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Abstract

Non-Gaussian upper and lower bounds are obtained for the transition probabilities of the simple
random walk on the Sierpinski graph, the pre-fractal associated with the Sierpinski gasket. They
are of the same form as bounds previously obtained for the transition density of Brownian
motion on the Sierpinski gasket, subject to a scale restriction. A comparison with transition
density bounds for random walks on general graphs demonstrates that this restriction represents
the scale at which the pre-fractal graph starts to look like the fractal gasket.
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1. Introduction

Barlow and Perkins (1988) obtained the following bounds on the transition density
bi(x, y) of Brownian motion on the infinite Sierpinski gasket G

cit™ "2 exp{—calx — yI* /)" ) <y, )
<3t exp{—ca(fx — y|* /DY (1)

where ¢y, ..., ¢4 are positive constants, d; = 2 log 3/log 5 is the spectral dimension
of G, d,, = log 5/1og 2 is the random-walk dimension of G, x and y € G and ¢t > 0.

It has been reasonably assumed, though not proven, that the transition probabilities
of the simple random walk on the Sierpinski graph Gy satisfy similar bounds. In this
paper we show that this is indeed the case, for large time. For the continuous time
walk we get the following (Theorems 8 and 16. The analogous result for the discrete
time walk is given by Theorems 17 and 18): if p,(x,y) is the transition density of
the simple random walk on the Sierpinski graph Gy, then there exist positive constants
Co, .-, ¢4 such that for all £ > ¢olx — y|

exp{—c2(|x — y¥* /O =N < pi(x, ¥)
<ot exp{—ca(fx — y|® /) DY, 2)

Cllﬂd‘/z

where ds and d,, are as before.
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Fig. 2. The Sierpinski graph Gy (detail).

A comparison of these bounds with some general transition density bounds is
given in Section 6. This comparison demonstrates that the range ¢t > colx — y| is
the right one, and represents the scale at which — from the point of view of the
random walk — the fractal-like structure of the graph Gp, becomes apparent. This
restriction appears because, while any given triangle within Gy can be compared
with arbitrarily larger triangles, it cannot be compared with arbitrarily smaller tri-
angles, as is the case with G. That is, the graph is only partially self-similar.
G and Gy are illustrated in Figs. 1 and 2, and a definition of Gy is given
below.

Bounds analogous to (1) have previously been found for the transition density of
Brownian motion in a variety of fractal spaces: see Barlow and Bass (1992), Fitzsim-
mons et al. (1994), Hambly (1992) and Kumagai (1993). In each case, the non-
Gaussian nature of the transition density stems directly from the self-similarity of the
given fractal. The bounds (2) are, as far as the author is aware, the first of this sort
to be found for a random walk on a graph.

We will proceed by firstly bounding the resolvent density of the process, then con-
verting these bounds into bounds on the transition density. The upper bound can then
be refined by decomposing the set of sample paths of the process, to allow a sepa-
rate treatment of space and time parameters, while a refinement of the lower bound is
achieved by a chaining argument, linking a number of primitive bounds to produce a
somewhat better large time bound.
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1.1. Notation and definitions

Let Gy be the doubly infinite Sierpinski graph, it is defined as follows. Let

Vo = {(0.0),(1,0),(1/2,V3/2)}

and
Eo = {{(0,0),(1,0)},{(0,0),(1/2.v/3/2)}, {(1,0). (1/2.V3/2)} }

Now, recursively define (Vy,E}),(Va,Ez), (V3, E3),... by
Vi = Vo UL2%,0) + 7] U212 'V3) + 1)

and
Ensr = E,U[(2",0) + E,JULQ2".2"7'V3) + £,],

where (x, )+ S :={(x,y)+s:se S}t Let V =V, U[-Vs] and E = Eo U[—-E]
then Gy := (V,E). For any m € Z, define G, = 2™Gy and note that for m=0,
2y Cy.

For any graph G = (V,E), we will write x € G if x € V and 4 C G if 4 is a maximal
subgraph of G. Also, when there is no ambiguity of meaning, we will identify a graph
with its vertex set and vice versa.

