Stochastic Processes and their Applications 61 (1996) 45-69

Transition probabilities for the simple random walk on the Sierpinski graph

Owen Dafydd Jones
School of Mathematics and Statistics, University of Sheffield, Sheffield Slo 2UN, UK

Received January 1995; revised September 1995

Abstract

Non-Gaussian upper and lower bounds are obtained for the transition probabilities of the simple random walk on the Sierpinski graph, the pre-fractal associated with the Sierpinski gasket. They are of the same form as bounds previously obtained for the transition density of Brownian motion on the Sierpinski gasket, subject to a scale restriction. A comparison with transition density bounds for random walks on general graphs demonstrates that this restriction represents the scale at which the pre-fractal graph starts to look like the fractal gasket.

AMS 1991 Subject Classification: 60.J15
Keywords: Random walk; Fractal; Transition probability

1. Introduction

Barlow and Perkins (1988) obtained the following bounds on the transition density $b_{t}(x, y)$ of Brownian motion on the infinite Sierpinski gasket G

$$
\begin{gather*}
c_{1} t^{-d_{\mathrm{s}} / 2} \exp \left\{-c_{2}\left(|x-y|^{d_{\mathrm{w}}} / t\right)^{1 /\left(d_{\mathrm{w}}-1\right)}\right\} \leqslant b_{t}(x, y) \\
\leqslant c_{3} t^{-d_{\mathrm{s}} / 2} \exp \left\{-c_{4}\left(|x-y|^{\left.\left.d_{\mathrm{w}} / t\right)^{1 /\left(d_{\mathrm{w}}-1\right)}\right\}}\right.\right. \tag{1}
\end{gather*}
$$

where c_{1}, \ldots, c_{4} are positive constants, $d_{\mathrm{s}}=2 \log 3 / \log 5$ is the spectral dimension of $G, d_{\mathrm{w}}=\log 5 / \log 2$ is the random-walk dimension of G, x and $y \in G$ and $t>0$.

It has been reasonably assumed, though not proven, that the transition probabilities of the simple random walk on the Sierpinski graph G_{0} satisfy similar bounds. In this paper we show that this is indeed the case, for large time. For the continuous time walk we get the following (Theorems 8 and 16 . The analogous result for the discrete time walk is given by Theorems 17 and 18): if $p_{t}(x, y)$ is the transition density of the simple random walk on the Sierpinski graph G_{0}, then there exist positive constants c_{0}, \ldots, c_{4} such that for all $t>c_{0}|x-y|$

$$
\begin{align*}
& c_{1} t^{-d_{5} / 2} \exp \left\{-c_{2}\left(|x-y|^{\left.\left.d_{w} / t\right)^{1 /\left(d_{w}-1\right)}\right\} \leqslant p_{t}(x, y)}\right.\right. \\
& \leqslant c_{3} t^{-d_{s} / 2} \exp \left\{-c_{4}\left(|x-y|^{d_{w}} / t\right)^{1 /\left(d_{w}-1\right)}\right\} \tag{2}
\end{align*}
$$

where d_{s} and d_{w} are as before.

Fig. 1. The Sierpinski gasket G (detail).

Fig. 2. The Sierpinski graph G_{0} (detail).

A comparison of these bounds with some general transition density bounds is given in Section 6. This comparison demonstrates that the range $t>c_{0}|x-y|$ is the right one, and represents the scale at which - from the point of view of the random walk - the fractal-like structure of the graph G_{0} becomes apparent. This restriction appears because, while any given triangle within G_{0} can be compared with arbitrarily larger triangles, it cannot be compared with arbitrarily smaller triangles, as is the case with G. That is, the graph is only partially self-similar. G and G_{0} are illustrated in Figs. 1 and 2, and a definition of G_{0} is given below.

Bounds analogous to (1) have previously been found for the transition density of Brownian motion in a variety of fractal spaces: see Barlow and Bass (1992), Fitzsimmons et al. (1994), Hambly (1992) and Kumagai (1993). In each case, the nonGaussian nature of the transition density stems directly from the self-similarity of the given fractal. The bounds (2) are, as far as the author is aware, the first of this sort to be found for a random walk on a graph.

We will proceed by firstly bounding the resolvent density of the process, then converting these bounds into bounds on the transition density. The upper bound can then be refined by decomposing the set of sample paths of the process, to allow a separate treatment of space and time parameters, while a refinement of the lower bound is achieved by a chaining argument, linking a number of primitive bounds to produce a somewhat better large time bound.

1.1. Notation and definitions

Let G_{0} be the doubly infinite Sierpinski graph, it is defined as follows. Let

$$
V_{0}=\{(0,0),(1,0),(1 / 2, \sqrt{3} / 2)\}
$$

and

$$
E_{0}=\{\{(0,0),(1,0)\},\{(0,0),(1 / 2, \sqrt{3} / 2)\},\{(1,0),(1 / 2, \sqrt{3} / 2)\}\} .
$$

Now, recursively define $\left(V_{1}, E_{1}\right),\left(V_{2}, E_{2}\right),\left(V_{3}, E_{3}\right), \ldots$ by

$$
V_{n+1}=V_{n} \cup\left[\left(2^{n}, 0\right)+V_{n}\right] \cup\left[\left(2^{n-1}, 2^{n-1} \sqrt{3}\right)+V_{n}\right]
$$

and

$$
E_{n+1}=E_{n} \cup\left[\left(2^{\prime \prime}, 0\right)+E_{n}\right] \cup\left[\left(2^{n-1}, 2^{n-1} \sqrt{3}\right)+E_{n}\right],
$$

where $(x, y)+S:=\{(x, y)+s: s \in S\}$. Let $V=V_{\infty} \cup\left[-V_{\infty}\right]$ and $E=E_{\infty} \cup\left[-E_{\infty}\right]$ then $G_{0}:=(V, E)$. For any $m \in \mathbb{Z}$, define $G_{m}=2^{m} G_{0}$ and note that for $m \geqslant 0$, $2^{m} V \subset V$.

For any graph $G=(V, E)$, we will write $x \in G$ if $x \in V$ and $A \subset G$ if A is a maximal subgraph of G. Also, when there is no ambiguity of meaning, we will identify a graph with its vertex set and vice versa.

We consider two processes on G_{0} :

$$
\begin{aligned}
& X=\left\{X_{n}\right\} \text { the simple random walk on } G_{0} \text { and } \\
& Y=\left\{Y_{i}\right\} \text { the continuous time version of } X \text { using } \exp (1) \text { jump times. }
\end{aligned}
$$

For $A \subset G_{0}$ define hitting times

$$
\begin{aligned}
& T_{A}^{X}=\inf \left\{n \geqslant 0: X_{n} \in A\right\}, \\
& T_{A}^{Y}=\inf \left\{t \geqslant 0: Y_{t} \in A\right\},
\end{aligned}
$$

where unambiguous the X or Y superscript will be dropped. Also, if $A=\{x\}$ then we will write T_{x} instead of $T_{\{x\}}$.

For $0 \leqslant \theta \leqslant 1$ and $\lambda \geqslant 0$ let

$$
\begin{aligned}
& T_{\theta}^{X} \sim \operatorname{geom}(1-\theta) \text { independently of } X, \\
& T_{\lambda}^{Y} \sim \exp (\lambda) \text { independently of } Y .
\end{aligned}
$$

Allowing $\theta=1$ and $\lambda=0$ requires the trivial generalisation of appending ∞ to the appropriate state spaces.

For $m \in \mathbb{Z}_{+}$we will mean by a 2^{m} triangle a maximal subgraph of G_{0} whose vertices consist of three adjacent G_{m} points and all those G_{0} points between them. Also, for any $A \subset G_{0}, \partial A$ will be used to denote those points in A adjacent to some point not in A and int A will be used to denote $A \backslash \partial A$. For $x \in G_{m}$, let $\triangle \triangle_{m}(x)$ be the pair of 2^{m} triangles with common vertex x. For $x \in G_{0}$, let $\triangle_{m}(x)$ be a 2^{m} triangle containing

Fig. 3. $D_{m}(x)$ (with $\triangle_{m}(x)$ shaded).

Fig. 4. Typical $\triangle_{k-1}(x), \triangle_{k}(x)$ and $\triangle_{k+1}(x)$.
x and $D_{m}(x)=\bigcup_{y \in \partial \Delta_{m}(x)} \triangle \triangle_{m}(y)$. See Figs. 3 and 4. For $x \in G_{m}$ there will be two 2^{m} triangles containing x, in which case we may choose $\triangle_{m}(x)$ to be either of the two.

The spectral, random walk and fractal dimensions of G and G_{0} are denoted $d_{\mathrm{s}}=$ $2 \log 3 / \log 2, d_{\mathrm{w}}=\log 5 / \log 2$ and $d_{\mathrm{f}}=\log 3 / \log 2$, respectively. Note that they satisfy the so-called Einstein relation, $d_{\mathrm{s}}=2 d_{\mathrm{f}} / d_{\mathrm{w}}$. Finally, the symbols c_{1}, c_{2}, c_{3}, etc. are used generically throughout for positive constants. Any other notation we need will be introduced as it arises.

2. Resolvent densities

We will consider firstly the process Y. Let P_{t}^{A} be the transition operator of the process killed on exiting $A \subset G_{0}$ and let U_{λ}^{A} be its resolvent operator. Denote by $p_{t}^{A}(\cdot, \cdot)$ and
$u_{\lambda}^{4}(\cdot, \cdot)$ their respective densities. We have

$$
\begin{aligned}
& P_{t}^{A} f(x)=E^{x}\left(f\left(Y_{t}\right) ; t<T_{A^{c}}\right)=\sum_{y \in A} p_{t}^{A}(x, y) f(y), \\
& U_{i}^{A} f(x)=E^{x} \int_{0}^{T_{A^{c}}} \mathrm{e}^{-i s} f\left(Y_{s}\right) \mathrm{d} s=\sum_{y \in A} u_{i}^{A}(x, y) f(y)
\end{aligned}
$$

and

$$
u_{i}^{A}(x, y)=\int_{0}^{\infty} \mathrm{e}^{-\lambda s} p_{s}^{A}(x, y) \mathrm{d} s
$$

Let μ be counting measure on G_{0}, then it is clear that P_{t}^{4} and U_{i}^{A} are μ-symmetric in G_{0}. That is, $p_{t}^{A}(x, y)=p_{t}^{A}(y, x)$ and $u_{\lambda}^{A}(x, y)=u_{i}^{A}(y, x)$.

Write u_{λ} for $u_{\lambda}^{G_{0}}$ and u_{A} for u_{0}^{A}. Our immediate goal is to obtain bounds for $u_{j}(x, x)$. This is done by obtaining bounds on $u_{D_{m}(x)}(x, x)$ and the P^{x} law of $T_{D_{m}(x)^{c}}$ and then showing that when $T_{D_{m}(x) c}$ and T_{i} are of the same order of magnitude so are $u_{D_{m}(x)}(x, x)$ and $u_{i}(x, x)$.

2.1. Bounding $u_{D_{m}(x)}(x, x)$

Let L_{t}^{x} be local time for Y, then for any $A \subset G_{0}$ and $\lambda \geqslant 0$

$$
u_{\lambda}^{4}(x, y)=E^{x} L_{T_{4} \wedge}^{y} \wedge I_{i}
$$

As G_{0} is discrete, L_{t}^{x} is just the amount of time Y spends in x up to time t. Thus $u_{D_{m}(x)}(x, x)$ is just the P^{x}-expected time Y spends in x before leaving $D_{m}(x)$.

