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Power Lindley distribution

A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called
as the power Lindley distribution. Another generalization of the Lindley distribution was intro-
duced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper pro-
poses a more generalization of the Lindley distribution which generalizes the two. We refer
to this new generalization as the exponentiated power Lindley distribution. The new distribu-
tion is important since it contains as special sub-models some widely well-known distributions
in addition to the above two models, such as the Lindley distribution among many others. It
also provides more flexibility to analyze complex real data sets. We study some statistical prop-
erties for the new distribution. We discuss maximum likelihood estimation of the distribution
parameters. Least square estimation is used to evaluate the parameters. Three algorithms are
proposed for generating random data from the proposed distribution. An application of the
model to a real data set is analyzed using the new distribution, which shows that the exponen-
tiated power Lindley distribution can be used quite effectively in analyzing real lifetime data.
© 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.

Abbreviations: EPLD, Exponentiated power Lindley distribution;
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PLD, Power Lindley distribution; BGLD, Beta generalized Lindley
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information criterion.
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Lindley [3], introduced a one-parameter distribution, known as
Lindley distribution, given by its probability density function

02
£0)=—— (140, t>0, 0>0. 1
§l130) = g (1 + 06 , (M
It can be seen that this distribution is a mixture of exponential
(6) and gamma (2, 6) distributions. Its cumulative distribution
function has been obtained as

0+1+ 01679,.
0+1 '
Ghitany et al. [4] have discussed various properties of this dis-

tribution and showed that in many ways that the pdf given by
(1) provides a better model for some applications than the

G(t)=1- t>0, 0>0. (2)
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exponential distribution. Bakouch et al. [5] obtained an
extended Lindley distribution and discussed its various
properties and applications. Ghitany et al. [6] developed a
two-parameter weighted Lindley distribution and discussed
its applications to survival data. Nadarajah et al. [2] obtained
a generalized Lindley distribution and discussed its various
properties and applications. Merovci and Elbatal [7] use the
quadratic rank transmutation map in order to generate a flex-
ible family of probability distributions taking Lindley-geomet-
ric distribution as the base value distribution by introducing a
new parameter that would offer more distributional flexibility
and called it transmuted Lindley-geometric distribution. Asg-
harzadeh et al. [§] introduced a general family of continuous
lifetime distributions by compounding any continuous distribu-
tion and the Poisson—Lindley distribution. Oluyede and Yang
[9] proposed a new four-parameter class of generalized Lindley
(GLD) distribution called the beta-generalized Lindley distri-
bution (BGLD). This class of distributions contains the beta-
Lindley, GLD and Lindley distributions as special cases.

A two parameter power Lindley distribution (PLD), of
which the Lindley distribution ‘Eq. (1)’ is a particular case,
has been suggested by Ghitany et al. [1]. They introduced a
new extension of the Lindley distribution by considering the
power transformation of the r.v. ¥ = T"# The pdf of the ¥
is readily obtained to be power Lindley distribution with
parameters f§ and 6 and is defined by its probability density
function pdf

CRA+Y) 0
g(r;0) =~ ﬂ9(+1} Dy,

It can easily be seen that at § = 1, Eq. (3) reduces to the Lind-
ley distribution. From Eq. (2), we see that the power Lindley
distribution is a two-component mixture of Weibull distribu-
tion (with shape f and scale 0), and a generalized gamma dis-
tribution (with shape parameters 2  and scale 0), with mixing
proportion p = &

y>0, 0, >0, (3)

g(y;050) = pfi(y) + (1 = p)hh(»), 4)
where p = {4,

L) =0y y>0, 0, B>0, (5)
and

L) =P e y>o0, 0, p>0. (6)

In this paper, we introduce a new distribution with three
parameters, referred to as the exponentiated power Lindley
(EPLD) distribution, with the hope that it will attract many
applications in different disciplines such as survival analysis,
reliability, biology and others. One of the main goals to intro-
duce this new distribution was that it involves three distribu-
tions as sub-models. Generally, the EPLD distribution
generalizes the generalized Lindley (GLD) [2], power Lindley
(PLD) [1] and Lindley (LD) [3] distributions. The third param-
eter indexed to this distribution makes it more flexible to
describe different types of real data than its sub-models. The
EPLD distribution, due to its flexibility in accommodating dif-
ferent forms of the hazard function, seems to be a suitable dis-
tribution that can be used in a variety of problems in fitting
survival data. The EPLD distribution is not only convenient
for fitting comfortable bathtub-shaped failure rate data but

also suitable for testing goodness-of-fit of some special sub-
models such as the PLD, GLD and LD distributions.

The new extension of the power Lindley distribution is
most conveniently specified in terms of the cumulative distri-
bution function:

Flx) = {1 - (1 + Heiﬂl)e-"*"’}“, (7)

for x > 0, 6, f, « > 0 and the corresponding probability den-
sity function (pdf) is given by

. 6% k! 0xF !
7o) = S (1 e {1 ) (1 oy 1)"%“} . ®

The corresponding hazard rate function is

h(x) = (oaizl) Bl (1 4 xP)e

{1 - (1 * Heiﬁl)ewrl{S(x)}l7 9)
where
S =1 {1 - (1 * OOiﬁl)ewT’ (10)

Note that Eq. (8) has closed form survival functions and haz-
ard rate functions.