We consider two processes on Gy:

X = {X,} the simple random walk on G, and

Y = {¥,} the continuous time version of X using exp(l) jump times.
For A C Gy define hitting times

¥ =inf{n>0:X, € 4},

T, =inf{r>0:Y, € 4},

where unambiguous the X or Y superscript will be dropped. Also, if 4 = {x} then we
will write 7, instead of T'.
For 0<60<1 and 420 let

T} ~ geom(1 — ) independently of X,
T} ~exp(2) independently of Y.

Allowing 6 = 1 and 4 = 0 requires the trivial generalisation of appending oo to the
appropriate state spaces.

For m € 7, we will mean by a 2™ triangle a maximal subgraph of Gy whose vertices
consist of three adjacent G,, points and all those Gy points between them. Also, for
any 4 C Gy, 04 will be used to denote those points in A adjacent to some point not
in 4 and intA will be used to denote A\J4. For x € G, let AA,(x) be the pair of
2" triangles with common vertex x. For x € Gy, let A\, (x) be a 2" triangle containing
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Fig. 3. Dp(x) (with Ap(x) shaded).

2k~+1

Fig. 4. Typical Ap_1(x), Dp(x) and Dy (x).

x and Dp(x) = U, con, ) LOn(y)- See Figs. 3 and 4. For x € Gy, there will be two
2™ triangles containing x, in which case we may choose A,(x) to be either of the
two.

The spectral, random walk and fractal dimensions of G and Gy are denoted ds =
2 log 3/log 2, dy, = log 5/log 2 and dr = log 3/log 2, respectively. Note that they
satisfy the so-called Einstein relation, dy = 2dy/d,,. Finally, the symbols ¢, ¢y, c3, etc.
are used generically throughout for positive constants. Any other notation we need will
be introduced as it arises.

2. Resolvent densities

We will consider firstly the process Y. Let P/ be the transition operator of the process
killed on exiting 4 C Gp and let U# be its resolvent operator. Denote by pf(-,-) and
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ui(-,-) their respective densities. We have

PIA)=E (f(Y,)it < Ty) =Y pix)f (),

ved

Tee
Ut =B [ e s = 3wl 010

yed

and
W (x, y) = / ¢ p(x, v) ds.
0

Let y be counting measure on Gy, then it is clear that P and U{ are py-symmetric in
Gy. That is, pi(x,y) = p{(y,x) and vi(x, y) = vi(p.,x).

Write u; for uf"b and uy for uj. Our immediate goal is to obtain bounds for u;(x,x).
This is done by obtaining bounds on up, (x)(x,x) and the P* law of Tp (y and then
showing that when Tp () and T are of the same order of magnitude so are up, ()(x,x)
and u;(x,x).

2.1. Bounding up, x(x,x)

Let L be local time for ¥, then for any 4 C Gy and A>0
uf(x, J’) = Ex L;'/Ac/\T,'

As Gy is discrete, L7 is just the amount of time Y spends in x up to time f. Thus
Up,x{(*,x) is just the P*-expected time Y spends in x before leaving D,,(x).

It is clear from the structure of Gy (in particular, that it is finitely ramified and
partially self-similar) that for x € G,

LIy Tinn Topa, o
X X _x X X x
E / dr — E / Ldt E / dr
0 0 0

s Tonn, v
=3 Ex/ Lfit
0
=(3)" (3)

Thus, conditioning on Y7, we get for any x, y € G,, such that AN, (x)CTAC Gy

B A

Tye
L‘A(-x’y)‘—_wa\/0 L(}jt

=3 )G+ Y. wilzy). 4)

2EANANp(x)

Note that, even if AN, (x) ¢4 we still have

w6 y) <SG+ D wazy). (5)
ZEANA L (x)



50 O.D. Jones/ Stochastic Processes and their Applications 61 (1996) 4569

We can rephrase (3) as uinian,x)(Xx) = (%)”‘, so the following lemma should
come as no surprise. Essentially, it is saying that the process Y cannot get stuck inside
Gy triangles.

