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Abstract Facial image identification is an area of forensic sciences, where an expert provides an

opinion on whether or not two or more images depict the same individual. The primary concern

for facial image identification is that it must be based on sound scientific principles. The recent

extensive development in 3D recording technology, which is presumed to enhance performances

of identification tasks, has made essential to question conditions, under which 3D images can yield

accurate and reliable results. The present paper explores the effect of mesh resolution, adequacy of

selected measures of dissimilarity and number of variables employed to encode identity-specific

facial features on a dataset of 528 3D face models sampled from the Fidentis 3D Face Database

(N � 2100). In order to match 3D images two quantitative approaches were tested, the first based

on closest point-to-point distances computed from registered surface models and the second

grounded on Procrustes distances derived from discrete 3D facial points collected manually on tex-

tured 3D facial models. The results expressed in terms of rank-1 identification rates, ROC curves

and likelihood ratios show that under optimized conditions the tested algorithms have the capacity

to provide very accurate and reliable results. The performance of the tested algorithms is, however,

highly dependent on mesh resolution and the number of variables employed in the task. The results

also show that in addition to numerical measures of dissimilarity, various 3D visualization tools can

be of assistance in the decision-making.
� 2016 The International Association of Law and Forensic Sciences (IALFS). Production and hosting by

Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Facial image identification involves many areas of forensic or
commercial security applications,1 where tasks of one-to-one
(verification, authentication) or one-to-many matching (identi-
fication) are performed. The most frequent facial identification

in the forensic settings is made by eyewitnesses in real time.
Alternatively, surveillance, monitoring or screening by police
officers may also require that an identification task be con-

ducted in real time. Nevertheless, face identification executed
as a part of forensic casework is almost exclusively grounded
on off-line pre-recorded evidence. If executed manually by pro-

fessionals trained to recognize and systematically examine
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identity-coding facial features, these tasks, known as facial
image comparison,2 are only effective when conducted as a
part of small-scale image processing. For large-scale compar-

isons, automated or semi-automated approaches customarily
referred to as facial recognition and performed by computer-
aided algorithms, are more practical choices.

It is generally acknowledged that matching image-based
forensic evidence from crime scenes (surveillance videos) with
suspects (mug shots, ID photographs) is extremely dependent

on image medium,3 image quality,2 perpetrator’s pose or dis-
guise.4 Bruegge5 noted that although various law-
enforcement agencies had been successfully using automated
face recognition systems for screening, other tasks, such as

negative identifications (e.g., ability to eliminate a person)
are more difficult to achieve. Recently, new developments in
3D technologies have shown that at least some of the key

shortcomings of forensic facial image identification can be
overcome and performances can be improved.6 Specifically,
3D images preserve realistic depth information, which mini-

mizes the effect of head pose, framing and lighting – image
properties that largely interfere with manual as well as auto-
mated facial identification.7

There are a vast number of strategies capable of highlight-
ing or extracting individually or group-specific facial represen-
tations depicted in both 2D and 3D images. In addition to
manual comparative approaches employing side-by-side com-

parison or image superimpositions,8 morphological analysis
specifying color, texture, shape and size similarities in facial
appearance has been routinely utilized in the framework of

forensic anthropology. Generally, anthropologists are accus-
tomed to approach tasks of similarity in terms of either visual
trait assessment or somatometrics (anthropometrics, photo-

anthropometry).9,10 In the visual (morphological) approach
the face is subdivided into gross anatomical components,
e.g., forehead, cheeks, ears etc., and for each component a

set of component characteristics is described in detail.11–15

Recently, guidelines to forensic facial comparison together
with a standardized list of facial features have been provided
by The Facial Identification Scientific Working Group

(FISWG).16 In addition to the verbal description, tracing of
individual facial features on images in order to outline similar-
ities or differences have been suggested.17

In its traditional form, photo-anthropometrics relies on
measuring linear distances and angles or derived indices18,19

and/or inter-landmark distances on digital or printed pho-

tographs.17,20 The method is most effective when the propor-
tional relationships are aimed at comparing one image to
another than at matching a single image against multiple tar-
gets.11 However, if applied to regular two-dimensional images

the approach has been labeled as very susceptible to head
poses and additional technical noise present in images.17

For 3D images, it has been demonstrated that the employ-

ment of the anthropometric approach is far less problem-
atic.6,21–24

In addition to the traditional methods, multiple advanced

quantitative techniques have been proposed in both 2D and
3D image comparison.25 For instance, landmark-based or
outline-based approaches subscribed under the rubric of geo-

metric morphometrics have been utilized.26,27 Unlike
registration-free measurements or visual assessment, geometric
data require a prior treatment in order to minimize the vari-
ance in position and rotation. For that purpose, Bookstein’s
shape coordinates or Procrustes fit in its numerous variants,
e.g., Generalized Procrustes superimposition, Ordinary Pro-
crustes fit, Generalized resistant fit are employable.28

Recently, owing to the progress in computing power of per-
sonal computers capable of processing dense point clouds and
high-resolution meshes 3D surface comparisons have been

gradually used.6,29 Alike discrete facial points or outlines, 3D
surface processing of human faces requires registration in
order to minimize the variance due to location and rotation.

This can be achieved by trivial approaches such as the
3-point or multiple-point registration or in a more sophisti-
cated manner by various surface registration techniques.30

The most common procedures utilize either Iterative Closest

Point (ICP) algorithm31 or one of its variants, e.g., EM-ICP
algorithm.32 This further establishes connectivity between
points (vertices) of two and more meshes. The point-to-point

connectivity is subsequently utilized to compute surface-to-
surface deviations, of which various measures of dissimilarity
can be retrieved (e.g., Hausdorff distance, average deviations,

root mean square).33–35 Alternatively, in order to compute a
univariate measure of dissimilarity the reduction of dimension-
ality via Principal Components Analysis in conjunction with

Mahalanobis or Euclidean distances have been widely
used.36,37 A review to available techniques has been summed
up by Abate et al.23 and more recently by Abdelwahab et al.24

In the present paper, pitfalls of examining 3D images are

explored by testing algorithms incorporated into FIDENTIS
Analyst, software developed as a potential tool for semi-
automated and automated image comparisons in the frame-

work of forensic anthropology. Using a dataset sampled from
a large database of high-resolution 3D scans the performance
of dissimilarity measures to identify 3D facial scans belonging

to the same individual is tested.

