσ

in the game checkInfFin({2},{},0) (since player 1 may move from v2 to v3),
game checkInfFin({1},{2},1) (since player 0 may move from v1 to v0), game
checkInfFin({2,0},{1},0) (since player 1 may move from v2 to v1), and game
checkInfFin({1},{2,0},1) (since player 0 may move from v1 to v0). The only
applications for aspect A2 are at nodes v2 and v3. But changing the priority to X

at any of these nodes prevents a change at the other, and the resulting game has no
applications of A2, and none for A1 and A3 for the same reasons as given before.

In Fig. 12 we suggest a transformation A �→ probe(A) of any instantiation
A = Ai1Ai2 . . . Aik of our algorithm that can be used to increase its precision.
The method probe has as input a method A that, if called on a parity game G,
returns a pair (first(A(G)), second(A(G))) such that first(A(G)) ⊆ WinG(0) and
second(A(G)) ⊆ WinG(1). Moreover, it is not hard to see (but won’t be needed
in this paper) that the parity game and regions W0 = first(probe(A)(G)) and
W1 = second(probe(A)(G)) computed by probe(A) satisfy our four invariants if
those computed by A do.

Method probe uses method A to probe whether the winning status of additional
nodes can be recognized. A call to probe(A) attempts to increase Wσ in different
stages. For sake of brevity we only present two of the four stages we discovered:

• Stage (1): It assumes that an undecided node v is not won by the player who
owns v, and uses method A to then derive a contradiction (as the winning regions
of G won’t change if all edges but a single one out of v are being removed). If
a contradiction is found, v is then known to be won by the player who owns v.
If no contradiction is found, nothing is known about the winning status of v. So
stage (1) fixes a node v and computes winning regions for derived games in an
attempt of making inferences about node v only.

• Stage (2): It makes no assumptions about the winning status of any undecided
node but, for such an undecided node v, it computes the winning regions under-
approximated by A for those games on which only one outgoing edge of v remains.
If a node z is thus determined to be won by a particular player σ, regardless of
which edge out of v remained, we know that, irrespective of who owns v or z,
node z is indeed won by player σ in the original game. So stage (2) fixes a node v

and computes sets of under-approximated winning regions for derived games and
then decides the winning status of nodes in the intersection of these computed
regions. In particular, it decides the winning status of node v only if v occurs in
said intersection.

We now give a more detailed account of these stages and their soundness.
In stage (1), the hypothesis is that nodes are won by those players that own

them. So let v ∈ Vσ and let

S = {w ∈ V | (v, w) ∈ E}
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be the set of nodes that can be reached from v via a single edge. By invariant (L)
we may assume that S is non-empty. If S is a singleton, then v is a deterministic
node and won’t be tested by probe under this hypothesis. So let |S | ≥ 2. The
analysis attempts to use proof by contradiction: Assume that v ∈ Winσ̄(G).

• Then it won’t matter which edge (v, w) player σ chooses as player σ̄ can trap
any play through v in Winσ̄(G). In particular, if for w ∈ S we write G(v,w) for
the parity game that is G except that (v, w) is now the only outgoing edge from
v, then G and G(v,w) have the same winning regions. Now let w1 
= w2 in S.
If there is some z ∈ first(A(G(v,w1))) ∩ second(A(G(v,w2))) we know that z is in
first(A(G(v,w1))) ⊆ Win0(G(v,w1)) = Win0(G) as method A under-approximates
winning regions of G and since v is assumed to be in Winσ̄(G). Similarly, we know
z ∈ second(A(G(v,w2))) ⊆ Win1(G(v,w2)) = Win1(G). But then z ∈ Win0(G) ∩
Win1(G) contradicts the determinacy of parity game G. Therefore v 
∈ Winσ̄(G),
i.e. v ∈ Winσ(G), follows.

• A similar argument for proving v ∈ Winσ(G) can be made if the intersection
second(A(G(v,w1))) ∩ first(A(G(v,w2))) is non-empty.

This reasoning principle is implemented in the for-statement forall w1 != w2
in S of the pseudo-code in Fig. 12. Note that these arguments only work if at least
one of these intersections is non-empty. For example, if v has exactly two outgoing
edges (v, w) and (v, w′), no new wins will be determined iff the sets first(A(G(v,w))),
first(A(G(v,w′))), second(A(G(v,w))), and second(A(G(v,w′))) are pairwise disjoint.

In stage (2), method probe employs a second analysis, in which nothing is being
assumed about the winning status of any undecided node. The for-statement forall
w in S, for a fixed node v, collects in Z 0 those nodes z that are known to be won
by player 0 in all games G(v,w) with (v, w) ∈ E an outgoing edge of v. Let v ∈ Vσ.
We claim that z ∈ Win0(G) and do a case analysis on who wins v:

• Let v ∈ Winσ(G). Then player σ has some edge (v, w) ∈ E as part of her
memoryless winning strategy and so the winning regions of G and G(v,w) are the
same. In particular, z ∈ Win0(G(v,w)) = Win0(G) since A under-approximates
winning regions.