For (f=1), (¢ =1)and (« = = 1) we have the pdfs of
generalized Lindley distribution , power Lindley and Lindley
distributions respectively. As we shall see later, Eq. (8) has
the attractive feature of allowing for monotonically decreasing;
monotonically increasing and bath tub shaped hazard rate
functions while not allowing for constant hazard rate
functions.

Another motivation for the new distribution in (Eq. (7)) can
be described as follows. Consider the two parameters power
Lindley distribution [1] specified by the cumulative distribution
function:

Fou(x) = [1 - (1 +99f1)e-‘*"”}, (11)

for x > 0 and 6, p > 0. Suppose X;, X5, ..., X, are indepen-
dent random variables distributed according to (Eq. (11)) and
represent the failure times of the components of a series sys-
tem, assumed to be independent. Then the probability that
the system will fail before time x is given by

Pr(max(X,,Xa,...,X,) <x)=Pr(X; <x)Pr(X> < x)
o Pr(X, < x)=For(x)Fpr(x)

AN
L Fo(x)= {1 - <1+9i1>e—0w} .

So, Eq. (7) gives the distribution of the failure of a series sys-
tem with independent components.

From Egs. (4)-(6), it follows that cumulative distribution
function, Eq. (7), can be represented as

A = (5 )0 F 0l

=0 \ !

where Fyy(x) = 1 — (=" is the cumulative distribution func-
tion of Weibull random variable with shape f and scale 0
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and Fgea(x) = 1 — [e-"") . (1 4 0xP)] is the cumulative distri-
bution of generalized gamma with shape parameters (2,o)
and scale parameter 6. So, the proposed distribution can be
viewed as an infinite mixture of the products of the exponenti-
ated generalized gamma distribution. If « is an integer then the
mixture is finite.

The contents of this paper are organized as follows. A com-
prehensive account of mathematical properties of the new dis-
tribution is provided. These include the shapes of the density
and hazard rate functions and stochastic orders in Sections
‘Shapes and Stochastic orders’. In Sections ‘Moments, Quan-
tile function and Generation algorithms’ the moments and
some associated measures, the quantile function and three dif-
ferent algorithms are proposed for generating random data
from the proposed distribution. In Section ‘Maximum likeli-
hood estimation of parameters’, we demonstrate the maximum
likelihood estimates (MLEs) of the unknown parameters and
the asymptotic confidence intervals of the unknown parame-
ters. In Sections ‘Order statistics and Least square estimation’,
order statistics and their moments and least square estimation
are discussed. Application of the EPL model is presented in
Section ‘Data analysis’. Monte Carlo simulation study is car-
ried out in Section ‘Simulation study’ to examine the accuracy
of the maximum likelihood estimators of the EPL(x,pf,0)
parameters as well as the coverage probability and average
width of the confidence intervals for the parameters. Finally,
Section ‘Concluding remarks’ concludes this paper.

Shapes

In this section, we discuss the shape characteristics of the pdf
fix) in Eq. (8) of the EPL(0, , ) distribution.

The behavior of f(x) at x = 0 and x = oo, respectively, are
given by

0, ff<lora<l,
A0)={ L, ifp=landa=1,
0, ifp>lora>l,

floo) = 0.

If X has the pdf (8), the pdf of X is a weighted version of the
pdf of Y in Eq. (3) and the weight function in this case is

L5p

£(x,1,0.2,.9)
f(x,2,1,1)

f(x,3,2,.5) 05

18

w(y) = [F)]*~" . The weight function is an increasing or
decreasing if « > 1 or a < 1 respectively. Therefore, if Y is
decreasing pdf then for o > 1, The pdf of X also is a decreasing
pdf. If Y has a unimodal pdf, then Mode(X) > (<)Mode Y, if
o > (<)I. Observe that if the pdf of Y is log-concave (convex),
then the pdf of X will be log-concave (convex) if « > (<)1.

Ghitany et al. [1] discussed and proved the cases in which
the pdf g(y) in Eq. (3) of the power Lindley distribution is
decreasing, unimodal and decreasing—increasing—decreasing.
It follows that the pdf f(x) in Eq. (8) of the exponentiated
power Lindley distribution EPLD(0, 5, o) is

a. Decreasing if
L{0<pB<i0>0,a<1};

IL 3<p<1,0=n(p)a<l},
where n,(f) = 2VAEh W,
HL{p=1,0=1,0a=1};
IV.{p=1,0>0,0 < 1}.

b. Unimodal if
L{=1,0>0,0a>1};
IL{B=1,0<0<1,a=1}
ML {>1,0>0,0=>1}.

c. Decreasing—increasing—decreasing if (% <pf<1l,0<0<

m(h),x=1).