Lemma 1. There exist positive constants ¢; and ¢, such that for all x € Gy
a1(3)" Sup,o(xx) <e(3)"

Proof. (i) Lower bound: Choose some arbitrary a € d/\,(x) then, noting that
MDW(X)((J,X) = Pa(Tx < TD,,,(x)C )qu(x)(x,x), we have

qu(x)(x’x) 2 qu(x)(a,x)

Il

Up,(x)(x. a)

Y P(Yr,,., =2)up,m(za)
zEEN,(x)

Il

and from (4)

up, @) =45 Y (3@aE)" + up,wm(r.2))
YEAALA,(z)

z a3y,

since if z # a then a € AN ,(2).
(i1) Upper bound: Consider

Topir
— X X
qu(x)('x’x) - E / dt
0

m Ton, o Tpep
= E Ex/ dr +Ex/ dr-
k=1 T T

Y ENTeY) A ()

Now

TDmiY)“
E* / Ly < sup  up,(z,x)
T2 ZEN u(x)

< sup qu(x)(Z,Z)
2€AA u(x)

< a(3)"

since E*? fOT’AA”"” L3 = (3)™ and we can bound the expected number of 2™ steps the
process makes from any z € 0A,(x) before exiting D, (x). Similarly,

T“Ak(vl

X b

E / Ly €< sup  thimoo)(2,%)
Teng_ 26004 1 (x)

£ sup Uimaw(z2)
2€004_1(x)

< a3,
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TP z - _ —
since E7 "%~ L3, = (3*~! and we can bound the expected number of 25! steps
the process makes from any z € 0/\;_1(x) before hitting 0/ (x). O

Note that these bounds can in fact be deduced directly from Barlow and Perkins
(1988). For let Z be Brownian motion on the Sierpinski gasket, with local time process
L¥(Z). Define ©(¢) = inf{s: erGo LX(Z) > t} then (modulo a deterministic linear
rescaling of time) the process {Zy,} is equal in law to Y. Markov process theory now
tells us that the potential kernel of Y killed on exiting D,(x) is proportional to the
restriction to Gy N D,,(x) of the potential kernel of Z killed on exiting D, (x). Thus
the Barlow and Perkins estimate of the latter kernel allows one to directly read off the
bounds on up (, of Lemma 1, as well as the bounds on u, given in Lemmas 9-11
below.

2.2. The P law of Tp,

It is known that, given X5 =0, 57 Tg(A A0y converges in distribution to an abso-
lutely continuous r.v. W such that

PY(w <t <y exp{—cyr =y,
p

where ¢; and ¢; are positive constants. The result comes from the embedded branch-
ing process and is given in Barlow and Perkins (1988, Corollary 3.3). We use this
branching process in the following two lemmas.

Lemma 2. There exist positive constants ¢, and ¢, such that for any m=0, x € G,
and n=0

P*(Tipp,0 SWY<Cr exp{—cy(57"n)~ MOy,

Proof. The G,, decimation of X is obtained by observing X on G, discounting sequen-
tial visits to the same point. Call this random walk X™. It follows from the structure of
Gy (in particular, that it is finitely ramified and partially self-similar) that X Zomy
for all m>0. Because of this X is often termed ‘decimation invariant’.

If we allow for negative values of m, it is not hard to show that we can construct
a sequence of random walks X = X% X!, X2 .. defined on Gy, G_{,G_o,..., such
that for any 0m<n, 2"X~" £ 22X 2 X and X" is the G_,, decimation of
X~". Moreover, taking Xy = 0, {nggo(m};o:o is a supercritical branching process
with offspring distribution given by the p.g.f.

v
fu) = ECyloango —

4 -3y
thus, as f'(1) =35 and f"(1) < oo, given X5 =0

N
as. L°

W i=5"T nyo) —— W as m — .
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Now let ¢n(u) = Ee " and ¢(u) = Ee *" then ¢,,(u) = f(Pm_1(1/5)) and as
the W, converge, ¢,(u) — @(u) for all u. In fact, ¢,(u) T ¢(u), for by Jensen’s
inequality