• Let v ∈ Winσ̄(G). Then player σ, who owns v, loses node v and so the winning
regions of G and all G(v,w) are equal, from which z ∈ Win0(G) follows as in the
previous item.

Note that we need to form intersections in stage (2) since we don’t know which
player wins v, or which edge from v is part of a memoryless winning strategy.

For the computation of Z 1 a similar argument for showing z ∈ Win1(G) applies
if z is in second(A(G(v,w))) for all w ∈ S.

The remaining parts of the pseudo-code just provide the infrastructure for col-
lecting nodes whose winning status has been discovered by one of these two stages,
noting that probe(A) ensures invariant (A).

Example 5.3 • We illustrate the working of the first stage of probe(A) where A is
simply A3 and G the parity game in Fig. 13. Assuming that v1 is won by player
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probe(A) {

W_0 = W_1 = {};
forall v in V {
S = { w | (v,w) in E };

% stage (1)
forall w1 != w2 in S {
if ((first(A(G_(v,w1))) & second(A(G_(v,w2)))) != {} ) ||

(second(A(G_(v,w1))) & first(A(G_(v,w2)))) != {} ) {
if (v in V_0) { W_0 = Attr_0(G, W_0 + {v} ) ; }
else { W_1 = Attr_1(G, W_1 + {v} ) ; }

}
}

% stage (2)
if (S = {}) { Z_0 = Z_1 = {}; }
else { Z_0 = Z_1 = V; }
forall w in S {
Z_0 = Z_0 & first(A(G_(v,w)));
Z_1 = Z_1 & second(A(G_(v,w)));

}

% postprocessing: secure invariant (A)
W_0 = Attr_0( G, W_0 + Z_0 );
W_1 = Attr_1( G, W_1 + Z_1 );

}
return (W_0,W_1);

Fig. 12. Pseudo-code for method probe. Its input is a method A that computes under-approximations
of winning regions. In probe(A) one uses method A on versions of G that commit to specific edges from
nodes and then analyses the collection of results to detect winning nodes for G. The combinatorics of
these analyses rely on the fact that winning strategies are memoryless and that nodes that are not won
by the player who owns them satisfy a non-interference property: committing to an edge from that node
won’t change winning regions. Expressions first(A(G)) and second(A(G)) denote the under-approximations
computed by method A for Win0(G) and Win1(G), respectively. We write G (v,w) for the parity game that
is G except that (v,w) is the only outgoing edge for v. We use & to denote the intersection of sets.

1, who does not own v1, it must be the case that games G(v1,v3) and G(v1,v2) have
the same winning regions. But aspect A3 then recognizes that node v0 is won by
player 1 in game G(v1,v3), and by player 0 in game G(v1,v2). Therefore, probe(A3)
recognizes in its first stage that v1 is won by player 1 in G.

• We illustrate the utility of the second stage in probe where G is the parity game
from Fig. 11 and A is A1A2A3. Recall that this A returns a pair of empty sets for
this G. Let v be v2. Then S equals {v1, v3}. Consider the for-statement forall
w in S for this choice of v. Then Z 0 = Z 1 initially.
· In G(v2,v1) edge (v2, v3) is gone and first(A(G(v2,v1))) = V since A3 realizes

V = Win0(G(v2,v1)) by running checkInfFin({2},{}, 0) on G(v2,v1).
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Fig. 13. A parity game G for which aspect probe(A3) can decide, in its first stage, that node v1 is won by
the player who does not own v1 — which is player 1.

· In G(v2,v3) edge (v2, v1) is gone and first(A(G(v2,v3))) = V since A3 realizes
V = Win0(G(v2,v3)) by running checkInfFin({2,0},{1}, 0) on G(v2,v3).
This results in final states V and {} for Z 0 and Z 1, respectively. Therefore,

probe(A) returns that pair (V, {}) and solves G completely.

Remark 5.4 The first stage of probe(A3) won’t discover anything that aspect A3

would not already have discovered. Suppose we have nodes v and z and that there
are w1 
= w2 with {(v, w1), (v, w2)} ∈ E such that

(i) aspect A3 tells us that z is won by player 0 in the reduced game G(v,w1)

(ii) aspect A3 tells us that z is won by player 1 in the reduced game G(v,w2)

Let v ∈ Vσ. We let σ = 0, the proof for σ = 1 is symmetric and omitted. Then
item (i) ensures that, under some interval abstraction of priorities, player σ can
force a win from node z in the reduced game G(v,w0). Let f be the corresponding
memoryless winning strategy. But only player σ can move in configuration v, and
so in the original game G, under the same interval abstraction from item (i), aspect
A3 will show that player σ can force a win at z (by choosing to go to w1 from v, and
otherwise playing f as in item (i)). So aspect A3 would already have added z to
the winning region Wσ. This can be seen at work in the first item of Example 5.3.

Nothing stops us from thinking of probe(A) as an input to probe and so we get
higher-order analyses, e.g. the second-order one probe(probe(A)).

Since some aspects change Wσ and some don’t, we put the computation of σ-
attractors for invariant (A) into the pseudo-code of those aspects that change Wσ

and not at the end of each iteration in the for-statement of our design pattern. In
this paper, this only concerns aspect A3 and probe(A).