Fig. 1 illustrates some of the possible shapes of the density
function of exponentiated power Lindley distribution for
selected values of the parameters (6, f5, o).

The behavior of 4(x) at x = 0 and x = oo, respectively, are
given by

oo, iff<lora<l,
h(0)={ L, if p=1and 2 =1,
0, iff>1ora>1,
0, iff<lora<l,
h(oo) =< &, if p=1and 2= 1,
oo, iff>lora=l,

0.8 :
f(x,1,1,2) H

fx,.6.1,1) OO 7
f(x,1.5,2,1.5 047 -4, 7

0.2

0

f(x,.3,.85,1) 0.1}
f(x,.35,.9,1)

0.08

0.06

Fig. 1

Probability density function of the EPLD(0, ,) for selected values of the parameters.
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Fig. 2 Hazard rate function of the EPLD(0, 5, ) for selected values of the parameters.

Ghitany et al .[1] discussed and proved the cases in which the
hazard rate function of the power Lindley distribution is
decreasing, increasing and decreasing—increasing—decreasing.
It follows that the HRF /4(x) in Eq. (9) of the EPLD distribu-
tion 18

(a) Decreasing if
L{0<pB<i0>0a<1};
IL {{<p<1,0> nz(ﬁ),a < 1}, where 1,(B) =
(b) Increasing if {[)’ >1,0>0,0=1}.
(c¢) Decreasing—increasing—decreasing if {% <p<1l,0<0<
772(/)))7 &= 1}
Fig. 2 shows the HRF A(x) of the exponentiated power
Lindley distribution for some choices of values of the param-
eters (0, B, o).

@p-1)°,
4pa=py

Stochastic orders

Stochastic ordering of positive continuous random variables is
an important tool for judging the comparative behavior.
Suppose X;is distributed according to Egs. (7) and (8) with com-
mon shape parameter § and parameters 0;and o; fori = 1,2. Let
F; denote the cumulative distribution of X; and let f; denote the
probability density function of X;. A random variable X is said
to be smaller than a random variable X, in the

I. Stochastic order (X<, X3) if Fi(x) = F>(x) for all x.
II. Hazard rate order (X,<;X>) if A(x) > ho(x) for all x.
III. Likelihood ratio order (X,<;X>) 1f/1 decredses in x.

The following results due to Shaked and Shanthikumar [10]
are well known for establishing stochastic ordering of
distributions

X < Xo = X < X = X <y X

The EPLD is ordered with respect to the strongest “likelihood
ratio” ordering as shown in the following theorem:

Theorem 1. Let X;~ EPLD(0;,f,0;) and X,~ EPLD
(02,B.02). If 0, =05 and o«; > oy (or if o = o, and
0; = 05), then X; < 1,.X> and hence X; < 1, X5 and X; < 4 Xo.

Proof
Silx) _ 2, 07(0, + 1B~ (14 1P )6(92,\‘/’2—91,\(/31)
f(x) w05(0) + 1)Byxta!
el-xﬂ] —0,xP at
1-(1
) { ( +(91+1))e
02xﬁ2 _0,xh 1=

1-11 ¥

{ (‘W@+n% ’
thus

2 AL (B0 (1
(x) 0, xPr — 0,xP> X
xR — By) + frfi T — By
* ( P+ D+ 1) )

(O(l l)gzﬁlxlil 1( + xh )e,(;lx/;1
(01+1)< (1+M>8_0”/¢]>
(0(2 l)egﬁz\{ﬁz 1( + xl}z) —0yxP2

(92+1)( (1+55)eo)

Case (i) if 0, = 0, and a1 > oy, then £ ln;‘(‘; < 0. This means

that X <;, X5 and hence X; <, X» and X <o Xo.
Case (ii) if 0; > 0,, and o; = 0, = o, then 1an

ox

This means that X; <;.X, and hence X, \,,,.Xz
Xl St XZ- |

j < 0.
and

Moments

Theorem 2. The rth moments E(X") of a exponentiated power
Lindley random variable X, is given by
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o
EX)=EX)=—-Ciy
(X7) = E(X") = 5 Cu
r+p(k+1) r+p(k+2)
r(=5) P (=4)
9(”;/{").(1'—0—1)F(Hﬁ(/§”)) 6(14/}/\/1’).(1_‘_1)]‘(7'4/1’(/;“2)) ’

where Cij = EZOZT:()(?i 1) (llc) (_l)i(%)k

Proof

B0 = [ %A

N AT el ; 0xF N\ o]
E(X):/O = fil (14 xF)e {1 ( 9+1) *0\’} dx
aezﬁx'+ﬁ ! —0\/f 0 g —0\'/ !
_/0 0+1 {17(1+0+1) } dx

o0 2 r+2p—1 /; oa—1
+ /0 il g: ; e’(’xﬁ{l (1+ 00+1) *”Y”} dx. (12)