¢1(u) — Ee—uW1 ZeauE w, —e ¥ = ¢0(H)
and assuming @n(u) = dm—1(1)
Gmr1(u) = f(Pm(u/5)) 2 f(Im-1(4/5)) = m(u)

noting that f is increasing. Now from Barlow and Perkins (1988) Proposition 3.1,
we have positive constants ¢, and ¢, such that ¢(u)<c; exp{—cu'/*}. So, for any
u>0

PY(W, <t)=Pe""" > )
< e“¢nu(u) Chebychev’s inequality
< ¢ exp{ut — couV/™}.
Minimising the RHS in u gives at u = ¢3¢~ 9w/(dv=1)
PY(W,, < t)<c; exp{—cqt™ V4" D},

The result now follows on noting that for x € G,, (W,|X = 0) z WX(x) =
(5_’"T5"AAW(X) [Xo =x). O

Lemma 3. There exist positive constants cy, ¢ and ¢y such that for any m=0, x €
G and t =ce2™

P (Tipp i < D<ar exp{—cy(57™)~ V=Y,

Proof. Put W) (x) = 5" Tozp, ) 20d $p(u) = E e™*"»1), then conditioning on
Tinn) W get dp(u) = (5™ log(1 + 57"u)). 1t is easily shown that ¢ (u) =
f(@F_(u/5)) and @l (u) — ¢(u). However,

1 < 1
14+ u+4u?/25 1+u

HOR = g (w),
so by induction @l (u) | ¢(u). (Recall that in the discrete case ¢m(u) T d(u).) This
is because for the continuous time process the distribution of W) (x) becomes more
and more concentrated as m — oo, while for the discrete-time process the opposite is
happening.

Now if 5~"u<c; for some ¢; > 0, then 5™ log(1 + 5 ™u)>=cu for some ¢; > 0
and so as ¢,(-) is decreasing, ¢} (u)< ¢nu(cou) and we can proceed as in Lemma 2
to show that

PY (W (x) < t)<cy exp{—cyt™ /@ D}
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provided that the crucial value cst=#/@=D of y satisfies 5~™u<c;. That is, provided
1265 ™~ Didw  Multiplying this by 5™ gives the required restriction. [

Observe that as W) (0) 2, W and W is non-negative and absolutely continuous,
for any 6 > 0 we can find an M such that for all m2M, x € G,

P (Tian,m < 1) < e exp{—ex(5™0) VD) 4 PY(WI(x) < eo($)")
< ¢ exp{—c (57"~ Ty 45
Considering paths of the process it is clear that for any x € Gy, m>0 and t>co2™
P (Tp, iy < 1) < P (Tonano) < 1)
< erexp{—cx(57")” MOV (6)
Alternatively, given 6 > 0, for any m =M (d) and t >0
P (Tp,xy < 1) < P*(Tean,0 < 1)
< crexp{—cy(57m) VDY 4§, (7)

To obtain a lower bound on P*(Tp, r < t) we will proceed via Chebychev’s
inequality. To do this we need firstly an upper bound for E* Tp ;). From Lemma 1

Topixie
E* Tp,xy = EX/ lds
0

= Up, ) 1(x)

> up,m(xy)

Y€Du(x)

]

< Z Up,(x)(%,x)

YEDp(x)
<a)" IDu(x).
But |Dy(x)| = 4| An(x)| — 4, Where |An(x)] = 3" — S5 3F = 3 4+ 137, 50
E* TD",(x)C §C15m.

Note that this bound is of the right form, as it can be easily shown that E°Tyaa,0) =
5™, Applying Chebychev’s inequality gives

C15m

P (Tp,ex > t)S—t— 8)

This can be refined to give us the following lemma.

Lemma 4. There exists a positive constant ¢, such that for all x € Gy

Px(TDm(x)c > t)ée*c‘rm'.
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Proof. For any ¢; > 0

P (Tp,p > 20) = > P (T, > 20| Top > 11, Y =)

YED,(x)

XP*(Yy = ¥|Tp,xy > )P (Tp,y > 11)
> P (Toer > 1)

yEDm (x)

XP*(Yy = Y| Tp,y > 0P (T, > 1),
but for y € Dyy(x), Dp(x) C Dy (y) so we get

PX(TDM(X)C > 2t|)

< Y P (Tppr > 1)
YED,(x)

><P"(Y,, = y’TD,,,(x)C >0 )PX(TD/"(x)c > tl)

5™ 5
< e Z Px(Yt] = y'TD,,,(x)C >1t) by (8)

t
h L yeDnx)

_ Csz 2
= . R

Clearly, we can extend this argument to show by induction that

c5m\"
PX(TDm(x)c > I’ltl)S ( 2tl > .