It is clear from the structure of G_{0} (in particular, that it is finitely ramified and partially self-similar) that for $x \in G_{m}$

$$
\begin{align*}
E^{x} \int_{0}^{T_{i} \Delta \Delta_{m(t)}} L_{\mathrm{d} t}^{x} & =E^{x} \int_{0}^{T_{i \Delta \Delta_{1}(t)}} L_{\mathrm{d} t}^{x} \cdot E^{x} \int_{0}^{T_{i \Delta \Delta_{n-1}} l^{\prime \prime \prime}} L_{\mathrm{d} t}^{x} \\
& =\frac{5}{3} E^{x} \int_{0}^{T_{i} \Delta \Delta_{m-1}(w)} L_{\mathrm{d} t}^{x} \\
& =\left(\frac{5}{3}\right)^{m} . \tag{3}
\end{align*}
$$

Thus, conditioning on $Y_{T_{i} \Delta \Delta_{m}(\stackrel{)}{ }}$, we get for any $x, y \in G_{m}$ such that $\triangle \triangle_{m}(x) \subset A \subset G_{0}$

$$
\begin{align*}
u_{A}(x, y) & =E^{x} \int_{0}^{T_{A} c} L_{\mathrm{d} t}^{y} \\
& =\delta(x, y)\left(\frac{5}{3}\right)^{m}+\frac{1}{4} \sum_{z \in \partial \Delta \Delta_{m(x)}} u_{A}(z, y) . \tag{4}
\end{align*}
$$

Note that, even if $\triangle \triangle_{m}(x) \not \subset A$ we still have

$$
\begin{equation*}
u_{A}(x, y) \leqslant \delta(x, y)\left(\frac{5}{3}\right)^{m}+\frac{1}{4} \sum_{z \in \partial \Delta \Delta_{m}(x)} u_{A}(z, y) . \tag{5}
\end{equation*}
$$

We can rephrase (3) as $u_{\text {int }} \Delta \Delta_{m}(x)(x, x)=\left(\frac{5}{3}\right)^{m}$, so the following lemma should come as no surprise. Essentially, it is saying that the process Y cannot get stuck inside G_{m} triangles.

Lemma 1. There exist positive constants c_{1} and c_{2} such that for all $x \in G_{0}$

$$
c_{1}\left(\frac{5}{3}\right)^{m} \leqslant u_{D_{m}(x)}(x, x) \leqslant c_{2}\left(\frac{5}{3}\right)^{m} .
$$

Proof. (i) Lower bound: Choose some arbitrary $a \in \partial \triangle_{m}(x)$ then, noting that $u_{D_{m}(x)}(a, x)=P^{a}\left(T_{x}<T_{D_{m}(x)}\right) u_{D_{m}(x)}(x, x)$, we have

$$
\begin{aligned}
u_{D_{m}(x)}(x, x) & \geqslant u_{D_{m}(x)}(a, x) \\
& =u_{D_{m}(x)}(x, a) \\
& =\sum_{z \in \partial \Delta_{m}(x)} P^{x}\left(Y_{T_{i \Delta \Delta_{m}(x)}}=z\right) u_{D_{m}(x)}(z, a)
\end{aligned}
$$

and from (4)

$$
\begin{aligned}
u_{D_{m}(x)}(z, a) & =\frac{1}{4} \sum_{y \in \partial \triangle \Delta_{m}(z)}\left(\delta(z, a)\left(\frac{5}{3}\right)^{m}+u_{D_{m}(x)}(y, a)\right) \\
& \geqslant c_{1}\binom{5}{3}^{m}
\end{aligned}
$$

since if $z \neq a$ then $a \in \partial \triangle \triangle_{m}(z)$.
(ii) Upper bound: Consider

$$
\begin{aligned}
u_{D_{m}(x)}(x, x) & =E^{x} \int_{0}^{T_{\left.D_{m}(t)\right)^{c}}} L_{\mathrm{d} t}^{x} \\
& =\sum_{k=1}^{m} E^{x} \int_{T_{i \Delta_{k-1}(x)}}^{T_{i} \Delta_{k}(t)} L_{\mathrm{d} t}^{x}+E^{x} \int_{T_{i \Delta_{m}(x)}}^{T_{\left.D_{m}(t)\right)^{c}}} L_{\mathrm{d} t}^{x}
\end{aligned}
$$

Now

$$
\begin{aligned}
E^{x} \int_{T_{i} \Delta_{m}(x)}^{T_{D_{m}(x) \mathrm{e}^{\mathrm{c}}}} L_{\mathrm{d} t}^{x} & \leqslant \sup _{z \in \partial \Delta_{m}(x)} u_{D_{m}(x)}(z, x) \\
& \leqslant \sup _{z \in \partial \Delta_{m}(x)} u_{D_{m}(x)}(z, z) \\
& \leqslant c_{2}\left(\frac{5}{3}\right)^{m},
\end{aligned}
$$

since $E^{z} \int_{0}^{T_{i} \Delta \Delta_{m(\varepsilon)}} L_{\mathrm{d} f}^{z}=\left(\frac{5}{3}\right)^{m}$ and we can bound the expected number of 2^{m} stcps the process makes from any $z \in \partial \triangle_{m}(x)$ before exiting $D_{m}(x)$. Similarly,

$$
\begin{aligned}
E^{x} \int_{T_{i \Delta_{k-1}(x)}}^{T_{i \Delta_{k}(1)}} L_{\mathrm{d} t}^{x} & \leqslant \sup _{z \in \partial \Delta_{k-1}(x)} u_{\text {int }} \Delta_{k}(x)(z, x) \\
& \leqslant \sup _{z \in \partial \Delta_{k-1}(x)} u_{\text {int }} \Delta_{k}(x)(z, z) \\
& \leqslant c_{3}\left(\frac{5}{3}\right)^{k-1},
\end{aligned}
$$

since $E^{z} \int_{0}^{T_{\wedge \wedge \Delta_{k-1}}^{(-)}} L_{\mathrm{d} t}^{z}=\left(\frac{5}{3}\right)^{k-1}$ and we can bound the expected number of 2^{k-1} steps the process makes from any $z \in \partial \triangle_{k-1}(x)$ before hitting $\partial \triangle_{k}(x)$.

Note that these bounds can in fact be deduced directly from Barlow and Perkins (1988). For let Z be Brownian motion on the Sierpinski gasket, with local time process $L_{t}^{x}(Z)$. Define $\tau(t)=\inf \left\{s: \sum_{x \in G_{0}} L_{s}^{x}(Z)>t\right\}$ then (modulo a deterministic linear rescaling of time) the process $\left\{Z_{\tau(t)}\right\}$ is equal in law to Y. Markov process theory now tells us that the potential kernel of Y killed on exiting $D_{m}(x)$ is proportional to the restriction to $G_{0} \cap D_{m}(x)$ of the potential kernel of Z killed on exiting $D_{m}(x)$. Thus the Barlow and Perkins estimate of the latter kernel allows one to directly read off the bounds on $u_{D_{m}(x)}$ of Lemma 1, as well as the bounds on u_{A} given in Lemmas 9-11 below.

2.2. The P^{r} law of $T_{D_{m}(x)^{x}}$

It is known that, given $X_{0}=0,5^{-m} T_{\hat{\delta} \triangle_{m}(0)}^{X}$ converges in distribution to an absolutely continuous r.v. W such that

$$
P^{0}(W<t) \leqslant c_{1} \exp \left\{-c_{2} t^{-1 /\left(d_{w}-1\right)}\right\}
$$

where c_{1} and c_{2} are positive constants. The result comes from the embedded branching process and is given in Barlow and Perkins (1988, Corollary 3.3). We use this branching process in the following two lemmas.

Lemma 2. There exist positive constants c_{1} and c_{2} such that for any $m \geqslant 0, x \in G_{m}$ and $n \geqslant 0$

$$
P^{x}\left(T_{\lambda \Delta \triangle_{m}(x)}^{X} \leqslant n\right) \leqslant c_{1} \exp \left\{-c_{2}\left(5^{-m} n\right)^{-1 /\left(d_{w}-1\right)}\right\}
$$

Proof. The G_{m} decimation of X is obtained by observing X on G_{m}, discounting sequential visits to the same point. Call this random walk X^{m}. It follows from the structure of G_{0} (in particular, that it is finitely ramified and partially self-similar) that $X^{m} \stackrel{\mathcal{D}}{=} 2^{m} X$ for all $m \geqslant 0$. Because of this X is often termed 'decimation invariant'.

If we allow for negative values of m, it is not hard to show that we can construct a sequence of random walks $X=X^{0}, X^{-1}, X^{-2}, \ldots$ defined on $G_{0}, G_{-1}, G_{-2}, \ldots$, such that for any $0 \leqslant m \leqslant n, 2^{m} X^{-m} \stackrel{D}{=} 2^{n} X^{-n} \stackrel{\mathcal{D}}{=} X$ and X^{-m} is the G_{-m} decimation of X^{-n}. Moreover, taking $X_{0}=0,\left\{T_{\partial \triangle \Delta_{o}(\theta)}^{X^{-m}}\right\}_{m=0}^{\infty}$ is a supercritical branching process with offspring distribution given by the p.g.f.

$$
f(u)=E^{0} u^{T_{i \Delta \Delta_{0}(0)}^{\gamma^{-1}}}=\frac{u^{2}}{4-3 u}
$$

thus, as $f^{\prime}(1)=5$ and $f^{\prime \prime}(1)<\infty$, given $X_{0}=0$

$$
W_{m}:=5^{-m} T_{\partial \Delta \triangle_{0}(0)}^{X^{-m}} \xrightarrow{\text { a.s. } \mathcal{C}^{2}} W \text { as } m \rightarrow \infty
$$

Now let $\phi_{m}(u)=\mathrm{E}^{-u W_{m}}$ and $\phi(u)=\mathrm{E}^{-u W}$ then $\phi_{m}(u)=f\left(\phi_{m-1}(u / 5)\right)$ and as the W_{m} converge, $\phi_{m}(u) \rightarrow \phi(u)$ for all u. In fact, $\phi_{m}(u) \uparrow \phi(u)$, for by Jensen's inequality

$$
\phi_{1}(u)=\mathrm{E}^{-u W_{1}} \geqslant \mathrm{e}^{-u \mathrm{E} W_{1}}=\mathrm{e}^{-u}=\phi_{0}(u)
$$

and assuming $\phi_{m}(u) \geqslant \phi_{m-1}(u)$

$$
\phi_{m+1}(u)=f\left(\phi_{m}(u / 5)\right) \geqslant f\left(\phi_{m-1}(u / 5)\right)=\phi_{m}(u)
$$

noting that f is increasing. Now from Barlow and Perkins (1988) Proposition 3.1, we have positive constants c_{1} and c_{2} such that $\phi(u) \leqslant c_{1} \exp \left\{-c_{2} u^{1 / d_{w}}\right\}$. So, for any $u>0$

$$
\begin{aligned}
P^{0}\left(W_{m}<t\right) & =P^{0}\left(\mathrm{e}^{-u W_{m}}>\mathrm{e}^{-u t}\right) \\
& \leqslant \mathrm{e}^{u t} \phi_{m}(u) \quad \text { Chebychev's inequality } \\
& \leqslant c_{1} \exp \left\{u t-c_{2} u^{1 / d_{w}}\right\}
\end{aligned}
$$

Minimising the RHS in u gives at $u=c_{3} t^{-d_{\mathrm{w}} /\left(d_{\mathrm{w}}-1\right)}$

$$
P^{0}\left(W_{m}<t\right) \leqslant c_{1} \exp \left\{-c_{4} t^{-1 /\left(d_{w}-1\right)}\right\}
$$

The result now follows on noting that for $x \in G_{m},\left(W_{m} \mid X_{0}=0\right) \stackrel{\mathcal{D}}{=} W_{m}^{X}(x):=$ $\left(5^{-m} T_{\partial \Delta \triangle_{m}(x)}^{X} \mid X_{0}=x\right)$.