The design pattern and all of its aspects have been implemented by Huaxin Wang
in a framework [16]. That implementation lead to several empirical and theoretical
insights, detailed in loc. cit. and not reported here.
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6 Related work

This paper is based on preliminary work reported in the extended abstract [1]. In
loc. cit., neither the aspect transformer nor proofs are given but the design pattern
(without handling dead ends and self-loops) and weaker invariants are presented.
That paper features four aspects, of which A1 is as presented in this paper and A3

is formulated in a non-incremental manner. Using the notion of lax parity games,
we could and did merge aspects A2 and A4 of [1] into the single aspect A2 of this
paper.

We refer to [8] for references to extant algorithms for solving parity games whose
worst-case time complexity is exponential.

Polynomial-time algorithms for solving parity games completely can be found
in the literature but they only operate on certain parity games, typically by using
a measure μ(G) ∈ {0, 1, . . . } on parity games and applying the algorithm only to
those games whose measure is below a fixed, finite bound k. This is the case for
the polynomial-time algorithm for solving parity games with bounded entanglement
[2], and for the polynomial-time algorithm for solving parity games with bounded
DAG-width [3]. It would be of interest to determine whether these algorithms have
sound abstractions that can operate as aspects on arbitrary parity games.

In [11], the characterization of winning strategies through progress measures (as
given in [13]) is exploited to reduce the problem of solving parity games to satisfia-
bility checks in propositional logic, and first experimental results for this reduction
are presented. This approach only decides the winning status of a chosen node and
still has to be extended to global reasoning over parity games. Again, it would
be of interest to study whether progress measures and their resulting reduction to
satisfiability can be formulated as aspects within our framework.

Aspect A3 and the under-approximation of winning regions in our design pattern
use abstraction as a driving computational force. Abstraction is an established
approach in game-based verification. We mention three-valued abstractions of 2-
player games [5], where winning strategies for either player transfer soundly from
the abstract to the concrete game. Similar results on transfer of winning strategies,
within the formal framework of abstract interpretation [4], are presented in [14],
where abstract game nodes are also equipped with a partial order.

7 Future work

We want to explore additional aspects and rank functions. We plan to give a more
systematic account of interaction of these aspects in the context of the aforemen-
tioned “phase ordering problem” in compilers, as applied to this setting; preliminary
results in that direction can be found in [16] already. Connections of our approach
to complexity measures in directed graphs are of interest; we mention DAG-Width
[3] and Entanglement [2]; for the latter, initial results are reported in [16]. We also
mean to compare our approach to that of reducing parity games to SAT [11].
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8 Conclusions

In this paper we proposed a design pattern for under-approximating winning re-
gions of parity games in polynomial time and in a completely incremental manner.
Patterns are being instantiated with k many aspects and a rank function suitable
for that choice of aspects. We presented three aspects and a method for making our
algorithms higher-order, all based on static analyses and the determinacy of parity
games. We demonstrated that aspect interaction increases precision, due in part
to an elimination of redundancies in parity games that lead to the consideration
of lax parity games, which are as expressive as parity games. The utility of our
approach has at least three sources. First, in local model checking [15] one is only
interested in whether an initial state (read: designated node) satisfies a formula
(read: is won by player 0), something our algorithms may well be able to decide.
Second, our algorithms can be seen as pre-processors to existing algorithms since
they can be applied directly to the residual sub-game induced by those nodes whose
winning status is yet undecided, courtesy of invariants (A) and (P) for our design
pattern. Third, the results of this paper and the implementation of that framework
in [16] provide a workbench for designing and exploring algorithms for solving parity
games, noting that the framework does not insist on aspects to run in polynomial
time.
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A Eliminating dead ends and self-loops

Eight local transformations, four for each player, efficiently add nodes and edges
to a parity game such that the winning status of old nodes won’t change but no
dead ends or self-loops remain. The eight transformations are given in Fig. A.1. All
transformations for node v preserve all incoming edges and outgoing edges other
than (v, v) of v (those edges that are not self-loops are not shown below; in particu-
lar, the fifth and sixth rule won’t produce dead ends). All transformations for node
v, except for the fifth and sixth, create two new nodes and three new edges each.
Since these new nodes exhibit only two different patterns, sharing of these patterns
means that only four new nodes in total are needed.

Example A.1 We illustrate this elimination process by means of an example. The
parity game G in Fig. A.2 has Win0(G) = {v2, v3, v4, v6} and Win1(G) = {v0, v1, v5}.
It turns into the parity game without dead ends and self-loops in Fig. A.3 such that
the winning regions are the same for the original nodes. The two new nodes with
priority 1, and all their incoming nodes are won by player 1. Dually, the two new
nodes with priority 0 and all its incoming nodes are won by player 0.
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Fig. A.1. Eight transformation rules for converting parity games into equivalent ones without any dead
ends or self-loops. Those edges that are not self-loops are not shown; in particular, the fifth and sixth rule
won’t produce dead ends.
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Fig. A.2. A parity game with dead end and self-loops.
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Fig. A.3. The parity game obtained from the one in Fig. A.2 by applying the rewrite rules in Fig. A.1.
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