Using the
o—1
[1 - (1 + gﬁ) ’N] given by

Ox o 1 > (oa—1 i IQX/; i v
1—(1 Ox — _lz 14— i0x
) S o ) I O =) e

i
and using the following binomial series expansion of [1 + {%ﬂ
given by

0xP " N[ 0\,
| = _ 7 B
[1+9+1} ;(k>(0+1) T

Eq. (12) takes the following form

. a—1 = (i 0\ [ alPpP
= ) = )
s =3 (%) Z()( ) [ e

x sy ‘ao ; L ) R SR ) o
w2 )eg () @) [ e

o [a—1 k

Let t = x* and Cy = Zi:O( ; )( DY, ( )<0+1) :

Eq. (12) can be rewritten as follows:

following binomial series expansion of

A/f \ﬂ(/ +1)

By = [T gy [T e g
wl 0+1 S ’
F(r+/i(k+l))

) o ] o
E}(’ C,‘ 3 + Ci'
SR ‘k(e(%:ﬂfl)).(<i+1>f(f—“‘5¢*'>>) o+1°"

r+p(k+2)
B

r (r+/ﬁ(k+2)
B
+

o ( L 1)((,41)"('*”‘%)) ('7!‘) ((l+1) (=5 ))} -

Theorem 3. Let X have an exponentiated power Lindley distri-
bution. Then the moment generating function of X, Mx(t), is

j+p(k+1) j+pB(k+2)
r(e) r(=) }

o= "HCM{(W')((i+1)f(’*’“ﬁ*”))+(ﬁ) (G+ 1 59 |

o0 o0 0 o — 1 i i k
where Ciy; = Zi:OZk:OZj:O( ; ) ( k) (=1) (%) i
Proof

MX(I):/ e f(x)dx
0

maHZﬁxﬁ—l B ,tx —0xF HY —0xF !
Mx(t)—/o ﬁ(ler )e'e {1 (1+9+1) } dx

OCO(HZ,BXﬁ?] 1x —0OxP 9)6 —0\” !
_/0 e {1 (1+m) } dx

2 p 21 o=l
+/0 7“90ﬁf1 e *0*”[1—(1+:L) *0‘”} dx. (13)

Using the
o—1
[1 - (1 + L‘ﬁﬁ) ’M] given by

0xF\ ] (21 i 0xP\'
[17<1+0+1>e ] 7;< ; )(71) (1+0+]>e s

and using the following binomial series expansion of [1 + gﬁ]
given by

0xP 1" SN[ 0\,
| = _7 B
[1+9+1} ;(k)(9+1) A

Eq. (13) takes the following form

oY) [ e
> | 2\, )\e=1) Sy o
o Ju—l . /i k 2B 1kp
) 0 “9 ﬂx/ +kp o
) 1y ( )(7) / PXTTTT v 05 ) g
;< i > ; KN o 0

Using the following expansion of e given by

following binomial series expansion of

00

t/l
o5

O3 (i41) gy

~ fo—1 Ix i i “@2ﬁx/371+k/:+; y
MX<'):,;< ; ) ;( ><9+1> Z /(, 9+1 ¢

~ fo—1 ~ [ 0 02 p2B—1+kp
t ol BxPB-1HRB
*;( . ) AZ;( )(0+1)Z /0 0r1 ¢

st

0xP (i+1) dx.

Let ¢ = Xﬂ and Ci.kj =

k
0\ 7
0+1) ji*

Eq. (13) can be rewritten as follows:

KBt

w7
M z:C,gc,/ —
w1 = Cia , 0+1

02 Plk+1)+j
e gy 4 Cyy / aie—Or(iJrl)dx’
Jo 0+1
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” F(Hﬁ(;;“)) Algorithm I. (mixture form of the Lindley distribution)
Mx(t) = Cixj :
OF T (0 ) () )
1. Generate U; ~ Unifrom(0,1),i = 1, ..., n;
L B42) 2. Generate V; ~ Exponential(0), i = 1, ...n;
o c r B 3. Gene/rate G; ~ Gamma(2,0), i = 1, ; n;
+ ki 7 O 4. 1f UY* < p =74 th tX—V“ th
6 1 J j+kp . j+B(k+2) p w0 €n se o erw1se
+ (9 /f)((z+1) (=5 )) set X; — G 77_1
r JHBk+1) r JHB(k+2)
My() = MLI Cuts (5 + (45=) O

) )

Quantile function

Let X denotes a random variable with the probability density
function (Eq. (8)). The quantile function, say Q(p), defined
by F(Q(p)) = p is the root of the equation

0o
[1+[?f£]aw{—mgwnﬂ~—l—ﬂ“, (14)
for 0 < p < 1. Substituting Z(p) = — 1 — 6 — [Q()I’, one

can rewrite Eq. (14) as

Z(p)exp{Z(p)} = —(1 + O)exp(=1 = 0)(1 = p'’*),
for 0 < p < 1. So, the solution for Z(p) is

Z(p) = W(=(1 + 0)exp(=1 = 0)(1 — p'*)), (15)

for 0 < p < 1, where W(.) is the Lambert W function, see Cor-
less et al. [11] for detailed properties. Inverting Eq. (15), one
obtains

/B
W(=(1+ O)exp(=1 = 0)(1 =p'™))|

(16)

1 1
o) = |-1-5-75

for 0 < p < 1. The particular case of Eq. (16) for (o = f = 1)
has been derived recently by Jodra [12].