Lemma 3. There exist positive constants c_{0}, c_{1} and c_{2} such that for any $m \geqslant 0, x \in$ G_{m} and $t \geqslant c_{0} 2^{m}$

$$
P^{x}\left(T_{\partial \Delta \Delta_{m}(x)}^{Y}<t\right) \leqslant c_{1} \exp \left\{-c_{2}\left(5^{-m} t\right)^{-1 /\left(d_{w}-1\right)}\right\}
$$

Proof. Put $W_{m}^{Y}(x)=5^{-m} T_{\partial \Delta \Delta_{m}(x)}^{Y}$ and $\phi_{m}^{Y}(u)=E^{x} \mathrm{e}^{-u W_{m}^{Y}(x)}$, then conditioning on $T_{\hat{\partial} \Delta \Delta_{m}(x)}^{X}$ we get $\phi_{m}^{Y}(u)=\phi_{m}\left(5^{m} \log \left(1+5^{-m} u\right)\right)$. It is easily shown that $\phi_{m}^{Y}(u)=$ $f\left(\phi_{m-1}^{Y}(u / 5)\right)$ and $\phi_{m}^{Y}(u) \rightarrow \phi(u)$. However,

$$
\phi_{1}^{Y}(u)=\frac{1}{1+u+4 u^{2} / 25} \leqslant \frac{1}{1+u}=\phi_{0}^{Y}(u),
$$

so by induction $\phi_{m}^{Y}(u) \downarrow \phi(u)$. (Recall that in the discrete case $\phi_{m}(u) \uparrow \phi(u)$.) This is because for the continuous time process the distribution of $W_{m}^{Y}(x)$ becomes more and more concentrated as $m \rightarrow \infty$, while for the discrete-time process the opposite is happening.

Now if $5^{-m} u \leqslant c_{1}$ for some $c_{1}>0$, then $5^{m} \log \left(1+5^{-m} u\right) \geqslant c_{2} u$ for some $c_{2}>0$ and so as $\phi_{m}(\cdot)$ is decreasing, $\phi_{m}^{Y}(u) \leqslant \phi_{m}\left(c_{2} u\right)$ and we can proceed as in Lemma 2 to show that

$$
P^{x}\left(W_{m}^{Y}(x)<t\right) \leqslant c_{3} \exp \left\{-c_{4} t^{-1 /\left(d_{w}-1\right)}\right\}
$$

provided that the crucial value $c_{5} t^{-d_{w} /\left(d_{\mathrm{w}}-1\right)}$ of u satisfies $5^{-m} u \leqslant c_{1}$. That is, provided $t \geqslant c_{6} 5^{-m\left(d_{w}-1\right) / d_{w}}$. Multiplying this by 5^{m} gives the required restriction.

Observe that as $W_{m}^{Y}(0) \xrightarrow{\mathcal{D}} W$ and W is non-negative and absolutely continuous, for any $\delta>0$ we can find an M such that for all $m \geqslant M, x \in G_{m}$

$$
\begin{aligned}
P^{x}\left(T_{\partial \Delta \triangle_{m}(x)}^{Y}<t\right) & \leqslant c_{1} \exp \left\{-c_{2}\left(5^{-m} t\right)^{-1 /\left(d_{\aleph}-1\right)}\right\}+P^{x}\left(W_{m}^{Y}(x)<c_{0}\left(\frac{2}{5}\right)^{m}\right) \\
& \leqslant c_{1} \exp \left\{-c_{2}\left(5^{m} t\right)^{1 /\left(d_{w}-1\right)}\right\}+\delta
\end{aligned}
$$

Considering paths of the process it is clear that for any $x \in G_{0}, m \geqslant 0$ and $t \geqslant c_{0} 2^{m}$

$$
\begin{align*}
P^{x}\left(T_{D_{m}(x)^{c}}<t\right) & \leqslant P^{0}\left(T_{\partial \triangle \Delta_{m}(0)}<t\right) \\
& \leqslant c_{1} \exp \left\{-c_{2}\left(5^{-m t} t\right)^{-1 /\left(d_{\mathrm{w}}-1\right)}\right\} . \tag{6}
\end{align*}
$$

Alternatively, given $\delta>0$, for any $m \geqslant M(\delta)$ and $t \geqslant 0$

$$
\begin{align*}
P^{x}\left(T_{D_{m}(x)^{\mathrm{c}}}<t\right) & \leqslant P^{0}\left(T_{\partial \Delta \Delta_{m}(0)}<t\right) \\
& \leqslant c_{1} \exp \left\{-c_{2}\left(5^{-m} t\right)^{-1 /\left(d_{w}-1\right)}\right\}+\delta \tag{7}
\end{align*}
$$

To obtain a lower bound on $P^{x}\left(T_{D_{m}(x)^{c}}<t\right)$ we will proceed via Chebychev's inequality. To do this we need firstly an upper bound for $E^{x} T_{D_{m}(x)^{\text {c }}}$. From Lemma 1

$$
\begin{aligned}
E^{x} T_{D_{m}(x)^{c}} & =E^{x} \int_{0}^{T_{D_{m}(x)^{c}}} 1 \mathrm{~d} s \\
& =U_{D_{m}(x)} 1(x) \\
& =\sum_{y \in D_{m}(x)} u_{D_{m}(x)}(x, y) \\
& \leqslant \sum_{y \in D_{m}(x)} u_{D_{m}(x)}(x, x) \\
& \leqslant c_{1}\left(\frac{5}{3}\right)^{m}\left|D_{m}(x)\right|
\end{aligned}
$$

But $\left|D_{m}(x)\right|=4\left|\triangle_{m}(x)\right|-4$, where $\left|\triangle_{m}(x)\right|=3^{m}-\sum_{k=1}^{m-1} 3^{k}=\frac{3}{2}+\frac{1}{2} 3^{m}$, so

$$
E^{x} T_{D_{m}(x)^{c}} \leqslant c_{1} 5^{m}
$$

Note that this bound is of the right form, as it can be easily shown that $E^{0} T_{\partial \triangle \Delta_{m}(0)}=$ 5^{m}. Applying Chebychev's inequality gives

$$
\begin{equation*}
P^{x}\left(T_{D_{m}(x)^{c}}>t\right) \leqslant \frac{c_{1} 5^{m}}{t} \tag{8}
\end{equation*}
$$

This can be refined to give us the following lemma.
Lemma 4. There exists a positive constant c_{1} such that for all $x \in G_{0}$

$$
P^{x}\left(T_{D_{m}(x)^{v}}>t\right) \leqslant \mathrm{e}^{-c_{1} 5^{-m} t}
$$

Proof. For any $t_{1}>0$

$$
\begin{aligned}
P^{x}\left(T_{D_{m}(x)^{c}}>2 t_{1}\right)= & \sum_{y \in D_{m}(x)} P^{x}\left(T_{D_{m}(x)^{c}}>2 t_{1} \mid T_{D_{m}(x)^{c}}>t_{1}, Y_{t_{1}}=y\right) \\
& \times P^{x}\left(Y_{t_{1}}=y \mid T_{D_{m}(x)^{c}}>t_{1}\right) P^{x}\left(T_{D_{m}(x)^{c}}>t_{1}\right) \\
= & \sum_{y \in D_{m}(x)} P^{y}\left(T_{D_{m}(x)^{c}}>t_{1}\right) \\
& \times P^{x}\left(Y_{t_{1}}=y \mid T_{D_{m}(x)^{c}}>t_{1}\right) P^{x}\left(T_{D_{m}(x)^{c}}>t_{1}\right),
\end{aligned}
$$

but for $y \in D_{m}(x), D_{m}(x) \subset D_{m+1}(y)$ so we get

$$
\begin{aligned}
P^{x} & \left(T_{D_{m}(x)^{c}}>2 t_{1}\right) \\
\leqslant & \sum_{y \in D_{m}(x)} P^{y}\left(T_{D_{m+1}(y)^{c}}>t_{1}\right) \\
& \times P^{x}\left(Y_{t_{1}}=y \mid T_{D_{m}(x)^{c}}>t_{1}\right) P^{x}\left(T_{D_{m}(x)^{c}}>t_{1}\right) \\
\leqslant & \frac{c_{1} 5^{m+1}}{t_{1}} \cdot \frac{c_{1} 5^{m}}{t_{1}} \sum_{y \in D_{m}(x)} P^{x}\left(Y_{t_{1}}=y \mid T_{D_{m}(x)^{c}}>t_{1}\right) \quad \text { by }(8) \\
= & \left(\frac{c_{2} 5^{m}}{t_{1}}\right)^{2} .
\end{aligned}
$$

Clearly, we can extend this argument to show by induction that

$$
P^{x}\left(T_{D_{m}(x)^{c}}>n t_{1}\right) \leqslant\left(\frac{c_{2} 5^{m}}{t_{1}}\right)^{n} .
$$

The result now follows immediately.

2.3. Comparing $T_{D_{m}(x)^{c}}$ to T_{λ} and $u_{D_{m}(x)}(x, x)$ to $u_{\lambda}(x, x)$

We know that $E^{x} T_{D_{m}(x)^{\mathrm{c}}} \approx 5^{m}$ and $\mathrm{E} T_{\lambda}=1 / \lambda$, so we would hope that for $\lambda \approx 5^{-m}$, $u_{i}(x, x)=E^{x} L_{T_{i}}^{x} \approx E^{x} L_{T_{D_{m}(1)}^{x}}^{x}=u_{D_{m}(x)}(x, x) \approx\left(\frac{5}{3}\right)^{m}=\left(5^{-m}\right)^{\log 3 / \log -1} \approx \lambda^{-\left(1-d_{s / 2}\right)}$. This is indeed the case, as we are now in a position to show.