2. Material

The studied sample consisted of 528 adult volunteers, 232
males and 296 females of Czech and Slovak nationality aged
between 18.14 and 83.74 years (average 28.02 years) at the time

of data acquisition. The average age for females counted
27.62 years while for males it averaged at 28.54 years. If tested
no statistically significant differences in age between sexes were
revealed (t-test, t= �1.009 p-value = 0.313). The participants

were mostly recruited from the pool of students and employees
of the author’s home institution. None of them were diagnosed
with any major medical conditions affecting facial

morphology.
Of the studied sample, 28 volunteers – 7 males, 21 females

aged from 19 and 36 years (average: 23.36 years, females:

23.07 years, males: 26.12 years) embodied the tested sample,
whereas the remaining 500 individuals comprised the control
sample.

3. Methods

For all participants, face geometry and texture was recorded

with Vectra M1 3D facial scanner (Canfield Scientific, Inc,
Fairfield, NJ). Vectra M1 is a double camera system with a
limited narrow range (100�) which does not allow capturing
the entire face at once. In result, lateral parts of the face and

ears are not measured properly and distorted geometry and
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blurry texture are frequently generated. To avoid the distur-
bances each face was captured in three head positions: frontal
view, 30� left and right semi-profiles. Data acquisition was

conducted indoors under controlled lighting conditions at
the facilities of the Laboratory of Morphology and Forensic
Anthropology, Department of Anthropology, Faculty of

Science, Masaryk University (Brno, Czech Republic). Prior
to scanning, all participants were asked to take off their
glasses, accessories, earrings etc. Locks of hair covering the

face or falling over ears were pulled back with a plastic head-
band and hair clips or brush back behind ears. Male partici-
pants were advised to shave the morning of the scanning
session. In the course of data acquisition, each participant

was instructed to maintain a natural head position and neutral
facial expression with eyes open.

In total, 556 three-dimensional facial models were recorded

– 500 single scan for the control sample and 2 scans per indi-
viduals for the tested subset of 28 individuals. Since then, all
models have been included into the Fidentis 3D Face Database

(http://www.fidentis.cz/database.php) available at the home
institution for research purposes.

The acquired 3D images were subsequently processed in

Mirror� Medical Imaging Software. The scans were manually
trimmed of unwanted background, raw scanning noise and
technically unsuitable parts, such as peripheral and eye
regions in the semi-profiles or lateral parts of the nose in the

frontal scans. After having been cleaned of unsuitable parts,
the three partial 3D scans were aligned manually in program
MeshLab v1.3.2 open source application for mesh processing

(http://mesh-lab.sourceforge.net). Firstly, the left and right
semi-profile scans were aligned approximately with the frontal
model to complement the face using 3-point alignment algo-

rithm. The automatic ‘‘register mesh” function was then run
to match corresponding surfaces. Ultimately, the three models
were merged into a single model using the Poisson filter. The

filter parameters were set to preserve the highest level of
details of the models (Octree Depth set to 12, Solver Divide
to 10). In order to facilitate subsequent processes, all 3D
meshes were pre-registered by manually marking 6 facial land-

marks (right and left tragion, left lower palpebra, right and
left entokanthion and pronasale) and by running an in–house
MeshLab script which superimposed the model to a template

face.
Final adjustments were carried out using GOM Inspect

software – the meshes were checked for errors (‘‘Eliminate

Mesh Errors” function) and holes (‘‘Close Holes – Automati-
cally” function). They were trimmed manually of peripheral
parts containing ears and reduced to the final resolution of
10,000 vertices. Additional mesh reduction was conducted in

order to explore the effect of mesh resolution. For that pur-
pose, the original number of vertices was gradually decreased
to meshes of 5,000 (5k); 1,000 (1k); 500 (5h); 100 (1h) and 50

(5d) points.
One scan per individual from the tested sample was taken

for a probe and in the pair-wise fashion (1:N) compared

against targets composed of the control sample and the indi-
vidual’s corresponding scan (N = 501). The same was con-
ducted for the control subset where each scan was compared

against the remaining control scans.
Two types of facial features were extracted in order to iden-

tify 3D faces – closest point-to-point distances and discrete
facial points (landmarks).
3.1. Closest point to point distances

In the closest point-to-point distances, the minimum distance
from each point of a scan from the tested subset (a probe) to
the nearest vertex of control scans (targets) were calculated

while the direction of such vectors was omitted (only absolute
values were taken into account). Prior to computation a probe
and its corresponding array of candidates were registered by
fitting all target meshes on to the probe. Registration algo-

rithms were run on the edited and hole-filled meshes (saved
in obj format) using the point-to-point variant of ICP algo-
rithms featured in FIDENTIS Analyst v. 1.27beta applica-

tion.38 The incorporated variant of the algorithm establishes
the correspondence between points of two meshes following
the nearest neighbor criteria. For the purpose of the study

the algorithm was set to an error rate of 0.05 and maximum
iterations of 10. For each comparison, the global measure of
dissimilarity was based on statistical descriptors – root mean

square (RMS) and 75th percentile (PERC75) extracted from
sets of closest point-to-point distances.

The entire procedure was then re-computed with size-
adjusted meshes by employing the Scaling Iterative Closest

Point (SICP) algorithm as implemented in FIDENTIS Analyst
program. The algorithm applies a scaling parameter as pro-
posed by Du et al.39,40 in order to normalize size-related vari-

ance between two compared meshes.

3.2. Landmarks

Each facial scan was described by a set of 42 landmarks
(Fig. 1, Table 1). 3D Cartesian coordinates for the entire set
of landmarks were collected manually on texture-present 3D
models with MeshLab 1.3.2 program using an established

lab protocol.41 Procrustes distance defined as a sum of squared
distances between corresponding landmarks at its minimum
was selected as the measure of dissimilarity. Procrustes dis-

tances correspond to shape differences between two objects
in the morphospace. Prior to the computation it requires that
the configuration of landmarks be registered into a common

coordinate system and fitted to minimize least-square varia-
tions. The registration was conducted by the Ordinary Pro-
crustes analysis where the set of landmarks corresponding to

a target was fitted onto the configuration of a probe. This pro-
duced a set of Procrustes coordinates invariant in rotation,
translation and size.