Generation algorithms

Here, we consider simulating values of a random variable X
with the probability density function in Eq. (8). Let U denote
a uniform random variable on the interval (0,1). One way to
simulate values of X is to set

OxP
By — 1 _ /e
[l-l-l_'_e}exp{ Ox} 1-U""
and solve for X, i.e. use the inversion method. Using Eq. (16),
we obtain X as

1 1 1/B
X= {—1 -9 W[—(1+ 0)exp(—1 —0)(1 — Ul/“)]} ,
where W][.] denotes the Lambert W function. We propose three
different algorithms for generating random data from the
exponentiated power Lindley distribution:

Algorithm I1. (mixture form of the power Lindley distribution)

1. Generate U; ~ Unifrom(0,1), i = 1, ..., n;

2. Generate Y; ~ Weibul(0,),i =1, ... n;

3. Generate S; ~ GG(2 0,p),i=1,

4. 1f U}/“ < p=-L then set X; = Y 0therw1se

1+9=
set X; = Spi=1,...n

Algorithm III. (inverse cdf)

1. Generate U; ~ Unifrom(0,1), i = 1, ..., n;
2. Set

Xi:{—l—é—éW—(l—l—G)exP( 1-0)(1- ‘/“)]}W:

where W(.) denotes the Lambert W function.

Algorithm IV

1. Generate U; ~ Unifrom(0,1), i = 1, ..., n;
2. Solve numerically the following equation in v € (0, 1):

0+ 1)(1 - U}/‘“) —w[0+1—1Inv] =0.

3. Set X; = (=) /",

Maximum likelihood estimation of parameters

Let xi,..., x, be a random sample of size n from EPLD.
Then, the log-likelihood function is given by

L(a, B, 0) Zlnfx,

= n[ln (a) + In (B) + 21In(0)
+iln(l +x)+(B- 1)2":111 (x:)
- ezn:x,!’ + (2 — 1)_2":1nA,-(/;, 0). (17)

0P\ o1 .
i *X’. —
(1+0+1)e yi=1,...,n

—1In(0+1)]

where 4,(f,0) = [l
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The MLEs 0, B, o of 0, 8, o are then the solutions of the
following non-linear equations:

n(0+2) ;
30~ B.0 =5a51) Z’
(0‘71) i,()(ﬁ,()) _
oy |4 A,»(/Lé))]o’ (18)

9 . " xPIn(
9% L(a,8,0)= Z ﬁn+1 +Zl X;)

B - Alﬂﬂ(ﬂae)i
_O;xi.ln(x,)—i—(oz— 1); A (5.0) =0, (19)

0 —

i=1
where
A;0(B.0) = w — ™01+ 0)(1+ 0+ 0x) — 7],

s

Aip(B,0) = 8A;§/€7 D o in (x) 6(§i++11)

From (20) we can obtain the MLE of « as a function of (f, 0),
say a(f,0), where

n
> In Ai(B,0)”

Putting &(f,0) in (17), we obtain
2(B,0) = L[a(B,0),8,0) = C—nIny_[~In 4;(,0)]
i=1

4(p,0) = — (21)

_zn:lnA,-(ﬁ,e) +aln(B) +21n(0) —In(0+1)]

+iln(l+xf)+(/371)i1n(x,-)79ixf. (22)

Therefore, the MLE of f, 0, say BMLE, @MLE, can be obtained
by maximizing (22) with respect to § and 0.

For the three parameters exponentiated power Lindley dis-
tribution EPLD(0, f,a), all the second order derivatives exist.
Thus we have the inverse dispersion matrix is

0 0 ?ll I//\12 17|3
Bl~N{B| | Ve Vo Vil
& o Vai Vo Vi
Vi ... Vi "(?)z{)f e r‘})jrfy
V'=—E =-E| ..
9 P
V31 e V33 dT(fz e (,M'g
(23)
Eq. (23) is the variance covariance matrix of the EPLD(0, 5, %)
'L 'L 'L
Vi=— Vo= Vi=—-——r,
"2 "R 000 " 000a
'L 'L 'L
Vy = Vs = —+— V=

B = 9o o2

The second derivatives of £ can be derived as follows:

L _-n
Err
PrL 1 : n ", lg/xl : 2
o~ Z - x’*n+x1 e 3 Y(x.ﬁ TT))Z
Ly [4:(8,0).4,0(8,0) = [4,4(5,0)]]
[4:(8,0)7 7
N I S
00>~ | (+1)
Ly [4:(8,0) 4,2 (8, 0) - ulh 0)F] |
i=1 [Ai(ﬁ7 0)]

PL R Aipa(B,0)
B0 & Ai(p,0)

PL S Aiga(B,0)