Proposition 5. There exist positive constants c_{1} and c_{2} such that for all $x \in G_{0}$ and $\lambda<1$

$$
c_{1} \lambda^{-\left(1-d_{1} / 2\right)} \leqslant u_{\lambda}(x, x) \leqslant c_{2} \lambda^{-\left(1-d_{3} / 2\right)} .
$$

Proof. (i) Upper bound: Note to begin with that

$$
\begin{aligned}
u_{D_{m}(x)}(x, x) & =E^{x} L_{T_{D_{m(x}(x)^{c}}^{x}} \\
& \geqslant P^{x}\left(T_{\lambda}<T_{D_{m}(x)}\right) E^{x} L_{\lambda}^{x} \\
& =P^{x}\left(T_{\lambda}<T_{D_{m}(x)}\right) u_{\lambda}(x, x) .
\end{aligned}
$$

Now from (7) we have for $m \geqslant M(\delta)$

$$
\begin{aligned}
P^{x}\left(T_{D_{m}(x)^{c}}<T_{\lambda}\right) & =\int_{0}^{\infty} P^{x}\left(T_{\left.D_{m}(x)\right)^{c}}<t\right) \lambda \mathrm{e}^{-i t} \mathrm{~d} t \\
& \leqslant \int_{0}^{\infty}\left(c_{1} \exp \left\{-c_{2}\left(5^{-m} t\right)^{-1 /\left(d_{w}-1\right)}\right\}+\delta\right) \lambda \mathrm{e}^{-i t} \mathrm{~d} t \\
& =\int_{0}^{\infty} c_{1} \exp \begin{cases}u & \left.c_{2}\left(u /\left(\lambda 5^{m}\right)\right)^{-1 /\left(d_{w}-1\right)}\right\} \mathrm{d} u \mid \delta \\
& =\mathcal{I}\left(\lambda 5^{m}\right)+\delta\end{cases}
\end{aligned}
$$

where $\mathcal{I}(x) \downarrow 0$ as $x \rightarrow \infty$. Choose $\delta<\frac{1}{3}$, then we can find a constant c_{3} such that for $\lambda<1$ and $5^{m} \leqslant c_{3} \lambda^{-1}<5^{m+1}$ we have $m \geqslant M(\delta)$ and $\mathcal{I}\left(\lambda 5^{m}\right) \leqslant \frac{1}{3}$. Substituting this back in above and applying Lemma 1 gives

$$
u_{i}(x, x) \leqslant c_{4}\left(\frac{5}{3}\right)^{m} \leqslant c_{5} \lambda^{-\left(1-d_{i} / 2\right)} .
$$

(ii) Lower bound: As for the upper bound, note that

$$
u_{\lambda}(x, x) \geqslant P^{x}\left(T_{D_{m}(x)^{c}}<T_{\lambda}\right) u_{D_{m}(x)}(x, x)
$$

Now from Lemma 4

$$
\begin{aligned}
P^{x}\left(T_{D_{m}(x)^{\mathrm{c}}}>T_{\lambda}\right) & =\int_{0}^{\infty} P^{x}\left(T_{D_{m}(x)^{\mathrm{c}}}>t\right) \lambda \mathrm{e}^{-\lambda t} \mathrm{~d} t \\
& \leqslant \int_{0}^{\infty} \mathrm{e}^{-c_{1} 5^{-m t} t} \lambda \mathrm{e}^{-\lambda t} \mathrm{~d} t \\
& =\frac{\lambda 5^{m}}{\lambda 5^{m}+c_{1}}
\end{aligned}
$$

Applying Lemma 1 we get for $5^{m} \leqslant \lambda^{-1}<5^{m+1}$ (such an m can always be found for $\lambda<1$)

$$
u_{\lambda}(x, x) \geqslant \frac{c_{2}\left(\frac{5}{3}\right)^{m}}{\lambda 5^{m}+c_{1}} \geqslant c_{3} i^{-\left(1-d_{\mathrm{s}} / 2\right)} .
$$

3. Transition density upper bound

Again, we will be dealing mainly with Y throughout the section. Before we apply the resolvent density bound of the previous section, we need some basic facts about random walks on graphs. Note that the following lemma and its corollary do not actually depend on the geometry of G_{0}.

Fix $\alpha>0$ and $A \subset G_{0}$, with $|A|<\infty . U_{\alpha}^{A}$ is real symmetric and thus diagonalisable. That is, U_{x}^{A} has eigenvalues α_{i} with corresponding orthonormal eigenvectors ϕ_{i} such that

$$
u_{\chi}^{A}(x, y)=\sum_{i} \alpha_{i} \phi_{i}(x) \phi_{i}(y)
$$

Let $\lambda_{i}=\alpha_{i}^{-1}-\alpha$, then we have:
Lemma 6. $\lambda_{i}>0$ for all i and for any $\lambda>0$

$$
u_{\lambda}^{A}(x, y)=\sum_{i}\left(\lambda+\lambda_{i}\right)^{-1} \phi_{i}(x) \phi_{i}(y)
$$

Proof. The generator Δ_{A} of the resolvent semigroup $\left\{U_{\lambda}^{A}\right\}_{i>0}$ is $P_{A}-I$, where P_{A} is the one-step transition matrix for the discrete r.w. X killed on exiting A. P_{A} is positive, symmetric and strictly substochastic, so it has a largest eigenvalue $0 \leqslant \Lambda<1$. Thus as $U_{x}^{A}=\left(\alpha I-\Lambda_{A}\right)^{-1}$ we have that $\alpha_{i} \in\left[(\alpha+1+\Lambda)^{-1},(\alpha+1-\Lambda)^{-1}\right]$ and thus $\lambda_{i} \geqslant 1-\Lambda>0$ for all i.

Put $\bar{u}_{\lambda}^{A}(x, y)=\sum_{i}\left(\lambda+\lambda_{i}\right)^{-1} \phi_{i}(x) \phi_{i}(y)$. We have for $0<\lambda<2 \alpha$ that

$$
\left(\lambda+\lambda_{i}\right)^{-1}=\sum_{k=0}^{\infty}(\alpha-\lambda)^{k}\left(\alpha+\lambda_{i}\right)^{-(k+1)}=\sum_{k=0}^{\infty}(\alpha-\lambda)^{k} \alpha_{i}^{k+1},
$$

so for any $f: A \rightarrow \mathbb{R}$ and $0<\lambda<2 \alpha$

$$
\begin{align*}
\bar{U}_{\lambda}^{A} f(x) & :=\sum_{y \in A} \bar{u}_{\lambda}^{A}(x, y) f(y) \\
& =\sum_{y \in A} \sum_{i} \sum_{k=0}^{\infty}(\alpha-\lambda)^{k} \alpha_{i}^{k+1} \phi_{i}(x) \phi_{i}(y) f(y) \\
& =\sum_{k=0}^{\infty}(\alpha-\lambda)^{k}\left(U_{x}^{A}\right)^{k+1} f(x) \tag{9}
\end{align*}
$$

However, it follows from the resolvent equation that U_{λ}^{A} also satisfies (9), so $\bar{U}_{\lambda}^{A}=U_{\lambda}^{A}$ for $0<\lambda<2 \alpha$ and thus for all $\lambda>0$.

Corollary 7. For any $A \subset G_{0}$, possibly infinite, $t \mapsto p_{t}^{A}(x, x)$ is decreasing on $[0, \infty)$ and $p_{t}^{A}(x, y) \leqslant p_{t}^{A}(x, x)^{1 / 2} p_{t}^{A}(y, y)^{1 / 2}$.

Proof. (i) Finite A : From the uniqueness of the Laplace transform we have that $p_{i}^{4}(x, y)=\sum_{i} \mathrm{e}^{-\lambda_{i} t} \phi_{i}(x) \phi_{i}(y)$. Thus as the λ_{i} are strictly positive, $t \mapsto p_{t}^{4}(x, x)$ is strictly decreasing. Moreover, from Cauchy-Schwarz we have

$$
\begin{aligned}
p_{t}^{A}(x, y) & \leqslant\left(\sum_{i} \mathrm{e}^{-\lambda_{i} t} \phi_{i}(x)^{2}\right)^{1 / 2}\left(\sum_{i} \mathrm{e}^{-\lambda_{i} t} \phi_{i}(y)^{2}\right)^{1 / 2} \\
& =p_{t}^{A}(x, x)^{1 / 2} p_{t}^{A}(y, y)^{1 / 2}
\end{aligned}
$$

(ii) Infinite A : Just take the limit as $m \rightarrow \infty$ of $p_{t}^{A \cap \triangle \Delta_{m}(0)}(x, y)$.

We are now in a position to prove our result. We start with a diagonal upper bound and then refine this by decomposing the set of sample paths of the process, to allow us to treat space and time separately.

Theorem 8. There exist positive constants c_{0}, c_{1} and c_{2} such that for all $x, y \in G_{0}$ and $t>c_{0}|x-y| \vee 1$

$$
p_{t}(x, y) \leqslant c_{1} t^{-d_{\mathrm{s}} / 2} \exp \left\{-c_{2}\left(|x-y|^{d_{\mathrm{w}}} / t\right)^{1 /\left(d_{\mathrm{w}}-1\right)}\right\}
$$

Proof. Since $p_{t}(x, x)$ is decreasing we have

$$
u_{i}(x, x)=\int_{0}^{\infty} \mathrm{e}^{-i s} p_{s}(x, x) \mathrm{d} s \geqslant t \mathrm{e}^{-i t} p_{t}(x, x) .
$$

Putting $\lambda=1 / t$ and applying Proposition 5 gives for $t>1$ (i.e. $\lambda<1$):

$$
p_{t}(x, x) \leqslant \frac{c_{1} u_{1 / t}(x, x)}{t} \leqslant c_{2} t^{-d_{\mathrm{s}} / 2} .
$$

Applying Corollary 7 this can be extended to an off-diagonal bound, namely, for all $x, y \in G_{0}$ and $t>1$

$$
\begin{equation*}
p_{t}(x, y) \leqslant c_{2} t^{-d_{s} / 2} \tag{10}
\end{equation*}
$$

This bound is not the best that can be done however.
Fix x, y and t and define

$$
\begin{aligned}
& A_{1}=\left\{z \in G_{0}:|z-x| \leqslant|z-y|\right\} \quad \text { and } \\
& A_{2}=G_{0} \backslash A_{1} .
\end{aligned}
$$

We have

$$
p_{t}(x, y)=P^{x}\left(Y_{t}=y, Y_{t / 2} \in A_{1}\right)+P^{x}\left(Y_{t}=y, Y_{t / 2} \in A_{2}\right)
$$

and

$$
P^{x}\left(Y_{t}=y, Y_{t / 2} \in A_{2}\right)=E^{x}\left(r\left(Y_{t / 2}\right), Y_{t / 2} \in A_{2}\right),
$$

where

$$
r(z)=P\left(Y_{t}=y \mid Y_{t / 2}=z\right)=p_{t / 2}(z, y) .
$$

Thus from (10), as $t>1$

$$
E^{x}\left(r\left(Y_{t / 2}\right), Y_{t / 2} \in A_{2}\right) \leqslant c_{2}(t / 2)^{-d_{\mathrm{s}} / 2} P^{x}\left(Y_{t / 2} \in A_{2}\right) .
$$

Now, for any $\delta \geqslant 2$ put $m=[\log \delta / \log 2]-1$, so that $2^{m+1} \leqslant \delta<2^{m+2}$. Then it follows from (6) that for $t>c_{0} \delta$

$$
\begin{aligned}
P^{x}\left(\sup _{s \leqslant t}\left|Y_{s}-Y_{0}\right|>\delta\right) & \leqslant P^{x}\left(T_{D_{m}(x)^{c}}<t\right) \\
& \leqslant c_{3} \exp \left\{-c_{4}\left(5^{-m} t\right)^{-1 /\left(d_{w}-1\right)}\right\} \\
& \leqslant c_{3} \exp \left\{-c_{4}\left(\delta^{-d_{w}} t\right)^{-1 /\left(d_{w}-1\right)}\right\},
\end{aligned}
$$

since $\delta^{-d_{w}}=\delta^{-\log 5 / \log 2}<5^{-m}$. Thus, for $\epsilon>c_{0}|x-y|$

$$
\begin{aligned}
P^{x}\left(Y_{t / 2} \in A_{2}\right) & \leqslant P^{x}\left(\sup _{s \leqslant t / 2}\left|Y_{s}-Y_{0}\right|>\frac{1}{2}|x-y|\right) \\
& \leqslant c_{3} \exp \left\{-c_{4}\left(\left(\frac{1}{2}|x-y|\right)^{-d_{w}} t / 2\right)^{-1 /\left(d_{w}-1\right)}\right\} .
\end{aligned}
$$

Substituting this back in above gives

$$
P^{x}\left(Y_{t}=y, Y_{t / 2} \in A_{2}\right) \leqslant c_{5} t^{-d_{\mathrm{s}} / 2} \exp \left\{-c_{6}\left(|x-y|^{-d_{\mathrm{w}}} t\right)^{-1 /\left(d_{\mathrm{w}}-1\right)}\right\}
$$

Finally, by the symmetry of $p_{t}(x, y)$

$$
P^{x}\left(Y_{t}=y, Y_{t / 2} \in A_{1}\right)=P^{y}\left(Y_{t}=x, Y_{t / 2} \in A_{1}\right),
$$

which can be bounded in exactly the same way as $P^{x}\left(Y_{t}=y, Y_{t / 2} \in A_{2}\right)$. Adding the two bounds gives the result.