Similar to the mesh-based analysis the number of land-

marks was gradually reduced to explore its effect on the overall
performance. In the first step, 6 bilateral points of the auricular
region were removed (only tragion was included). This was

done as a precaution to relatively common situations in 3D
image acquisition wherein lateral facial regions, ears includes,
are obscured by hair or recorded in an insufficient quality. The

subsequent reduction of landmarks was executed in regard to
the inter-individual discriminative power accounted for each
point. In each consecutive step 3 points with the lowest level

of inter-individual variance (expressed in terms of mean
squares) were removed. After the removal the variance was
recomputed for the new set of points, the pair-wise Procrustes
fit (OPA) included, and another 3-point set was removed. The

bilateral points were taken as independent in the computation
but eventually removed at the same time. In addition to 10

http://www.fidentis.cz/database.php
http://mesh-lab.sourceforge.net


Figure 1 The set of landmarks acquired for each 3D image.
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configurations constructed on the basis of the variance crite-

rion, an alternative 6-point set was tested. The landmark con-
figuration featuring right and left exocanthion, right and left
endocanthion, pronasale and stomion was based on the theo-

retical assumptions that these points represent the primary
source of individually specific variations.42

For each probe, the acquired results were sorted in
descending order by values of the extracted measures of dis-

similarity. For the 28 tested individuals match and non-
match decision-making was in concordance with the provided
ranking. If the target assigned with the rank of 1 matched the

reference scan (probe) (i.e., it was derived from the same indi-
vidual) then a true positive result was recorded. If any other
scan was ranked at number one then a false positive result

was recorded. Accordingly, rank-10 identification rates were
computed. Matches up to the rank of 10 were recorded as
true positive results; otherwise false positive results were

registered.
The performance of the dissimilarity measures was evalu-

ated using univariate ROC curves analysis. The optimal
thresholds were determined based on a criterion which finds

the closest point to the top-left corner of the ROC curve
(i.e., it minimizes the sum of squared 1-sensitivity and 1-
specificity values). In addition, results were re-computed with

a threshold maximizing specificity over sensitivity and vice
versa. The performance was expressed in terms of area under
curves (AUC), for which 95% confidence interval was calcu-

lated using 500 bootstrappings.
Sensitivity (true positive rate, TPR, recall) was computed as

true positive count divided by number of specimens in the
tested sample (N = 28). Specificity (true negative rate, TNR)

was computed as true negative counts divided by number of
targets (N = 501). In addition, positive likelihood ratio (true
positive count/false positive count) and negative likelihood

ratio (false negative count/true negative count) were
computed.

The acquired results were further tested for differences

between males and females and for age-related variation by
Mantel test, Mann–Whitney U test and Wilcoxon signed-
rank test.
Differences between meshes were visualized by means of

color maps using the rainbow spectrum encoding system.
Additional advanced visualization techniques employing
transparency, contour rendering, sections and fog simulation

were used. All functionalities are incorporated in FIDENTIS
Analyst software.
4. Results

4.1. Mesh-based identification

Descriptive statistics for rank-1 identification together with
classification rates are displayed in Table 2. M–W U test
showed that for both measures of dissimilarity the average val-

ues were significantly lower for the true positive results than
when the true negatives were called except for the comparisons
based on meshes of 50 vertices (Table 3).

Values of closest point-to-point distances and their relevant
univariate measures of dissimilarity were shown to be vastly
dependent on mesh resolution (Figs. 2 and 3). Fig. 3 shows

that for meshes of less than 500 vertices the distances associ-
ated with low-numbered ranks roughly correspond or fall into
the range of the high-numbered ranks corresponding to the
high-resolution meshes. Similarly, the discriminative power

decreases as the mesh resolution deteriorates. However,
Fig. 4 shows that the decrement in the accuracy rate is not
as steep as the results could suggest and the high identification

rate holds up to the mesh reduction of 500 vertices.
For the mesh resolution of 10k points, RMS-based algo-

rithm provided 96.4% of correctly identified 3D faces. With

the PERC75-based measure employed the algorithm succeeded
to identify all individuals correctly. This identification rate was
valid even after the mesh resolution was reduced to 5k and 1k

points. For the PERC75-based algorithm the rate fell signifi-
cantly when meshes were reduced to 100 points (78.6% of cor-
rectly identified cases) and continued to fall for further reduced
meshes (42.9% of correctly identified cases). It also shows that

RMS provided less consistent results than when PERC75 was
used as the measure of differences.



Table 1 List of landmarks, their definitions and presence in configurations of descending number of landmarks as employed in

landmark-based identification.

Configurations Landmark Definition

6L–42L Gnathion (gn)1 The most anterior inferior point located in the midline at the lower margin of the mandible

6L–42L Gonion (go)1* The lateral inferior point located at the mandibular angle

6L–42L Pogonion (pg)1 The most anterior midline point located at the chin with the head positioned in the Frankfurt

horizontal plane

6L–42L Zygion (zy)1* The most lateral point of the face located on line running through the right and left eye centers

9L–42L Glabella (g)1 The outermost midline point between the eyebrows

9L–42L Tragion (t)1* The point located at the upper margin of tragus in the little notch where the cartilage is attached

while the head is positioned in the Frankfurt horizontal place

12L–42L Sublabiale (sl)1 The midpoint of the mentolabial sulcus

12L–42L Exocanthion (ex)1* The point at the outer commissure of the eye where the outer margin of the upper eyelid meets the

lower eyelid

15L–42L Nasion (n)1 The deepest midline point of the nasal root

15L–42L Palpebra superior

(pas)1*
The point located at the intersection of a line going through the eye center (parallel to the mid-

sagittal plane) and the caudal (lower) margin of the upper eyelid

18L–42L Labrale inferius (li) The most anterior midline point at the lower margin of lower vermilion (by Fetter 13, modified)

18L–42L Palpebra inferior

(pai)1*
The point which is located at the intersection of a line going through the eye center (parallel to the

mid-sagittal plane) and the upper margin of the lower eyelid

21L–42L Stomion (sto)1 The point located at the intersection of the closed mouth fissure and the midline