9000 2= A,(B,0)
898/3 _Z‘ﬁ In (x
(0= 1)[A:(B,0)A105(B,0) — Aso(B. 0)Aip(B, 0)]
i Z 4.0 ’
where

)

B 70.\‘1/‘ (f
A (B,0) = (22 ) oot | (2 ) - (1420
' (0+1) (6+1) 0+1

2 2
(o)1

20xF —1
0+1

A2 (B,0)= 0x!In (x )260\/1{

b

B
. _ B o |0X + 0
Altlita(/i H) - Hxi In (x,)e 9 + 1
0x* 1
,/f 7(%( i
.00\ P> Xie Tl - ’
Aioa(,6) = (0+1 ) (0+1)°

Ai0(B,0) = xre ! In (x))

V] B s
Ox; i +9x, lz—é)xf Ox; 40 .
0+1 (0+1) 0+1

By solving this inverse dispersion matrix, these solution will
yield the asymptotic variance and co-variances of these ML
estimators for 0, ff and &. By using Eq. (23), approximately
100(1 — )% confidence intervals for 0, and « can be deter-
mined as

0£Z\/ Vi BEZn\ Ve a+Zp/ Vs,
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where Zy is the upper ath percentile of the standard normal
distribution.

Order statistics

Suppose Xi, X, ..., X, is a random sample from Eq. (8). Let
Xy < Xy < -+ < X, denote the corresponding order sta-
tistics. It is well known that the probability density function
and the cumulative distribution function of the kth order sta-
tistics, say ¥ = X, are given by

- C)ron-ror =20 (7)o,

J=k

respectively, for k = 1,2, ...,
(8) that

n. It follows from Egs. (7) and

o palyP (1) T -k ; 0yF o0 A=
ZAS e T Ty ;( j >(71y{17<1+0+]) ] '

n n—J n n—J Ox ; a(J+1)
=33 () )l ()]
J=k I=0 J I 0+1

The gth moment of Y can be expressed as

on!
EY) =05

Rr.(an)) +B(r+2)
r(es2) r(=5)

GRIERNGICED

where 4y = AT ( ‘vk)(oc(k—k{.')—l))(i)
(%y(_l)w_

Least square estimation

A/’,i,r

In this section, we provide the regression based method estima-
tors of the unknown parameters, which was originally sug-
gested by Swain et al. [13] to estimate the parameters of Beta
distributions. The method can be described as follows: Sup-
pose Xi, X5, ..., X, be a random sample of EPLD(0,f,x)
exponentiated power Lindley distribution with cdf F(x), and
suppose that X;, i = 1, 2, ..., n denote the ordered sample.
It is well known that
i

E[F(x)] e

(See, Johnson et al. 14). The least square estimators (LSES) are
obtained by minimizing

= E[P(X < x)] =

n

Q(Hv B, OC) =

i=0

[F(x(,.)) - ﬁ] ; (24)

with respect to the unknown parameters. Therefore, in the case
of EPL distribution the least square estimators of 0,  and «,
say (t)LSEy BLSE and &, s, respectively, can by obtained by min-
imizing the following equation

0.8,0 =5 [1- (1 Oty o, | 2 25
Q(v,[gﬂx)*; - +0+1 e _I’l+1 ’ ( )

with respect to 0, f and . To minimize equation (Eq. (25))
with respect to 0, f and «. We differentiate it with respect to
these parameters, which leads to the following equations

n Ox ﬁ_ o « i exﬁv 5 -1
1—11 i —0x, _ 1— (1 (i) —()\’
Z;H < +6+1> el AUEST A
x{e ”‘f[( +0)(1+0+0xf)) - | } =0, (26)
n Ox /f. ot * i ox" ] !
_ i —0x, _ _ (i) 79.\‘(1)
Z}:Hl <1+0+1> | i\ )

n+
0 xﬁ, +1
« [exf; 0 tn (x;y) (W)] ~0, 27)

n (.) ﬁ « .
-1+ 0 670% _ !
— 0+1 n+1
ox! o ’ 0x))\ g
1- 1+0+1 "0 [ x1In 1+0+1 0] =0. (28)

By solving this nonlinear system of Egs. (26)—(28), this solution
will yleld the LSE estimators 0LSE7 ﬁLSE and &LSE«

Data analysis

In this section we provide a data analysis in order to assess the
goodness-of-fit of EPL model with respect to maximum flood
levels data to see how the new model works in practice. The
data have been obtained from Dumonceaux and Antle [15].

We fit the EPL distribution to the real data set and compare
its fitting with some usual survival distributions. Namely,

i. The modified Weibull (MW) distribution [16] with pdf
given by

fx) = (0+apxPNe ™" x>0, 0, B, x>0,
where a and f§ are the shape parameters and 6 is the scale
parameter.

ii. The exponentiated exponential (EE) distribution [17]

with pdf given by
fx) = (0pe™™) (1

where 6 is the scale parameter and /3 is a shape parameter
(see Table 1).
iii. The Weibull (W) distribution with pdf given by

x>0,

—e 0, p>0,

fx) = (0" Ne ™, x>0, 0, f>0.
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Since the power Lindley (PLD), generalized Lindley (GLD)
and Lindley (LD) distributions are special cases of the expon-
entiated power Lindley distribution, we fit them to these data
as well. The analysis of least square estimates for the unknown
parameters in the seven fitted distributions by using the
method of least squares, is defined. The LSE(s) of the
unknown parameter(s), coefficient of determination (R*) and
the corresponding Mean square error of the distributions men-
tioned before are given in Table 2.