4. Transition density lower bound

A diagonal lower bound can be obtained easily from our upper bound on the law of the hitting time $T_{D_{m}(x)}$.

Recall from (7) that for any $\delta>0$ there exists an $M=M(\delta)$ such that for all $m \geqslant M$ and $t \geqslant 0$

$$
P^{x}\left(T_{D_{m}(x)^{c}}<t\right) \leqslant c_{1} \exp \left\{-c_{2}\left(5^{-m} t\right)^{-1 /\left(d_{w}-1\right)}\right\}+\delta
$$

Choose a so that $c_{1} \exp \left\{-c_{2} a^{-1 /\left(d_{w}-1\right)}\right\} \leqslant \frac{1}{2}$ and let $m=[\log (t / a) / \log 5]$. We can guarantee $m \geqslant M$ by requiring $t \geqslant t_{0}$ for some t_{0} and then decreasing a as necessary. Now, $P^{x}\left(Y_{t} \in D_{m}(x)\right) \geqslant P^{x}\left(T_{D_{m}(x)^{c}}>t\right) \geqslant \frac{1}{2}-\delta$, so by Cauchy-Schwarz

$$
\begin{aligned}
\left(\frac{1}{2} \cdot \delta\right)^{2} \leqslant\left(P^{x}\left(Y_{t} \subset D_{m}(x)\right)\right)^{2} & =\left(\sum_{y \in D_{m}(x)} p_{t}(x, y)\right)^{2} \\
& \leqslant\left(\sum_{y \in D_{m}(x)} 1\right)\left(\sum_{y \in D_{m}(x)}\left(p_{t}(x, y)\right)^{2}\right) \\
& \leqslant\left|D_{m}(x)\right| p_{2 t}(x, x)
\end{aligned}
$$

But $\left|D_{m}(x)\right|=2 \cdot 3^{m}+2 \leqslant c_{3} t^{t_{5} / 2}$ (from our definition of m) whence, for all $t \geqslant t_{0}$

$$
\begin{equation*}
p_{t}(x, x) \geqslant c_{1} t^{-d_{s} / 2} \tag{11}
\end{equation*}
$$

where c_{4} depends on t_{0}.
Off-diagonal lower bounds prove somewhat more difficult. We proceed by developing off-diagonal bounds for $u_{\lambda}^{A}(x, y)$. These will be combined with our lower bound on $u_{i}(x, x)$ to give Proposition 13 below.

4.1. Off-diagonal bounds for $u_{i}^{4}(x, y)$

We will be making extensive use of the geometry of G_{0} throughout this subsection. The approach used is based on that of Barlow and Bass (1992).

Lemma 9. There exists a positive constant c_{1} such that for any $x, y \in A \subset G_{0}$ satisfying $y \in \partial \triangle_{m}(x)$ and $\triangle_{m}(x) \subset A$ for some m, we have

$$
u_{A}(y, y)-u_{A}(x, x) \leqslant u_{A}(y, y)-u_{A}(x, y) \leqslant c_{1}\left(\frac{5}{3}\right)^{m} .
$$

Proof. It follows from (5) that for any $z \in \partial \triangle \triangle_{m}(y) \cap A, u_{A}(z, y) \geqslant u_{A}(y, y)-4\left(\frac{5}{3}\right)^{m}$. Thus, as $u_{A}(\cdot, y)$ is harmonic on int $\triangle_{m}(x)$

$$
u_{A}(x, y) \geqslant \min _{z \in \partial \Delta_{m}(x)} u_{A}(z, y) \geqslant u_{A}(y, y)-4\left(\frac{5}{3}\right)^{m}
$$

as required.
Lemma 10. There exists a positive constant c_{1} such that for any $x, y \in A \subset G_{0}$ satisfying $y \in \partial \triangle_{m}(x)$ and $\triangle_{m}(x) \subset A$ for some m, we have

$$
u_{A}(x, x)-u_{A}(y, y) \leqslant c_{1}\left(\frac{5}{3}\right)^{m}
$$

Proof. It follows from (5) that for any $z \in \partial \triangle_{m}(x), u_{A}(z, z) \leqslant 4\left(\frac{5}{3}\right)^{m}+u_{A}(y, y)$. Thus the result will follow if we can show that

$$
\begin{equation*}
u_{A}(x, x) \leqslant c_{2}\left(\frac{5}{3}\right)^{m}+\max _{z \in \lambda \Delta_{m}(x)} u_{A}(z, z) \tag{12}
\end{equation*}
$$

For $n=0,1, \ldots, m$ define $a_{n}=\max _{z \in \lambda \triangle_{n}(x)} u_{A}(z, z)$. We show to begin with that for any $w \in \partial \triangle_{n}(x)$

$$
u_{A}(w, w) \leqslant c_{3}\left(\frac{5}{3}\right)^{n}+a_{n+1} .
$$

If $w \in G_{n+1}$ then trivially $u_{A}(w, w) \leqslant a_{n+1}$, so suppose $w \in G_{n} \backslash G_{n+1}$. Label the G_{n} points of $\triangle_{n+1}(x)$ using $w, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}$ so that $w, y_{1}, y_{2} \in G_{n} \backslash G_{n+1}$ and $z_{1}, z_{2}, z_{3} \in$ G_{n+1}, as shown in Fig. 5. Then from (5)

$$
\begin{aligned}
& u_{A}(w, w) \leqslant\left(\frac{5}{3}\right)^{n}+\frac{1}{4}\left(2 a_{n+1}+u_{A}\left(y_{1}, w\right)+u_{A}\left(y_{2}, w\right)\right), \\
& u_{A}\left(y_{1}, w\right) \leqslant \frac{1}{4}\left(2 a_{n+1}+u_{A}\left(y_{2}, w\right)+u_{A}(w, w)\right), \\
& u_{A}\left(y_{2}, w\right) \leqslant \frac{1}{4}\left(2 a_{n+1}+u_{A}\left(y_{1}, w\right)+u_{A}(w, w)\right) .
\end{aligned}
$$

Putting these together we get $u_{A}(w, w) \leqslant c_{3}\left(\frac{5}{3}\right)^{n}+a_{n+1}$ as claimed. Now choose x_{0}, x_{1}, x_{2} \ldots, x_{m-1} so that $a_{n}=u_{A}\left(x_{n}, x_{n}\right)$, then

$$
\begin{aligned}
u_{A}(x, x) & \leqslant u_{A}\left(x_{0}, x_{0}\right) \\
& \leqslant c_{3} \sum_{n=0}^{m-1}\left(\frac{5}{3}\right)^{n}+a_{m} \\
& \leqslant c_{4}\left(\frac{5}{3}\right)^{m}+a_{m},
\end{aligned}
$$

which is precisely (12).

Fig. 5. $\triangle_{n+1}(x)$.
Definc $\alpha_{\lambda}^{A}(x, y)=P^{x}\left(T_{y}<T_{A}{ }^{c} \wedge T_{\lambda}\right)$ and $\beta_{\lambda}^{A}(x, y)=1-\alpha_{\lambda}^{A}$ and write $\alpha_{A}(x, y)$ and $\beta_{A}(x, y)$ for $\alpha_{0}^{A}(x, y)$ and $\beta_{0}^{A}(x, y)$, respectively. Clearly,

$$
u_{\lambda}^{A}(x, y)=\alpha_{\lambda}^{A}(x, y) u_{\lambda}^{A}(y, y) .
$$

Lemma 11. There exists a positive constant c_{1} such that for any $x, y \in A \subset G_{0}$ satisfying $y \in D_{m}(x) \subset A$ for some m, we have

$$
u_{A}(y, y)-u_{A}(x, y) \leqslant c_{1}|x-y|^{d_{\mathrm{w}}-d_{\mathrm{f}}}
$$

Proof. It is clear that we can choose $\triangle_{m}(x), \triangle_{m}(y) \subset A$ in which case there will exist some $z \in \partial \triangle_{m}(x) \cap \partial \triangle_{m}(y)$. Noting that $\beta_{A}(x, y) \leqslant \beta_{A}(x, z)+\beta_{A}(z, y)$ we have from Lemmas 9 and 10 that

$$
\begin{aligned}
u_{A}(y, y)-u_{A}(x, y)= & \beta_{A}(x, y) u_{A}(y, y) \\
\leqslant & \beta_{A}(x, z) u_{A}(y, y)+\beta_{A}(z, y) u_{A}(y, y) \\
= & \left(1+\beta_{A}(x, z)\right)\left(u_{A}(y, y)-u_{A}(z, z)\right) \\
& +\left(\beta_{A}(x, z)+\beta_{A}(y, z)\right) u_{A}(z, z) \\
\leqslant & c_{1}\left(\frac{5}{3}\right)^{m} .
\end{aligned}
$$

Let m be the smallest m satisfying $y \in D_{m}(x)$, then $2^{m-1} \leqslant|x-y| \leqslant 2^{m+1}$ and $c_{1}\left(\frac{5}{3}\right)^{m}=$ $c_{1}\left(2^{m}\right)^{d_{w}-d_{f}} \leqslant 2 c_{1}|x-y|^{d_{w}-d_{f}}$, which gives the result.