21L–42L Cheilion (ch)1* The point located at the labial commissure

24L–42L Pronasale (prn) The most anterior midline point of the nasal tip with the head positioned in the Frankfurt horizontal

plane

24L–42L Endocanthion

(en)1*
The point at the inner commissure of the eye where the inner margin of the upper eyelid meets the

lower eyelid

27L–42L Labrale superius

(ls)

The midpoint of the upper vermilion line

27L–42L Crista philtri (cp)1* The point located at the intersection of the horizontal line connecting the superior point of the upper

vermilion and the lower margin of crista philtra

30L–42L Subnasale (sn)1 The lowest posterior midline point at the angle formed by the outline of nasal septum and upper lip

30L–42L Alare (al)1* The most lateral anterior point of the wing of the nose

42L Superaurale (sa)1* The most superior point located at the upper margin of the auricle with the head positioned in the

Frankfurt horizontal plane

42L Subaurale (sba)* The most inferior point located at the lower margin of the earlobe with the head positioned in the

Frankfurt horizontal plane

42L Postaurale (pa)1* The most posterior point of the posterior margin of the auricle with the head is positioned in the

Frankfurt horizontal plane

42L Otobasion

superius (obs)1*
The point where the upper margin of the auricle attaches to the head

42L Otobasion inferius

(obi)1*
The point where the earlobe attaches to the cheek skin (lower attachment)

42L Praeaurale (pra)1* The point at the intersection of the line between otobasion superius and otobasion inferius points, at

the level of the postaurale point

* Bilateral landmarks.
1 Definitions adapted from Fetter.13
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If a non-match was met at the first rank, the positive iden-
tification was mostly achieved by the rank of 10. This was,

however, valid only for the meshes of more than 500 vertices.
Although the number of matches based on low-resolution
meshes at the rank of 10 increased significantly comparing to

the rank-1 rates, it could not match that of better-quality
meshes. Many positive matches based on meshes of 50 points
were even met beyond single digit ranks. In fact, the highest-

ranked match for one of the probes was met at rank 208 and
41 for RMS and PERC75, respectively.

As expected, size-invariant meshes provided lower accuracy
rates for both measures of dissimilarity than those by the orig-

inal dataset. This applies particularly to the lower-resolution
meshes. However, in agreement with the size-present meshes,
using the high-quality meshes the algorithm was shown to per-

form excellently with both measures of dissimilarity capable of
matching 100% of probes. By the resolution of 500 vertices,
the PERC75-based metric was able to identify all probes cor-

rectly, which is consistent with the results on the original
meshes. When tested by Wilcoxon signed-rank test raw
point-to-point distances were significantly smaller in size-

invariant comparisons than in the original comparisons (data
not shown). Alike in the original meshes, raw point-to-point
distances increased as the mesh resolution decreased (Table 2).

Mantel tests showed that both measures of dissimilarity
yielded statistically significant positive correlations with sex
and age (Table 4). While for the sex-related dependency
R-values ranged from 0.32 to 0.41 and the differences were

slightly more pronounced for RMS-based distance matrices,
the age dependency provided R coefficients between 0.16 and
0.19 with higher values in PERC75-based metrics when com-

puted on the high-resolution meshes. These results were also



Table 2 Rank-1 identification rate and descriptive statistics as recorded for the mesh-based testing.

Resolution RMS PERC75

10k 5k 1k 5h 1h 5d 10k 5k 1k 5h 1h 5d

Rank-1 identification (%) 96.43 96.43 100.00 96.43 96.43 57.14 100 100.00 100.00 100.00 78.57 42.86

Rank-10 identification (%) 100.00 96.43 100.00 96.43 100.00 85.71 100.00 100.00 100.00 100.00 100.00 78.57

Original meshes Means (rank 1) 1.230 1.611 2.925 3.939 7.193 9.926 1.289 1.712 3.233 4.384 7.913 10.907

Probes (tested sample) (in mm) Max (rank 1) 2.613 3.252 4.362 5.478 9.118 13.967 1.745 2.346 4.005 5.082 9.976 14.083

Min (rank 1) 0.951 1.269 2.573 3.645 6.211 7.456 1.085 1.446 2.845 4.064 6.363 8.112

Means (matches only) 1.179 1.611 2.925 3.882 7.169 9.287 1.289 1.712 3.233 4.384 7.653 9.730

Max (matches only) 1.599 3.252 4.362 4.229 9.118 11.806 1.745 2.346 4.005 5.082 8.551 12.503

Min (matches only) 0.951 1.269 2.573 3.645 6.211 7.456 1.085 1.446 2.845 4.064 6.363 8.112

Means (non-matches) 2.613 – – 5.478 7.841 10.779 – – – – 8.868 10.764

Control subset (in mm) Means (rank 1) 4.172 4.724 6.329 6.428 10.889 16.319 4.408 5.099 7.125 7.115 12.510 13.968

Max (rank 1) 12.921 18.137 17.018 13.195 19.232 29.628 15.699 22.949 21.498 15.629 24.539 24.010

Min (rank 1) 1.577 1.868 3.435 4.115 7.152 8.813 1.689 2.118 3.833 4.684 7.838 9.087

Rank-1 identification (%) 100.00 100.00 100.00 96.43 92.86 42.86 100.00 100.00 100.00 100.00 75.00 39.29

Rank-10 identification (%) 100.00 100.00 100.00 100.00 92.86 75.00 100.00 100.00 100.00 100.00 92.86 64.29

Size-invariant meshes Mean (rank 1) 1.141 1.617 2.916 3.919 7.195 9.432 1.243 1.726 3.252 4.391 7.819 10.194

Probes (tested sample) (in mm) Max (rank 1) 1.665 2.859 4.097 5.162 8.861 11.573 2.354 2.337 3.866 5.278 9.748 12.458

Min (rank 1) 0.922 1.273 2.573 3.646 6.221 7.522 1.017 1.448 2.931 4.097 6.133 8.006

Means (matches only) 1.141 1.617 2.916 3.930 7.193 9.989 1.243 1.726 3.252 4.391 7.937 10.896

Max (matches only) 1.665 2.859 4.097 5.283 9.318 13.839 2.354 2.337 3.866 5.278 10.837 13.896

Min (matches only) 0.922 1.273 2.573 3.646 6.221 7.522 1.017 1.448 2.931 4.097 6.133 8.006

Means (non-matches) – – – 5.283 8.304 10.704 – – – – 8.939 11.928

Control subset (in mm) Means (rank 1) 3.131 3.543 4.916 5.204 9.109 11.782 3.251 3.762 5.474 5.788 10.380 13.598

Max (rank 1) 8.200 8.838 9.892 9.337 15.997 17.857 8.733 9.679 12.217 10.449 17.215 22.028

Min (rank 1) 1.492 1.805 3.101 3.825 6.635 7.936 1.552 1.976 3.479 4.348 7.422 7.999
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Table 3 Results of M–W U test comparing values of dissimilarity measures for the tested and control subsets at rank of 1.