The result now follows immediately. [
2.3. Comparing Tp, ) to T) and up,((x,x) to u(x,x)

We know that £ Tp ) = 5" and ET; = 1/4, so we would hope that for .~ 57",

wiex) = E'Ly ~ BV LY, = up,onx) & Y = (S7myosdios =t j=(-d2),

This is indeed the case, as we are now in a position to show.

Proposition S. There exist positive constants ¢ and c; such that for all x € Gy and
A<

c;)f“‘dsmsui(x,x)SQA‘“hdS/z).
Proof. (i) Upper bound: Note to begin with that
up, (%, x) = E*Ly,

> P* (T/L < TD,,,(x)C )Ex Lf

= I)X(T;L < TDm(x)c)u,{(x,x).
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Now from (7) we have for m=M(J)

P (Tp,r < T0) 2/ P*(Tp,xy < t)ie " dt
0
S / (c1 exp{—ca(57 ") "D} 4 5) je A ds
0

:/ 1 exp{—u — ca(u/(A5™)) DY dy 4§
0

= T(A5™) + 9,

where Z(x) | 0 as x — oc. Choose § < %, then we can find a constant c¢3 such that
for 2 < 1 and 5"<c347' < 5™' we have m>M(3) and Z(45™)<{. Substituting

this back in above and applying Lemma 1 gives
u{x,x) <C4(-§‘ Y <esd T4,
(i1) Lower bound: As for the upper bound, note that
w; (6, x) 2 P (Tp,xy < T)up, (X, x).

Now from Lemma 4

o
P (Tp, iy > T2) =/ P (Tpxy > )de M dt
0

20 —_ -
< / e % e dt
0

AT

ToAsm + ¢ '
Applying Lemma 1 we get for 5" <A™ < 5"*! (such an m can always be found for
A<1)

oGy

S e
AST + ¢y ~

uilx,x)=

3. Transition density upper bound

Again, we will be dealing mainly with ¥ throughout the section. Before we apply
the resolvent density bound of the previous section, we need some basic facts about
random walks on graphs. Note that the following lemma and its corollary do not
actually depend on the geometry of Gj.

Fix « > 0 and 4 C G, with |4| < co. U/ is real symmetric and thus diagonalisable.
That is, U/ has eigenvalues 2; with corresponding orthonormal eigenvectors ¢, such
that

Wi, v) =3 t:pi(x)i(»)-

H
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Let A; = oc,-‘l — o, then we have:

Lemma 6. Z; > 0 for all i and for any 4 > 0

Wi, p) =D (A+ 1)~ $i(x)i(»).

Proof. The generator 4,4 of the resolvent semigroup {Uf} -0 18 P4 — I, where P, is
the one-step transition matrix for the discrete r.w. X killed on exiting 4. P, is positive,
symmetric and strictly substochastic, so it has a largest eigenvalue 0<A < 1. Thus
as U4 = (af — 44)~" we have that o; € [(« + 1 + A)", (¢ + 1 — A)7'] and thus
Ai=1—A4 > 0 for all i.

Put #(x, y) = (A + 4) "' ¢i(x)¢:(v). We have for 0 < A < 2 that

o0 oo

(A+ /1,')—] = Z(a — ;L)k(oc + /‘L[)—(k+1) — Z(a _ i)kdf+l,

k=0 k=0

so forany f:4A— Rand 0 < 4 < 20

T, f(x):= Zﬁf()@ ()

y€A

= Z Z Z(a — Daf ix)di(») ()
yed i k=0

=S @ (UH @), ©9)
k=0

However, it follows from the resolvent equation that Uf also satisfies (9), so Uf = Uf
for 0 < A < 2a and thus for all A > 0. O

Corollary 7. For any A C Gy, possibly infinite, t — pl(x,x) is decreasing on [0,00)
and pi(x, )< pixx)"? pl(y, »)2.