Lemma 12. There exists a positive constant c_{1} such that for any $x, x^{\prime}, y \in A \subset G_{0}$ satisfying $x^{\prime} \in D_{m}(x) \subset A$ for some m, we have

$$
\left|u_{\lambda}^{A}(x, y)-u_{\lambda}^{A}\left(x^{\prime}, y\right)\right| \leqslant c_{1}\left|x-x^{\prime}\right|^{d_{w}} d_{\mathrm{f}} .
$$

Proof. Note firstly that

$$
\begin{aligned}
u_{\lambda}^{A}(x, y)-u_{\lambda}^{A}\left(x^{\prime}, y\right)= & u_{\lambda}^{A}(y, x)-u_{\lambda}^{A}\left(y, x^{\prime}\right) \\
= & \left(\alpha_{\lambda}^{A}(y, x)-\alpha_{\lambda}^{A}\left(y, x^{\prime}\right)\right) u_{\lambda}^{A}\left(x^{\prime}, x^{\prime}\right) \\
& +\alpha_{\lambda}^{A}(y, x)\left(u_{\lambda}^{A}(x, x)-u_{\lambda}^{A}\left(x^{\prime}, x^{\prime}\right)\right) .
\end{aligned}
$$

Now considering possible paths

$$
\alpha_{\lambda}^{A}(y, x)-\alpha_{\lambda}^{A}\left(y, x^{\prime}\right) \leqslant P^{y}\left(T_{x} \leqslant T_{A^{c}} \wedge T_{\lambda} \leqslant T_{x^{\prime}}\right) \leqslant \alpha_{\lambda}^{A}(y, x) \beta_{\lambda}^{A}\left(x, x^{\prime}\right),
$$

$$
\begin{align*}
u_{\lambda}^{A}(x, y)-u_{\lambda}^{A}\left(x^{\prime}, y\right) & \leqslant \alpha_{\lambda}^{A}(y, x)\left(\beta_{\lambda}^{A}\left(x, x^{\prime}\right) u_{\lambda}^{A}\left(x^{\prime}, x^{\prime}\right)+u_{\lambda}^{A}(x, x)-u_{\lambda}^{A}\left(x^{\prime}, x^{\prime}\right)\right) \\
& =\alpha_{\lambda}^{A}(y, x)\left(u_{\lambda}^{A}(x, x)-u_{\lambda}^{A}\left(x, x^{\prime}\right)\right) \tag{13}
\end{align*}
$$

Using Lemma 11 this is enough to give the result in the case $\lambda=0$. Suppose now that $\lambda>0$. From the resolvent equation we get $u_{\lambda}^{A}(\cdot, y)=u_{A}(\cdot, y)-\lambda U_{A} u_{\lambda}^{A}(\cdot, y)$, whence

$$
\begin{aligned}
\left|u_{\lambda}^{A}(x, y)-u_{\lambda}^{A}\left(x^{\prime}, y\right)\right| \leqslant & \left|u_{A}(x, y)-u_{A}\left(x^{\prime}, y\right)\right| \\
& +\lambda\left|U_{A} u_{\lambda}^{A}(\cdot, y)(x)-U_{A} u_{2}^{A}(\cdot, y)\left(x^{\prime}\right)\right| \\
= & \left|u_{A}(x, y)-u_{A}\left(x^{\prime}, y\right)\right| \\
& +\lambda\left|\sum_{z \in A}\left(u_{A}(x, z)-u_{A}\left(x^{\prime}, z\right)\right) u_{\lambda}^{A}(z, y)\right| \\
\leqslant & c_{1}\left|x-x^{\prime}\right|^{d_{w}-d_{\mathrm{f}}}+\lambda c_{1}\left|x-x^{\prime}\right|^{d_{\mathrm{w}}-d_{\mathrm{f}}}\left\|u_{\lambda}^{A}(\cdot, y)\right\|_{1} .
\end{aligned}
$$

Finally,

$$
\left\|u_{\lambda}^{A}(\cdot, y)\right\|_{1}=\sum_{x \in A} u_{\lambda}^{A}(x, y) \leqslant \sum_{x \in G_{0}} u_{\lambda}(x, y)=\sum_{x \in G_{0}} u_{\lambda}(y, x)=1 / \lambda
$$

which establishes the result for all $\lambda \geqslant 0$.
Proposition 13. There exists a positive constant c_{1} such that for any $x, x^{\prime} \in A \subset G_{0}$ satisfying $x^{\prime} \subset D_{m}(x) \subset A$ for some m, we have for $0<\lambda<1$ and $f \in \mathcal{L}^{\infty}\left(G_{0}\right)$

$$
\left|U_{\lambda}^{A} f(x)-U_{\lambda}^{A} f\left(x^{\prime}\right)\right| \leqslant c_{1} \lambda^{-d_{s} / 2}\left|x-x^{\prime}\right|^{d_{w}-d_{\mathrm{F}}}\|f\|_{\infty}
$$

Proof. From Lemma 12 and (13) we have

$$
\left|u_{\lambda}^{A}(x, y)-u_{\lambda}^{A}\left(x^{\prime}, y\right)\right| \leqslant c_{1}\left(\alpha_{\lambda}^{A}(y, x)+\alpha_{\lambda}^{A}\left(y, x^{\prime}\right)\right)\left|x-x^{\prime}\right|^{d_{w}-d_{f}}
$$

whence

$$
\begin{aligned}
\left|U_{\lambda}^{A} f(x)-U_{\lambda}^{A} f\left(x^{\prime}\right)\right| & \leqslant \sum_{y \in A}\left|u_{\lambda}^{A}(x, y)-u_{\lambda}^{A}\left(x^{\prime}, y\right)\right||f(y)| \\
& \leqslant c_{1}\|f\|_{\infty}\left|x-x^{\prime}\right|^{d_{w}-d_{\mathrm{F}}} \sum_{y \in A}\left(\alpha_{\lambda}^{A}(y, x)+\alpha_{\lambda}^{A}\left(y, x^{\prime}\right)\right) .
\end{aligned}
$$

But $\alpha_{\lambda}^{A}(y, x)=P^{y}\left(T_{\lambda} \leqslant T_{A^{c}} \wedge T_{\lambda}\right) \leqslant P^{y}\left(T_{\lambda} \leqslant T_{\lambda}\right)=u_{\lambda}(y, x) / u_{\lambda}(x, x)$, so from Proposition 5

$$
\sum_{y \in A} \alpha_{\lambda}^{A}(y, x) \leqslant u_{\lambda}(x, x)^{-1} \lambda^{-1} \leqslant c_{2} \lambda^{-d_{s} / 2}
$$

Plugging this back in above gives the result.

4.2. Off-diagonal bounds for $p_{1}^{A}(x, y)$

As for the upper bound, we use the spectral representation of the resolvent and transition densities to translate information about $u_{\lambda}^{A}(x, y)$ into information about $p_{t}^{4}(x, y)$. The following lemma comes about by applying this procedure to Proposition 13.

Lemma 14. There exists a positive constant c_{1} such that for any $x, x^{\prime}, y \in A \subset G_{0}$ satisfying $x^{\prime} \in D_{m}(x) \subset A$ for some m, we have for $t>1$

$$
\left|p_{t}^{A}(x, y)-p_{t}^{A}\left(x^{\prime}, y\right)\right| \leqslant c_{1} t^{-1}\left|x-x^{\prime}\right|^{d_{w}-d_{f}}
$$

Proof. (i) Finite A : Recall from Lemma 6 that for any finite A we can find scalars $\lambda_{i}>0$ and orthonormal vectors ϕ_{i} such that for any $\lambda>0$, the eigenvalues of U_{i}^{A} are $\left(\lambda+\lambda_{i}\right)^{-1}$ and their corresponding eigenvectors ϕ_{i}. That is

$$
u_{\lambda}^{A}(x, y)=\sum_{i}\left(\lambda+\lambda_{i}\right)^{-1} \phi_{i}(x) \phi_{i}(y)
$$

and, by the uniqueness of the Laplace transform, for any $t>0$

$$
p_{t}^{A}(x, y)=\sum_{i} \mathrm{e}^{-\lambda_{i} t} \phi_{i}(x) \phi_{i}(y)
$$

Fix $t>0$ and y and put $g(x)=\sum_{i}\left(\lambda+\lambda_{i}\right) \mathrm{e}^{-\lambda_{i} t} \phi_{i}(x) \phi_{i}(y)$. Then $U_{\lambda}^{A} g(x)=p_{i}^{4}(x, y)$, whence

$$
\left|p_{t}^{A}(x, y)-p_{t}^{A}\left(x^{\prime}, y\right)\right|=\left|U_{\lambda}^{A} g(x)-U_{\lambda}^{A} g\left(x^{\prime}\right)\right| .
$$

Now, noting that $\sup _{\beta \geqslant 0}(\lambda+\beta) \mathrm{e}^{-\beta t / 2} \leqslant \lambda \vee 2 t^{-1}$, we have from (10) that for $t>1$

$$
\begin{aligned}
|g(x)| & \leqslant\left(\lambda \vee 2 t^{-1}\right) \sum_{i} \mathrm{e}^{-\lambda_{i} t / 2} \phi_{i}(x) \phi_{i}(y) \\
& =\left(\lambda \vee 2 t^{-1}\right) p_{t / 2}^{A}(x, y) \\
& \leqslant\left(\lambda \vee 2 t^{-1}\right) c_{1} t^{-d_{s} / 2} .
\end{aligned}
$$

Thus from Proposition 13 we have for $0<\lambda<1$

$$
\left|p_{t}^{A}(x, y)-p_{t}^{A}\left(x^{\prime}, y\right)\right| \leqslant c_{2} \lambda^{-d_{s} / 2}\left|x-x^{\prime}\right|^{d_{w}-d_{\mathrm{f}}}\left(\lambda \vee 2 t^{-1}\right) t^{-d_{\mathrm{s}} / 2}
$$

Putting $\lambda=t^{-1}$ gives the result for finite A.
(ii) Infinite A : Take the limit as $m \rightarrow \infty$ of $\left|p_{t}^{A \cap \Delta \Delta_{m}(0)}(x, y)-p_{t}^{A \cap \triangle \Delta_{m}(0)}\left(x^{\prime}, y\right)\right|$.

We use this to extend our diagonal lower bound (11) to an off-diagonal lower bound.
Corollary 15. There exist positive constants c_{0} and c_{1} such that for $t \geqslant c_{0}|x-y|^{d_{w}} \vee 1$

$$
p_{t}(x, y) \geqslant c_{1} t^{-d_{\mathrm{s}} / 2} .
$$

Proof. We have from (11) and Lemma 14 that for $t>1$

$$
\begin{aligned}
p_{t}(x, y) & \geqslant p_{t}(x, x)-\left|p_{t}(x, y)-p_{t}(x, x)\right| \\
& \geqslant c_{1} t^{-d_{3} / 2}-c_{2} t^{-1}|x-y|^{d_{x}-d_{1}} .
\end{aligned}
$$

Now if $|x-y| \leqslant c_{3} t^{1 / d_{w}}$ then $|x-y|^{d_{n}-d_{i}} \leqslant c_{3}^{d_{w}-d_{i}} t^{1-d_{k} / 2}$, so choosing c_{3} small enough that $c_{2} c_{3}^{d_{\mathrm{w}}-d_{\mathrm{f}}} \leqslant \frac{1}{2} c_{1}$, we get $p_{t}(x, y) \geqslant \frac{1}{2} c_{1} t^{-d_{\mathrm{s}} / 2}$ as required.

Corollary 15 forms the basis of the chaining argument used to obtain the lower bound we are after. Denote by $d(x, y)$ the graph distance between x and y in G_{0} and by $B_{G_{0}}(x, \alpha)$ the ball of centre x radius α in G_{0} using this distance. Also, write $B_{\mathbb{R}^{2}}(x, \alpha)$ for the usual Euclidian ball in \mathbb{R}^{2}. It is easily checked that the two metrics $d(\cdot, \cdot)$ and $|\cdot-\cdot|$ are equivalent, with

$$
|x-y| \leqslant d(x, y) \leqslant \sqrt{3}|x-y| .
$$

Theorem 16. There exist positive constants c_{0}, c_{1} and c_{2} such that for all $x, y \in G_{0}$ and $t \geqslant c_{0}|x-y| \vee 1$

$$
p_{t}(x, y) \geqslant c_{1} t^{-d_{\mathrm{s}} / 2} \exp \left\{-c_{2}\left(|x-y|^{d_{w}} / t\right)^{1 /\left(d_{\mathrm{w}}-1\right)}\right\} .
$$

Proof. For $x=y$ the result is given by (11), so assume that $x \neq y$ in all that follows. Also, if $t \geqslant c_{0}|x-y|^{d_{\mathrm{w}}}$ then the result follows immediately from Corollary 15. In this case we have that $1 \geqslant \exp \left\{-\left(|x-y|^{d_{\mathrm{w}}} / t\right)^{1 /\left(d_{\mathrm{w}}-1\right)}\right\} \geqslant \exp \left\{-c_{0}^{-1 /\left(d_{\mathrm{w}}-1\right)}\right\}$, so there is no information lost in including this extra factor.