Measure of dissim. N� of vertices Rank Sum (control) Rank Sum (tested) U Z p-value

Original meshes RMS 5d 132,798 6858 6452 0.697 0.486

1h 137,518 2138 1732 6.705 0.000

5h 138,832 824 418 8.378 0.000

1k 139,206 450 44 8.854 0.000

5k 138,584 1072 666 8.062 0.000

10k 139,246 410 4 8.905 0.000

PERC75 5d 132,414 7242 6836 0.208 0.835

1h 137,580 2076 1670 6.784 0.000

5h 138,940 716 310 8.515 0.000

1k 139,250 406 0 8.910 0.000

5k 139,167 489 83 8.804 0.000

10k 139,250 406 0 8.910 0.000

Size-invariant meshes RMS 5d 132,162 7494 6912 �0.111 0.911

1h 138,150 1506 1100 7.510 0.000

5h 139,071 585 179 8.682 0.000

1k 139,244 412 6 8.902 0.000

5k 139,192 464 58 8.836 0.000

10k 139,055 601 195 8.662 0.000

PERC75 5d 130,636 9020 5386 �2.054 0.040

1h 138,176 1480 1074 7.543 0.000

5h 138,986 670 264 8.574 0.000

1k 139,250 406 0 8.910 0.000

5k 139,222 434 28 8.874 0.000

10k 139,250 406 0 8.910 0.000

Figure 2 Values of closest point-to-point distances for a true positive and a true negative result at various mesh resolutions accompanied

by 3D visualizations depicting local dissimilarities (results for meshes of 10k displayed).
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projected onto the demographic profile of the mismatches. If a

mismatch was met at rank-1 in meshes of 100 points and
higher, then either all (RMS-based metrics) or the majority
(PERC75-based metrics) of the false positive results fell into

the same sex and age category. For meshes of the lowest reso-
lution (meshes of 50 vertices), the mismatches were less
respectful of the same sex and age group. For RMS-based met-
rics, 2 male probes were falsely identified as female targets at
the rank of 1, with one of them also being misclassified

into the older neighboring age category, whereas for
PERC75-based data two female probes were misclassified as
males, albeit of the adequate age category. The results

obtained for scaled models concurred with those by the origi-
nal meshes.

The ROC curve analysis provided results relatively consis-
tent with those by rank-1 approach (Table 5, Figs. 5 and 6).



Figure 3 Relationships between ranks and PERC75-based metrics averaged for the tested sample and displayed for various mesh

resolutions.

Figure 4 Rank-1 and rank-10 identification rates for RMS and PERC75-based metrics.
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The low-resolution meshes provided poor identification rates
while metrics derived from the meshes of 10k vertices both
identified all target faces correctly. If sorted by performance

the best result was shared between the PERC75-based metrics
for 10k and 1k mesh resolution. For the size-present meshes,
the lowest identification rate was recorded for the PERC75-

derived metric in meshes of 50 points. If the point closest to
the top left corner was selected as the cut-off value the discrim-
inant power translated into sensitivity of 0.464, specificity of
0.688, positive likelihood ratio of 2.165 and negative likelihood

ratio of 0.9177. If, however, either sensitivity or specificity was
maximized, it can be seen that even though for the PERC75-
based metric the results concurred with those by the original
balancing criterion, for the remaining scenarios the values of
specificity or sensitivity were maximized at the expense of the
opposite. For size-invariant meshes, PERC75-derived metric

computed on low-quality meshes yielded the lowest identifica-
tion rates with a sensitivity of 0.278 and a specificity of 0.464.
This translated into positive likelihood ratio of 0.860 and neg-

ative likelihood of 1.680.
Of the tested probes, one male 3D facial scan was repeat-

edly misidentified independent of the mesh resolutions. The
graphic visualization between corresponding faces and the face

demonstrated that the variation was concentrated in the region
under the left mandibular line and can be assigned to technical
rather than morphological inconsistencies (Fig. 7).



Table 4 R-values provided by the Mantel test. All R-values

were statistically significant at p-value = 0.0001.

N� of vertices RMS PERC75

Sex Age Sex Age

5d 0.3889 0.1709 0.3702 0.1685

1h 0.4063 0.1822 0.3964 0.1681

5h 0.4066 0.1698 0.399 0.1784

1k 0.3352 0.1569 0.315 0.1615

5k 0.4086 0.1756 0.3914 0.1855

10k 0.4108 0.1799 0.3885 0.1905
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4.2. Landmark-based identification

Descriptive statistics for rank-1 identification together with
classification rates are displayed in Table 6. No trend pointing
out to an overall relationship between the number of land-

marks and Procrustes distances at the rank of 1 was observed
(Fig. 8). Although larger variance was revealed at the lower
ranks suggesting that Procrustes distances increased as the

number of landmarks decreased, at higher ranks this trend
was absent and the values of the Procrustes distance were rel-
atively independent of the number of landmarks.

M–W U test showed that there were statistically significant
differences between average Procrustes distances of the tested
and the control subsets at rank-1 in all landmark configura-

tions except for the minimum tested number of 6 landmarks
(Table 7).
Table 5 ROC curve statistics for mesh-based identification.