It is clear that the exponentiated power Lindley (EPLD)
distribution provides better fit than the other distributions.
Another check is to compare the respective coefficients of
determination for these regression lines. We have supporting
evidence that the coefficient of determination of (EPLD) is
0.975, which is higher than the coefficient of determination
(R? of (PLD), (GLD), (LD), (EE), (MW) and (WD) distribu-
tions. Hence the data point from the exponentiated power
Lindley distribution (EPLD) has better relationship and hence
this distribution is good model for life time data.

As a second application, we analyze a real data set on the
active repair times (h) for an airborne communication trans-
ceiver. The data are given in Table 3, and their source is Jorgen-
sen [18]. In order to compare distributions we consider the
—LOG = —log L(, 8, 0) values, the Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC), which are
defined, respectively, by —2LOG + 2¢g and —2LOG + glog(n),
where (&, f8, 0) are the MLEs vector, ¢ is the number of param-
eters estimated and n is the sample size. The best distribution
corresponds to lower —LOG, AIC and BIC values. Table 4
shows the values of the AIC, BIC and —LOG, and also the
Kolmogorov—Smirnov statistic with their p values. Table 5
shows the parameter MLEs according to each one of the seven
fitted distributions. The values of AIC, BIC, —LOG and K-S
statistic with their p value in Table 4, indicate that the EPLD
distribution is a strong competitor to other distributions com-
monly used in literature for fitting lifetime data, moreover
being the best fitting considering AIC, BIC, —LOG and K-S
criterion.

Simulation study

We used a simulation study to investigate the performance of
the accuracy of point and interval estimates of the EPL(a., f3, 6).
The following steps are as follows:

1. Specify the values of the parameters o, ffand 0;
2. Specify the sample size n;
3. Use Algorithm IV to generate a random sample with size n
from EPL(x,f3,6).
a. Calculate the MLE of the three parameters and the
inverse of the Fisher matrix.
b. Calculate the squared deviation of the MLE from the
exact value of each parameter.
c. Calculate a 95% CI for each parameter.

Table 1 Maximum flood levels data from Dumonceaux and
Antle [15].

0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.3235
0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 0.265

Table 2 Estimated parameters of EPLD, PLD, GLD, LD and
WD distributions.

Distribution 6 p o MSE R
EPLD 11.465 0.774 131.759  0.00224  0.975
PLD 50.001 4.69 = 0.003 0.964
GLD 10.884 - 36.675  0.00244  0.970
LD 2.353 - - 0.036 0.551
EE 9.011 24.385 - 0.00277  0.967
MW 0.0365 0.05 0.219  0.0034 0.963
WD 49.025 4.69 - 0.003 0.964
Table 3 Active repair times (h).

0.50 0.60 0.60 0.70 0.70 0.70 0.80  0.80
1.00 1.00 1.00 1.00 1.10 1.30 1.50 1.50
1.50 1.50 2.00 2.00 220 250 270 3.00
3.00 3.30 4.00 4.00 4.50 4.70 5.00 5.40
5.40 7.00 7.50 880 9.00 10.20 22.00 24.50

4. Repeat steps 2-3, N times;

5. Calculate the mean square error (MSE), the average of the
confidence interval widths, and the coverage probability for
each parameter. The MSE associated with MLE of the
parameter ¥, MSEy, is

N

MSE, = lNZ(é,. - 19)

i=l

2
where 1§,- is the MLE of ¢ using the ith sample, i = 1,2, ...
, N, and ¥ = o, f, 0. Coverage probability is the propor-

tion of the N simulated confidence intervals which include
the true parameter .

Table 4 Comparison criterion.

Model AIC BIC —LOG K-S statistic p-Value
EPLD  186.5721 191.6387 90.2861 0.0909 0.8627
PLD 195.8854  199.2631 95.9427 0.1596 0.4092
GLD 199.8218  203.1995 97.9109 0.1410 0.4362
LD 198.5826  201.2715 98.7913 0.1907 0.3424
EE 1949158  198.2936 95.4579 0.1334 0.4896
MW 195.4046  200.4713 94.7023 0.1631 0.4004
WD 195.0227  198.4005 95.5114 0.1540 0.3782
Table 5 Parameters MLES.