Suppose now that $t \leqslant c_{0}|x-y|^{d_{\mathrm{w}}}$. Let n be the smallest integer such that

$$
\begin{equation*}
t / n \geqslant c_{0}(|x-y| / n)^{d_{\mathrm{w}}} . \tag{14}
\end{equation*}
$$

n will be the number of steps in our chain. Condition (14) is equivalent to

$$
\begin{equation*}
n \geqslant c_{1}\left(|x-y|^{d_{w}} / t\right)^{1 /\left(d_{w}-1\right)}, \tag{15}
\end{equation*}
$$

where $c_{1}=\left(c_{0}(4 \sqrt{3})^{d_{w}}\right)^{1 /\left(d_{w}-1\right)}$. As we are taking the smallest such integer, there exists some constant c_{2}, independent of x, y and t, such that

$$
\begin{equation*}
n \leqslant c_{2}\left(|x-y|^{d_{n}} / t\right)^{1 /\left(d_{n}-1\right)}, \tag{16}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
t / n \leqslant c_{3}(|x-y| / n)^{d_{w}}, \tag{17}
\end{equation*}
$$

where $c_{3}=c_{2}^{d_{w}-1}$.
Claim we can find $x=x_{0}, x_{1}, \ldots, x_{n}=y$ such that

$$
d\left(x_{i-1}, x_{i}\right) \leqslant 2 d(x, y) / n .
$$

(The factor 2 appears to take into account the fact that $d(\cdot, \cdot)$ is integer valued.) This requires only that $2 d(x, y) / n \geqslant 1$, which condition is equivalent to $2 d(x, y) \geqslant$ $c_{2}\left(|x-y|^{d_{w}} / t\right)^{1 /\left(d_{w}-1\right)}$, from (15) and (16). Since $d(x, y) \geqslant|x-y|$, this is again equivalent to the condition $2|x-y| \geqslant c_{2}\left(|x-y|^{d_{\mathrm{w}} / t}\right)^{1 /\left(d_{\mathrm{w}}-1\right)}$, i.e.,

$$
t \geqslant c_{4}|x-y| .
$$

For $x \neq y$ this is the same as requiring $t \geqslant c_{4}|x-y| \vee c_{4}$, which is the form of constraint used in the theorem statement.

Let $\varepsilon=\sqrt{3}|x-y| / n$ and put $B_{i}=B_{\mathbb{R}^{2}}\left(x_{i}, \varepsilon\right) \cap G_{0}$. Then for any $y_{i-1} \in B_{i-1}$ and $y_{i} \in B_{i}$ we have

$$
\begin{aligned}
\left|y_{i-1}-y_{i}\right| & \leqslant\left|y_{i-1}-x_{i-1}\right|+d\left(x_{i-1}, x_{i}\right)+\left|y_{i}-x_{i}\right| \\
& \leqslant 4 \sqrt{3}|x-y| / n .
\end{aligned}
$$

Thus from (14), $t / n \geqslant c_{5}\left|y_{i-1}-y_{i}\right|^{d_{\mathrm{w}}}$ and, provided $t / n \geqslant 1$, Corollary 15 gives us a constant $c_{6}<1$ such that

$$
p_{t / n}\left(y_{i-1}, y_{i}\right) \geqslant c_{6}(t / n)^{-d_{s} / 2}
$$

From (15) and (16), the condition $t / n \geqslant 1$ is equivalent to $t \geqslant c_{7}|x-y|$, which is the condition already obtained above.

So

$$
\begin{aligned}
p_{t}(x, y) & \geqslant \sum_{y_{1} \in B_{1}} \sum_{y_{2} \in B_{2}} \cdots \sum_{y_{n-1} \in B_{n-1}} p_{t / n}\left(x, y_{1}\right) p_{t / n}\left(y_{1}, y_{2}\right) \cdots p_{t / n}\left(y_{n-1}, y_{n}\right) \\
& \geqslant\left(\prod_{i-1}^{n-1}\left|B_{i}\right|\right) c_{6}^{n}(t / n)^{-n \cdot d_{s} / 2}
\end{aligned}
$$

Putting $\alpha=d(x, y) / n$ and $m=[\log (\alpha / 2) / \log 2]$ we have $D_{m}\left(x_{i}\right) \subset B_{G_{0}}\left(x_{i}, \alpha\right) \subset B_{i}$ and so

$$
\begin{aligned}
\left|B_{i}\right| & \geqslant\left|D_{m}\left(x_{i}\right)\right|=2 \cdot 3^{m}+2 \\
& \geqslant c_{8} x^{\log 3 / \log 2} \\
& \geqslant c_{8}(|x-y| / n)^{d_{w} \cdot d_{s} / 2} \\
& \geqslant c_{9}(t / n)^{d_{s} / 2} \quad \text { from (17) }
\end{aligned}
$$

Thus

$$
\begin{aligned}
p_{t}(x, y) & \geqslant c_{10} c_{6}^{n}(t / n)^{-d_{s} / 2} \\
& \geqslant c_{10} c_{6}^{n} t^{-d_{s} / 2} \\
& =c_{10} t^{-d_{s} / 2} \exp \left\{-n \log c_{6}^{-1}\right\}
\end{aligned}
$$

recalling that $c_{6}<1$. Substituting for n from (16) gives the result.

5. The discrete-time process

Bounds on the transition probabilities $p_{n}(x, y)$ of the discrete-time random walk X can be obtained using exactly the same methods we used to bound the transition density of the continuous-time random walk Y. The details are similar enough that we will only sketch the various stages of the proof here, highlighting how they differ from the continuous-time case. There is essentially only one complication distinguishing the discrete-time case from the continuous, namely the small time oscillations (of period 2) present in $p_{n}(x, y)$. These are of course present in any random walk on a graph, however the geometry of G_{0} serves to smooth out small time periodic behaviour very quickly. Compare this, for example, with the simple random walk on \mathbb{Z}^{d}, which has a strict period of 2. A full working of the discrete-time case can be found in the author's Ph.D. Thesis (submitted 1995).

5.1. Resolvent operators

Let P_{A} be the one-step transition matrix of the discrete-time process, killed on exiting $A \subset G_{0}$. Write $P_{n}^{A}=\left(P_{A}\right)^{n}$ for its n-step transition matrix and $p_{n}^{A}(x, y)$ for the n-step transition probabilities. Resolvent operators for the process X killed on exiting A can be defined for $0 \leqslant \theta \leqslant 1$ by

$$
V_{\theta}^{A} f(x)=\sum_{y \in A} v_{\theta}^{A}(x, y) f(y)=E^{x} \sum_{n=0}^{T_{A^{c}-1}} \theta^{n} f\left(X_{n}\right)
$$

The resolvent density $v_{\theta}^{A}(x, y)$ satisfies

$$
v_{\theta}^{A}(x, y)=\sum_{n=0}^{\infty} \theta^{n} p_{n}^{A}(x, y)
$$

and, if M_{n}^{x} is the number of times X has visited x up to and including time n

$$
v_{\theta}^{A}(x, y)=E^{x} M_{T_{A}{ }^{\llcorner } \wedge T_{u}}^{y}
$$

recalling that $T_{\theta} \sim \operatorname{geom}(1-\theta)$. We are interested in the behaviour of $v_{\theta}^{A}(x, y)$ for values of θ close to 1 .

As one would expect, $1-\theta$ behaves much as λ does in the continuous-time case. Given this, we can set about bounding $v_{\theta}^{A}(x, y)$ in exactly the same way we bounded $u_{i}^{A}(x, y)$ in Section 2. In particular, noting that $v_{A}(x, y):=v_{1}^{A}(x, y)=u_{A}(x, y)$, it follows that there exist constants $\theta_{0} \in(0,1)$ and $c_{1}, c_{2}>0$ such that for all $x \in G_{0}$ and $\theta \in\left(\theta_{0}, 1\right)$

$$
c_{1}(1-\theta)^{-\left(1-d_{s} / 2\right)} \leqslant v_{\theta}(x, x) \leqslant c_{2}(1-\theta)^{-\left(1-d_{s} / 2\right)}
$$

Off-diagonal bounds also follow exactly as they did in Section 4.1. That is, there exists a constant $c_{3}>0$ such that for all $x, x^{\prime} \in A \subset G_{0}$ satisfying $x^{\prime} \in D_{m}(x) \subset A$ for some m, we have for $\theta \in\left(\theta_{0}, 1\right)$ and $f \in \mathcal{L}^{\infty}\left(G_{0}\right)$

$$
\begin{equation*}
\left|V_{\theta}^{A} f(x)-V_{\theta}^{A} f\left(x^{\prime}\right)\right| \leqslant c_{3}(1-\theta)^{-d_{s} / 2}\left|x-x^{\prime}\right|^{d_{n}-d_{i}}\|f\|_{\infty} \tag{18}
\end{equation*}
$$

5.2. Transition probabilities via the two-step chain

Fix $A \subset G_{0}$ with $|A|=k<\infty$. Since P_{A} is non-negative symmetric, it has real eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ with orthonormal eigenvectors $\phi_{1}, \ldots, \phi_{k}$. Moreover,

$$
p_{n}^{A}(x, y)=\sum_{i} \lambda_{i}^{n} \phi_{i}(x) \phi_{i}(y)
$$

and

$$
v_{\theta}^{A}(x, y)=\sum_{i} \frac{1}{1-\theta \lambda_{i}} \phi_{i}(x) \phi_{i}(y)
$$

Unlike the continuous case, the λ_{i} are not all positive and $p_{n}^{4}(x, x)$ is not decreasing in n. However, $p_{2 n}^{4}(x, x)$ is decreasing in n and the Tauberian theorems used in the continuous case can be applied to the two-step chain. That is, there exist constants $n_{0} \in \mathbb{Z}_{+}$and $c_{1}, c_{2}>0$ such that for all $x \in G_{0}$ and $n \geqslant n_{0}$

$$
\begin{equation*}
c_{1} n^{-d_{s} / 2} \leqslant p_{2 n}(x, x) \leqslant c_{2} n^{-d_{s} / 2} . \tag{19}
\end{equation*}
$$

Eq. (19) is all we need to complete our upper bound, as we have by CauchySchwarz that (for any random walk on a graph) for any $A \subset G_{0}$, possibly infinite, $p_{2 n}^{A}(x, y) \vee p_{2 n+1}^{A}(x, y) \leqslant p_{2 n}^{A}(x, x)^{1 / 2} p_{2 n}^{A}(y, y)^{1 / 2}$. It follows from this and (19) that there exists some $c_{3}>0$ such that $p_{n}(x, y) \leqslant c_{3} n^{-d_{s} / 2}$, as per (10). We can proceed as in Theorem 8 to prove the following theorem.