Mesh

resolution

Metric Area under the curve Cut

valu
Area SE 95% Confidence

interval

1 10k PERC75 1.0000 0.000 1.000–1.000 1.6

1 10k PERC75 scaled 1.0000 0.000 1.000–1.000 1.5

1 1k PERC75 1.0000 0.000 1.000–1.000 3.8

1 1k PERC75 scaled 1.0000 0.000 1.000–1.000 3.4

5 1k RMS scaled 1.0000 0.000 1.000–0.999 3.1

6 10k RMS 0.9997 0.000 0.999–1.000 1.6

7 1k RMS 0.9969 0.003 0.990–1.000 3.4

8 5k PERC75 scaled 0.9980 0.001 0.996–1.000 2.2

9 10k RMS scaled 0.9960 0.003 0.990–1.000 1.6

10 5k RMS scaled 0.9960 0.002 0.991–1.000 2.0

11 5k PERC75 0.9941 0.005 0.980–1.000 2.3

12 5h RMS scaled 0.9870 0.008 0.971–1.000 3.9

13 5h PERC75 scaled 0.9810 0.013 0.955–1.000 4.5

14 5h PERC75 0.9779 0.012 0.953–0.998 4.7

15 5h RMS 0.9701 0.012 0.942–0.991 4.3

16 5k RMS 0.9524 0.029 0.893–0.998 2.0

17 1h PERC75 scaled 0.9230 0.030 0.865–0.982 7.9

18 1h RMS scaled 0.9210 0.036 0.850–0.992 7.0

19 1h PERC75 0.8807 0.035 0.802–0.940 8.6

20 1h RMS 0.8763 0.041 0.397–0.682 7.9

21 5d RMS 0.5391 0.072 0.370–0.654 9.8

22 5d PERC75 0.5117 0.071 0.370–0.654 10.9

23 5d RMS scaled 0.4940 0.072 0.353–0.635 9.6

24 5d PERC75 scaled 0.3850 0.070 0.248–0.522 10.4
Similar to the mesh-based metrics, the discriminative power
of the extracted measure of dissimilarity decreased with the
number of quantitative traits, i.e., landmarks (Fig. 9). The

rank-1 identification rate of 100% was acquired for the config-
urations counting 12 and more landmarks. Starting with the
set of 12 landmarks the true positive rate decreased to 86%

and then to 57% for the 6-point configuration. For the rank-
10 identification, the rates remained high, decreasing only for
the configurations of 9 and 6 landmarks.

Similar to the mesh-based data, the Procrustes distances
were shown to correlate positively with sex and age differences
(Table 8). Although statistically significant at 5% level of sig-
nificance for all tested landmark sets the correlation coefficient

did not exceed the value of 0.06 and 0.21 for sex and age
respectively. This suggests mild to weak relationships. The cor-
relations increased as the number of landmarks decreased.

The ROC curve analysis, again, provided results relatively
consistent with those by rank-1 approach (Table 9). The
AUC values fell gradually relative to the decreasing number

of landmarks. Surprisingly, the complete set of landmarks
yielded a sensitivity of 0.998 at a specificity of 0.96, which
was the fifth best performance out of the tested configurations.

Once the auricular landmarks were removed the specificity
increased to 0.996 at a sensitivity of 1.00. If the point closest
to the top left corner was selected as the cut-off value the dis-
criminative power of the 12-landmark configuration which

held the rank-1 rate of 100% revealed a specificity of 0.857
and a sensitivity of 0.871. These values translated into positive
likelihood ratio of 7.9 and negative likelihood ratio of 0.28.

Ultimately, the minimum 6-point configurations provided the
-off

e

Sensitivity Specificity LR+ LR� Sensitivity

of 1

Specificity

of 1

1 1.000 1.000 INF 0 1.00 1.00

3 1.000 1.000 INF 0 1.00 1.00

0 1.000 1.000 INF 0 1.00 1.00

5 1.000 1.000 INF 0 1.00 1.00

4 1.000 0.992 125 0 0.99 0.93

0 0.992 0.992 125 0 0.99 0.96

6 0.893 0.893 241.1 0.036 0.92 0.93

1 0.964 0.980 50 0 0.98 0.86

3 0.964 0.952 20.09 0.037 0.93 0.93

1 0.964 0.970 32.14 0.037 0.95 0.79

3 0.986 0.986 60.27 0.036 0.85 0.93

0.929 0.996 232.1 0.072 0.82 0.79

3 0.893 0.946 17.2 0.076 0.63 0.82

3 0.988 0.988 74.4 0.108 0.79 0.68

2 0.944 0.944 14.67 0.189 0.80 0.71

6 0.972 0.972 32.97 0.147 0.31 0.71

2 0.893 0.812 4.94 0.088 0.252 0.50

0 0.857 0.912 9.52 0.157 0.12 0.46

6 0.868 0.868 5.682 0.288 0.20 0.32

5 0.834 0.834 4.948 0.214 0.18 0.25

9 0.778 0.778 1.931 0.735 0.00 0.04

0.464 0.688 2.165 0.918 0.00 0.00

6 0.268 0.536 1.102 0.812 0.00 0.04

0 0.278 0.464 0.860 1.680 0.00 0.07



Figure 5 ROC curves illustrating performances of RMS-based measures of dissimilarity on the studied sample.
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lowest values of sensitivity while the specificity reached values
little below the configuration of 12 landmarks and relatively

consistent with the configuration of 9 landmarks.
The results also showed that the alternative 6-point config-

uration performed better than the original one achieving the
sensitivity of 0.632, the specificity of 0.821, which both trans-

lated into scores of 3.54 and 0.45 for positive and negative like-
lihood ratios, respectively. If the preference was given to
maximize the values of specificity than none of the configura-

tions provided values of sensitivity higher than 0 except for the
9-point (specificity of 0.43) and 12-point configurations (speci-
ficity of 0.21). Values of specificity under the acceptance rate of

0.99 are displayed in Table 9 (see Fig. 10).

5. Discussion

In the framework of forensic sciences, facial images represent
important conveyors of information about a character of a
crime, perpetrator’s appearance or victim’s identity. Although
forensic facial identification is conducted in majority on tradi-

tional photographs or surveillance videos in the recent years a
vast number of devices capable of capturing 3D facial mor-
phology have been developed43 and gradually introduced to

the forensic community.22,26,27 Currently, 3D images are
mostly recorded under controlled conditions using in-lab
equipment, but portable cost-efficient 3D recording systems
have been also made available for field work.33 Furthermore,

systems designed to accessorize mobile devices such as iPads,
cell phones or game consoles, where a stable relationship
between a capturing system and a captured subject is not a pri-
mary concern, have occurred on markets.44,45 With the rise of

novel 3D technology it has become reasonable to question
conditions, under which 3D images can yield accurate and reli-
able forensic identifications.