Distribution 0 B o
EPLD 3.5472 0.2901 30.8299
PLD 0.5867 0.7988 -
GLD 0.3588 - 0.7460
LD 0.4242 - -

EE 0.2678 - 1.1137
MW 0.3037 1.7269 0.0106
WD 0.2688 0.9604 -
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Table 6 MSE, coverage probability, and average width.

o ﬂ 0 n MSEM MSE/; MSE[) CPJ A Wa( CPﬁ A W/} CP() A W()
1.5 1 1 25 1.053 0.035 0.060 0.957 4.126 0.955 0.669 0.949 0.886
50 0.365 0.015 0.029 0.954 1.430 0.953 0.458 0.954 0.609

75 0.206 0.009 0.016 0.952 0.808 0.949 0.369 0.956 0.493

100 0.141 0.006 0.012 0.955 0.552 0.951 0.318 0.949 0.425

1 2 0.1 25 0.285 0.058 0.017 0.962 1.118 0.953 0.866 0.926 0.481
50 0.092 0.024 0.008 0.956 0.362 0.953 0.594 0.934 0.339

75 0.056 0.015 0.005 0.955 0.218 0.955 0.481 0.940 0.277

100 0.040 0.012 0.004 0.951 0.156 0.955 0.414 0.945 0.239

1 0.6 2 25 0.187 0.009 0.063 0.960 0.734 0.955 0.336 0.942 0.888
50 0.062 0.004 0.025 0.954 0.244 0.955 0.229 0.954 0.608

75 0.038 0.002 0.015 0.953 0.150 0.956 0.185 0.952 0.492

100 0.026 0.001 0.012 0.955 0.100 0.954 0.159 0.953 0.426

0.8 0.2 10 25 0.450 0.003 1.471 0.958 5.150 0.932 0.135 0.947 3.941
50 0.201 0.002 0.506 0.952 1.669 0.938 0.092 0.948 2.505

75 0.123 0.001 0.295 0.955 0.947 0.942 0.074 0.947 1.976

100 0.094 0.001 0.198 0.951 0.645 0.952 0.064 0.951 1.679

1 0.88 1.2 23 0.078 0.036 0.089 0.962 0.160 0.950 0.674 0.955 1.075
50 0.036 0.015 0.038 0.957 0.056 0.952 0.457 0.952 0.735

75 0.024 0.009 0.024 0.955 0.033 0.952 0.368 0.954 0.594

100 0.014 0.007 0.017 0.951 0.018 0.948 0.318 0.952 0.510

1 0.9 1.5 25 0.151 0.063 0.175 0.963 0.652 0.953 0.875 0.960 1.415
50 0.075 0.025 0.065 0.959 0.231 0.951 0.596 0.953 0.945

75 0.050 0.016 0.040 0.956 0.137 0.959 0.481 0.953 0.759

100 0.036 0.012 0.029 0.950 0.072 0.954 0.414 0.955 0.652

0.05 2 2 25 0.064 0.144 0.060 0.962 0.135 0.952 1.342 0.943 0.883
50 0.028 0.061 0.026 0.956 0.049 0.947 0.916 0.945 0.608

75 0.020 0.037 0.016 0.950 0.030 0.953 0.740 0.950 0.492

100 0.014 0.028 0.012 0.949 0.017 0.949 0.638 0.951 0.424

0.09 3 1 25 0.072 0.148 0.092 0.965 0.161 0.951 1.344 0.949 1.076
50 0.033 0.061 0.038 0.955 0.057 0.952 0.916 0.952 0.734

75 0.019 0.038 0.024 0.955 0.032 0.949 0.738 0.949 0.593

100 0.012 0.028 0.017 0.950 0.018 0.947 0.636 0.954 0.509

The simulation study is used when N = 10,000, the sample
sizes are 25, 50, 75, 100, and the parameters values
(o, 5,0) = (1.5, 1, 1), (1, 2, 0.1), (1, 0.6, 2), (0.8, 0.2, 10),
(1, 0.88, 1.2), (1, 0.9, 1.5), (0.05, 2, 2), (0.09, 3, 1). Some
of the selected values of (o, 8, 0) give increasing, decreasing,
increasing—decreasing—increasing, bath tub hazard shapes,
respectively as shown in Fig. 2. Table 6 presents the
MSE, Coverage probability (CPy), and average width
(AW) of 95% confidence intervals of each parameter. As
it was expected, this table shows that the MSEs of the esti-
mates decrease as the sample size increases, that the cover-
age probabilities are very close to the nominal level of
95%, and that the average widths decrease as the sample
size increases.

Conclusion

In this study we have proposed a new family of distributions
called exponentiated power Lindley distribution (EPLD). We
get the probability density functions for generalized Lindley,
Power Lindley, and Lindley distributions as special cases from
ELPD. Some mathematical properties along with estimation
issues are addressed. The hazard rate function behavior of
the exponentiated power Lindley distribution shows that the

subject distribution can be used to model reliability data. We
derived the maximum likelihood estimates of the parameters
and their variance covariance matrix. A real data application
of the EL distribution shows that it could provide a better fit
than a set of usual statistical distributions considered in life-
time data analysis. Finally, we examined the accuracy of the
maximum likelihood estimators of the EPL(x, 5, ) parameters
as well as the coverage probability and average width of the
confidence intervals for the parameters using simulation.
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