Theorem 17. There exists an n_{0} and positive constants c_{1} and c_{2} such that for all $x, y \in G_{0}$ and $n \geqslant n_{0}$

$$
p_{n}(x, y) \leqslant c_{1} n^{-d_{5} / 2} \exp \left\{-c_{2}\left(|x-y|^{\left.\left.d_{w} / n\right)^{1 /\left(d_{w}-1\right)}\right\} .}\right.\right.
$$

Note that, because Lemma 2 places no restriction on n (unlike Lemma 3), Theorem 17 only has an absolute range restriction and not the relative range restriction that appears in Theorem 8. However, for $n<|x-y| \leqslant d(x, y)$ we have $p_{n}(x, y)=0$, so this is not a significant improvement.

The small time oscillations present in $p_{n}(x, y)$ also cause complications when applying our previous method of finding a lower bound. These complications are dealt with by applying the following result. For any $x, y \in G_{0}$ and $n \geqslant 1$

$$
\begin{equation*}
p_{n+1}(x, y) \geqslant \frac{1}{4} p_{n}(x, y) . \tag{20}
\end{equation*}
$$

This is a consequence of the fact that for any $x, y \in G_{0}$, all paths from x to y of length $n \geqslant 1$ (and probability $\left(\frac{1}{4}\right)^{n}$) can be associated with distinct paths of length $n+1$ (and probability $\left(\frac{1}{4}\right)^{n+1}$). This can be done, for example, by replacing the first step of the path with the two steps which, together with the original, make up a G_{0} triangle. This is illustrated by Fig. 6.

Inequality (20) can be immediately applied to (19) to show that there exists some $c_{3}>0$ such that $p_{n}(x, x) \geqslant c_{3} n^{-d_{s} / 2}$. An off-diagonal bound is obtained by applying

Fig. 6. Constructing a path of length $n+1$ from a path of length n.

$$
\begin{equation*}
g(x):=\sum_{i}\left(1-\theta^{2} \lambda_{i}^{2}\right) \lambda_{i}^{n} \phi_{i}(x) \phi_{i}(y) \tag{18}
\end{equation*}
$$

(for fixed n and y) in the manner of Lemma 14. We have that $V_{\theta}^{A} g(x)=p_{n}^{A}(x, y)+$ $\theta p_{n+1}^{A}(x, y)$ and thus from (18) there exists some $c_{4}>0$ such that for any $x, x^{\prime}, y \in$ $A \subset G_{0}$ satisfying $x^{\prime} \in D_{m}(x) \subset A$ for some m, we get for $n \geqslant n_{0}$

$$
\begin{aligned}
& \left|p_{n}^{A}(x, y)-p_{n}^{A}\left(x^{\prime}, y\right)+\left(1-\frac{1}{n}\right)\left(p_{n+1}^{A}(x, y)-p_{n+1}^{4}\left(x^{\prime}, y\right)\right)\right| \\
& \quad \leqslant c_{4} \frac{1}{n}\left|x-x^{\prime}\right|^{d_{w}-d_{\mathrm{f}}} .
\end{aligned}
$$

Formally, taking the sum $p_{n}^{4}(x, y)+\theta p_{n+1}^{4}(x, y)$ instead of just $p_{n}^{A}(x, y)$ has the effect of smoothing out those oscillations present. This still enables us to proceed as we did in the continuous-time case, since from (20), $p_{n}(x, y)+\left(1-\frac{1}{n}\right) p_{n+1}(x, y) \leqslant 5 p_{n+1}(x, y)$, and we still get

$$
p_{n}(x, y) \geqslant c_{5} n^{-d_{5} / 2}
$$

for $n \geqslant c_{0}|x-y|^{d_{w}} \vee n_{0}$. Using this, the following theorem can be proved in exactly the same way that Theorem 16 was proved.

Theorem 18. There exists an n_{0} and positive constants c_{0}, c_{1} and c_{2} such that for all $x, y \in G_{0}$ and $n \geqslant c_{0}|x-y| \vee n_{0}$

$$
p_{n}(x, y) \geqslant c_{1} n^{-d_{s} / 2} \exp \left\{-c_{2}\left(|x-y|^{d_{\mathrm{w}}} / n\right)^{1 /\left(d_{\mathrm{w}}-1\right)}\right\} .
$$

6. Comparison with general graphs

The upper and lower bounds obtained for $p_{t}(x, y)$ and $p_{n}(x, y)$ hold for $t \geqslant c_{0} d(x, y)$ and $n \geqslant c_{0} d(x, y)$, respectively. In this section we compare these bounds with some recently obtained for general graphs, focussing on what happens when $t \leqslant c_{1} d(x, y)$ or $n \leqslant c_{2} d(x, y)$.

6.1. Continuous time

Recently, Davies (1993) and Pang (1993) obtained a global upper bound for the transition density of the (continuous time) simple random walk on a general graph.

Specifically for $k \approx 2.32$ they give for $t \geqslant k^{-1} d(x, y)$

$$
\begin{equation*}
p_{t}(x, y) \leqslant \exp \left\{-\frac{1}{2}\left(d(x, y)^{2} / t\right)\left(1-d(x, y)^{2} /\left(10 t^{2}\right)\right)\right\} \tag{21}
\end{equation*}
$$

(which is essentially Gaussian for $t \gg d(x, y)$) while for $t \leqslant k^{-1} d(x, y)$

$$
\begin{equation*}
p_{t}(x, y) \leqslant \exp \{-d(x, y) \log (2 d(x, y) /(e t))\} . \tag{22}
\end{equation*}
$$

Both bounds are in fact global and are derived from a single slightly better result

$$
\begin{aligned}
p_{t}(x, y) \leqslant & \exp \left\{t\left(\sqrt{1+(d(x, y) / t)^{2}}-1\right)\right. \\
& \left.-d(x, y) \log \left(d(x, y) / t+\sqrt{1+(d(x, y) / t)^{2}}\right)\right\}
\end{aligned}
$$

However for the given ranges of t, (21) and (22) are reasonable approximations.
It is easily checked that on G_{0}, Theorem 8 gives a better bound than (21). Note however that as $t \downarrow c_{0} d(x, y)$ our bound tends to

$$
c_{1} t^{-d_{\mathrm{s}} / 2} \exp \left\{-c_{2} d(x, y)\right\}
$$

which except for the $t^{-d_{s} / 2}$ term, is of the same form as (21) and (22) for $t \approx d(x, y)$. Accordingly, we can think of the range $t \geqslant c_{0} d(x, y)$ as indicating the scale at which, from the point of view of the r.w. Y, the graph G_{0} starts exhibiting its fractal structure.

An elementary Poisson-type lower bound for $t \leqslant c_{0} d(x, y)$ can be found as follows. Let $0=T_{0}, T_{1}, T_{2}, \ldots$ be the jump times of Y, so $T_{n} \sim \Gamma(n, 1)$. Then

$$
\begin{aligned}
p_{t}(x, y) & \geqslant \sum_{n=d(x, y)}^{\infty}\left(\frac{1}{4}\right)^{n} P\left(T_{n} \leqslant t<T_{n+1}\right) \\
& =\sum_{n=d(x, y)}^{\infty}\left(\frac{1}{4}\right)^{n} \mathrm{e}^{-t} t^{n} / n! \\
& \geqslant \mathrm{e}^{-t}\left(\frac{t}{4}\right)^{d(x, y)} / d(x, y)!
\end{aligned}
$$

Stirling's formula gives $d(x, y)!\approx \sqrt{2 \pi} d(x, y)^{d(x, y)+1 / 2} e^{-d(x, y)}$, whence

$$
\begin{equation*}
p_{t}(x, y) \geqslant c_{3} d(x, y)^{-1 / 2} \exp \{d(x, y)-t-d(x, y) \log (4 d(x, y) / t)\} \tag{23}
\end{equation*}
$$

For $d(x, y) \approx t$ this looks like $c_{4} d(x, y)^{-1 / 2} \exp \left\{-c_{5} d(x, y)\right\}$, which except for the $d(x, y)^{-1 / 2}$ term, is of the same form as (21) and (22) when $d(x, y) \approx t$. Thus the range $t \geqslant c_{0} d(x, y)$ of Theorems 8 and 16 would appear to be the correct one. Moreover, for $t \leqslant c_{0} d(x, y)$ there is little room for any significant improvement of the bounds (22) and (23). Formally, if the r.w. Y wishes to jump from x to y in time $t \leqslant c_{0} d(x, y)$, then it is most likely to take the most direct route, and so it will not be particularly influenced by the fractal nature of G_{0}.

6.2. Discrete time

For discrete time the question of whether the range $n \geqslant c_{0} d(x, y)$ is appropriate does not arise as for $n<d(x, y), p_{n}(x, y)=0$. Of course the question, 'what is the correct
value of c_{2} ? still arises, though we will not answer it here. A Gaussian-type upper bound for the transition probabilities $p_{n}(x, y)$ of the (discrete time) simple r.w. on a general graph has been given by Carne (1985)

$$
\begin{equation*}
p_{n}(x, y) \leqslant 2 \exp \left\{-\frac{1}{2} d(x, y)^{2} / n\right\} \tag{24}
\end{equation*}
$$

Consider

$$
\begin{aligned}
\frac{\left(d(x, y)^{d_{\mathrm{w}}} / n\right)^{1 /\left(d_{\mathrm{w}}-1\right)}}{d(x, y)^{2} / n} & =\left(\frac{d(x, y)}{n}\right)^{-\left(d_{\mathrm{w}}-2\right) /\left(d_{\mathrm{w}}-1\right)} \\
& \geqslant 1 \quad \text { for } n \geqslant d(x, y)
\end{aligned}
$$

So our upper bound (Theorem 17) is better than (24). In fact, that we get upper and lower bounds of the same form is in itself enough to show that these bounds are the right ones.

Acknowledgements

The author would like to thank Martin Barlow for suggesting the subject matter of this paper, which forms part of the author's Ph.D. Thesis. In addition, this work was partially funded by UK EPSRC grant no. GR/J 76187.

References

M.T. Barlow and R.F. Bass, Transition densities for Brownian motion on the Sierpinski carpet, Probab. Theory Related Fields 91 (1992) 307-330.
M.T. Barlow and E.A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Related Fields 79 (1988) 543-623.
T.K. Carne, A transmutation formula for Markov chains, Bull. Sci. Math., 2^{e} série, 109 (1985) 399-405.
E.B. Davies, Large deviations for heat kernels on graphs, J. London Math. Soc. Ser. 2, 47 (1993) 65-72.
P.J. Fitzsimmons, B. Hambly and T. Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Commun. Math. Phys. 165 (1994) 595-620.
B. Hambly, Brownian motion on a homogeneous random fractal, Probab. Theory Related Fields 94 (1992) 1-38.
O.D. Jones, Random walks on pre-fractals and branching processes, PhD Thesis, Statistical Laboratory, Cantab., submitted in: September 1995.
T. Kumagai, Estimates of the transition densities for Brownian motion on nested fractals, Probab. Theory Related Fields 96 (1993) 205-224.
H. Osada, Isoperimetric constants and estimates of heat kernels of pre Sierpinski carpets, Probab. Theory Related Fields 86 (1990) 469-490.
M.M.H. Pang, Heat kernels of graphs, J. London Math. Soc. Ser. 2, 47 (1993) 50-64.