In the present paper we explored the effect of mesh resolu-
tion given by a number of vertices – the property associated
with overall quality of 3D images and the effect of a total

count of identity-encoding features derived from these images.
Two approaches to quantifying facial features were under-
taken. The mesh-based analysis is grounded on the computa-
tion of shell-to-shell deviations and is in concordance with

current trends in other fields.34,35 The landmark-based analysis
featuring discrete facial points has its origin in the traditional
photo-anthropometric approach.

It can be concluded that employing high-resolution meshes
and the maximum number of collected facial points both
approaches yielded excellent identification rates through their

relevant dissimilarity measures. This should not come as a sur-
prise given the fact that the tested 3D meshes were acquired in
a controlled in-lab acquisition environment and all 3D models



Figure 6 ROC curves illustrating performances of PERC75-based measures of dissimilarity on the studied sample.
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were pre-screened in order to exclude faces with facial expres-
sions, occlusion or additional technical irregularities – factors

that impose difficulties on automated as well interactive iden-
tification tasks.23 In addition, morphological changes over
time have been acknowledged as serious sources of errors.

For real world cases a time lapse that passes between two or
multiple images submitted for forensic examination can vary
significantly. The present results were derived from matching
probes and targets recorded only few minutes apart. Therefore,

little to none of the intra-individual differences can be con-
tributed to age variations.

More importantly, it was shown that a configuration of 12

points matched successfully all probes at rank-1. This concurs
with Spreeuwers30 who showed that to obtain a recognition rate
of 80% for false acceptance rate of 0.1% low-dimensional vec-

tors composed of 12 variables were sufficient. For facial image
comparison executed by forensic experts or simple photograph
verification carried out by police or security officers, time pres-
sure has been shown to significantly diminish performances.46

Therefore, knowledge of minimum requirements and a proper
selection of facial features capable of achieving robust perfor-
mance can significantly speed up identification tasks.

In the present study, two minimum landmark configura-
tions were tested. Both of them composed of 6 landmarks. This
means that each 3D face was described by 18-dimensional vec-
tors. While the first configuration was derived through the con-
secutive removal of points with the minimum level of inter-

individual variance, the alternative 6-point configuration was
selected based on the assumption that the selected points
describing positions of eyes, nose and mouth were the founda-

tion of inter-individual differences.47 Both minimum configu-
rations performed rather poorly with less than 80% of
correctly identified probes. Still, the alternative configuration
yielded slightly higher rates, which can also be explained by

a lower level of acquisition error generally reported for these
landmarks. It ought to be emphasized that the obtained results
represent an improvement in comparison to those by Klein-

berg et al.9 who reported identification rates as low as 20%
for indices derived from a nearly identical set of endpoint
(nasion was used instead of pronasale) measured on traditional

2D photographs.
Generally, more consistent results were acquired for the

mesh-based approach than for the landmarks. This was espe-
cially valid for high-resolution models. It was shown that a sin-

gle descriptor extracted from 500 and more point-to-point
distances was able to identify all probes correctly at the rank
of 1 and with the identification rate of 97.8% when the thresh-

old balancing false acceptance and rejection rates (also known
as equal error rate) was employed. The values of likelihood
ratios suggest that the results could offer ‘‘moderate support”



Figure 7 Illustrating pitfalls of 3D face identification based on a single dissimilarity measure. (A) Shows a false negative result at the

rank of 1 due to highly localized differences – artifacts of data acquisition. (B) Shows a false positive result at the rank of 1.

Table 6 Rank-1 identification rates and descriptive statistics grounded on landmark-based comparison.

PD 42L PD 30L PD 15L PD 12L PD 9L PD 6L PD 6L alt

Rank-1 identification (%) 100.00 100.00 100.00 100.00 89.29 57.14 75.00

Rank-10 identification 100.00 100.00 100.00 100.00 96.43 96.43 96.43

Mean (rank 1) 0.0299 0.034 0.033 0.034 0.035 0.036 0.022

Tested subset Max (rank 1) 0.0503 0.044 0.044 0.046 0.048 0.055 0.038

Min (rank 1) 0.0207 0.020 0.019 0.018 0.018 0.019 0.011

Mean (matches only) 0.0299 0.034 0.033 0.034 0.034 0.035 0.020

Max (matches only) 0.0503 0.044 0.044 0.046 0.048 0.052 0.026

Min (matches only) 0.0207 0.020 0.019 0.018 0.018 0.019 0.011

Mean (non-matches) – – – – 0.041 0.039 0.030

Control subset Mean (rank 1) 0.0275 0.058 0.049 0.046 0.043 0.034 0.014

Max (rank 1) 0.0928 0.089 0.074 0.072 0.070 0.065 0.029

Min (rank 1) 0.0205 0.040 0.034 0.033 0.029 0.013 0.005
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to the hypothesis that two scans depict the same individual.48

Conversely, in the landmark-based analysis the number of 12

points, the lowest-numbered configuration to provide the
rank-1 identification rate of 100% yielded likelihood ratios
that are far from being considered comparable to the mesh-

based results. With the positive likelihood ratio of 7.9 the ver-
bal equivalent to support the origin from the same individual
would be weak to limited.

Nevertheless, matching high-resolution 3D models is a

computationally expensive task and the processing speed is
generally viewed as a trade-off for robust performance. The
recording system utilized in the present study produces 3D

facial scans of 40,000 and more vertices. Our previous experi-
ences with 3D data processing41,49 showed that the reduction
to the constant number of 10,000 points provided an accept-
able level of data volume together with a welcome decrement

of computing power requirements that did not sacrifice the
precision in face geometry. Still, using a standard hardware
equipment (laptop, 2.4 GHz, 16 GB RAM) it took almost an

hour to match a probe against 501 candidates. For the meshes
of 1,000 and 500 points the time requirements fell drastically to
3 min and to less than 2 min, respectively. For 3D faces of 100
points it took less than 40 s to acquire results. To ease the com-

puting requirements many proposed algorithms convert tex-
tured 3D meshes into depth image, depth maps, XYZ maps
or 2.5D representations via orthographic projection.44,50 How-

ever, this may not be the most appropriate solution in all
forensic and security applications as the conversion discards



Figure 8 Relationships between ranks and Procrustes distances averaged for the tested sample and displayed for various numbers of

landmarks.

Table 7 Results of M-W U test comparing values of dissimilarity measures for tested (matching pairs) and random (rank 1) subsets.

Results of M-W U test comparing values of landmark-based dissimilarity measures for tested (matching pairs) and random (rank 1)

subsets.

Rank Sum (control) Rank Sum (tested) U Z p-value

6L 8865 128,685 5429 1.943 0.052

9L 3227 134,323 2821 �5.289 0.000

12L 1504 136,046 1098 �7.499 0.000

15L 922 136,104 516 �8.244 0.000

18L 656 136,370 250 �8.586 0.000

21L 477 136,549 71 �8.816 0.000

24L 420 136,606 14 �8.889 0.000

27L 418 136,608 12 �8.892 0.000

30L 414 137,136 8 �8.898 0.000

42L 538 138,063 132 �8.740 0.000

6L alt 3967 132,536 3561 �4.320 0.000
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a substantial amount of the original 3D information and it
may also lead to a significant increase in error rates.51

To ease additional computations the present mesh-based
approach used univariate global representations of similar-
ity/dissimilarity represented by the root mean square and

75th percentile retrieved from a set of inter-point distances.
By doing so, a multidimensional vector was reduced to a sin-
gle number. The root mean square is a commonly used indica-

tor of geometric deviations in 3D surface data. The 75th
percentile computed from raw surface-to-surface distances
was previously demonstrated as the most reliable statistical
descriptor in 3D facial comparisons.52 For both parameters,

the cut-off value between matching and non-matching 3D
faces counted less than 2 mm. Interestingly, it is a comparable
or even a smaller distance than that reported in other studies.

For instance, for superimposed photographic evidence,
Yoshino et al.53 state that a mean distance of 2.5 mm between
corresponding anthropometric points is an adequate threshold
to achieve positive identification. Similarly, Sala et al.54

assessed identification in 2D to 3D images by a threshold

set to 1.8 mm.
Our results also demonstrated that for a given mesh resolu-

tion and dissimilarity metric the original meshes outperformed

the scaled facial scans. Scaling means that the measures of dis-
similarity do not include information about size-related differ-
ences. Accordingly, Procrustes distances represented shape

distances with no variance accountable for size. Size plays an
important role in the formation of sex-related as well as
between-person differences encoded in facial features.26 Inter-
estingly, no differences in sex-related misclassifications were

observed between scaled and original meshes. This suggests
that extracting size variation does not bias the identification
algorithm to the presumed extent.

From the practical point of view the major distinction
between the tested approaches was the amount of interactions
that was required to process 3D data. While in order to process



Figure 9 Rank-1 identification rates for landmark-based metrics and varying numbers of landmarks.

Table 8 R-values provided by the Mantel test. All R-values

were statistically significant at p-value = 0.0001.

N� of landmarks Sex Age

6L 0.0273 0.0686

9L 0.0404 0.1016

12L 0.0503 0.1116

15L 0.0520 0.1361

18L 0.0546 0.1452

21L 0.0528 0.1667

24L 0.0570 0.1757

27L 0.0576 0.1900

30L 0.0581 0.2025

42L 0.0517 0.2279

Table 9 ROC curve statistics for landmark-based identification.

Test result

variable(s)

Area under the curve Cut-off

value

S

Area SE 95% Confidence

interval

1 30L 0.9994 0.001 0.998–1 0.0446 1

2 27L 0.9991 0.001 0.997–1 0.0439 1

3 24L 0.9990 0.001 0.997–1 0.0429 1

4 21L 0.9949 0.003 0.998–0.999 0.0432 0

5 42L 0.9885 0.009 0.968–1 0.0203 0

6 18L 0.9820 0.009 0.962–0.996 0.0406 0

7 15L 0.9628 0.015 0.927–0.987 0.0404 0

8 12L 0.9209 0.026 0.864–0.965 0.0388 0

9 9L 0.7969 0.042 0.708–0.877 0.0390 0

10 6L alt 0.7411 0.053 0.639–0.843 0.0124 0

11 6L 0.3909 0.053 0.292–0.483 0.0359 0
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the complete 3D surface meshes basic manual editing and
automatic error checking had to be carried out the process

of collecting 3D landmarks was far more laborious. It has to
be noted that in contrast to mesh processing this step requires
anthropological knowledge and specific training. Otherwise,
collected data are subject to major errors. To facilitate the pro-

cess landmark detection systems algorithms based on geomet-
ric features, such as symmetry, curvatures or edges, templates
or statistical shape models have been proposed.55–58 These

methods were shown to be of assistance while dealing with a
large amount of image evidence, for instance, while retrieving
faces from a database,6 but so far even the most reliable auto-

matic landmark detection systems require some sort of expert’s
interactions.
ensitivity Specificity LR+ LR� Sensitivity of

0.99

Specificity

of 1

.00 0.996 247.5 0.0 1.00 0.99

.00 0.988 82.5 0.0 0.96 0.99

.00 0.988 79.55 0.036 0.93 0.99

.964 0.947 18.36 0.038 0.86 0.95

.998 0.964 27.94 0.002 0.96 0.73

.893 0.952 18.42 0.113 0.79 0.82

.893 0.913 10.28 0.117 0.57 0.70

.857 0.871 7.899 0.276 0.50 0.49

.714 0.697 2.357 0.410 0.29 0.26

.632 0.821 3.541 0.448 0.07 0.07

.0571 0.681 0.0 1.021 0.00 0.01



Figure 10 ROC curves illustrating performances of Procrustes distances on the studied sample.
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6. Conclusion

Like other techniques employed in the legal context an algo-
rithm utilized for matching 3D digital evidence must be based

on quantifiable scientific principles with known error rates. To
date, there has not been sufficient scientific evidence support-
ing the usage of three-dimensional records of human face for

forensic identification purposes. The present results showed
that under controlled conditions univariate dissimilarity mea-
sures retrieved from closest point-to-point distances and land-
marks collected manually on 3D meshes were capable of

providing very accurate and reliable results. The error rates
are, however, highly dependent on mesh resolution and opti-
mal number of landmarks, which may also impose increased

computing, time and labor requirements on identification
tasks. In following research further effort should be aimed at
exploring performances related to a semi-controlled or ad-

hoc acquisition environment.
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