Proof. (i) Finite 4: From the uniqueness of the Laplace transform we have that

Pl y) =Y, e 4 pi(x)p:(y). Thus as the A; are strictly positive, ¢ — pi(x,x) is
strictly decreasing. Moreover, from Cauchy-Schwarz we have

12
Pl y) < (Z e_l"t¢i(x)2) (Ze_mqh(}’)z)

= plx,x)"2 pi(y, »)'2.

1/2

(ii) Infinite 4: Just take the limit as m — oo of pfmAA"’(O)(x,y). O

We are now in a position to prove our result. We start with a diagonal upper bound
and then refine this by decomposing the set of sample paths of the process, to allow
us to treat space and time separately.
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Theorem 8. There exist positive constants co, ¢ and ¢, such that for all x,y € Gy
and t > colx — y| vV 1

pi(x, )<t exp{—ca(jx — y|* /)@Y,

Proof. Since p,(x,x) is decreasing we have

o0
u,1(x,x):/ e py(x,x)yds =te™* p;(x,x).
0

Putting 2 = 1/t and applying Proposition 5 gives for t > 1 (i.e. £ < 1)

ciuy(x,x ,
Py < ) i

Applying Corollary 7 this can be extended to an off-diagonal bound, namely, for all
x,ye€Gyand t > 1
pix, y) Scat ™2,

(10)
This bound is not the best that can be done however.
Fix x, y and ¢ and define

Ay :{Z S Go:lZ‘—xISIZ'_.V]}
A2:G0\A1-

and

We have

px, ) =P (Y, =yYpn€A)+P (Y=Y € 4)

and

P (Y, =y, Yy € A2) = E*(r(Yy2), Vo2 € A),

where

r(z)y=P(Y; = y|Yp =2) = pyplz ).

Thus from (10), as ¢ > 1
EX(r(Yy2), Yip € 42) <ea(t/2) 2P (Y, € Ay).

Now, for any §>2 put m = [log §/log 2] — 1, so that 2"*'<§ < 2"*2 Then it
follows from (6) that for t > ¢¢d

P (sup, |Ys — Yo| > 0) < PH(Tp,iey < 1)

<
< exp{~C4(5_”’t)'1'/(d“'~1)}
<

c3 exp{—ca(6~ )~y
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since §™% = §7 18 /1082 < 5=m Thus, for ¢t > colx — y|

P*(Yyz € A7) < PP(supy¢n|Ys — Yo| > 3lx—y))

< o3 exp{—ca((hlx — y)~Py2)~ 1y,

Substituting this back in above gives

P (Y = 3, Yy € dy)<est™ % exp{—co(|x — y|7¢) "D,

Finally, by the symmetry of p,(x, y)
P (Y, =yYped)=P (Y, =xYp € 41),

which can be bounded in exactly the same way as P* (¥, = y,Y;» € 4;). Adding the
two bounds gives the result. [

4. Transition density lower bound

A diagonal lower bound can be obtained easily from our upper bound on the law
of the hitting time Tp,(x).

Recall from (7) that for any & > 0 there exists an M = M(J) such that for all
m=M and £ 20

P*(Tp,y < t)<cp exp{—cy(57"t) d=D1 15,

Choose a so that ¢ exp{—ca™/@~D}< ! and let m = [log(t/a)/log5]. We can
guarantee m =M by requiring ¢ >t for some fy and then decreasing a as necessary.
Now, P*(Y, € Du(x))=P* (Ip,xy > t)=1 — 4, so by Cauchy-Schwarz

2

Lo (PP( eDa)’ = | Y. pixy)
YEDn(x)

< Dt DD ()

YEDy(x) YDy (x)
£ |Dp(x)] pa(x,x).
But [D,(x)| =2 - 3™ + 2<c3t%? (from our definition of m) whence, for all 1>,
px,x) > cqt ™2, (11)

where ¢4 depends on #.

Off-diagonal lower bounds prove somewhat more difficult. We proceed by developing
off-diagonal bounds for #{(x,y). These will be combined with our lower bound on
u;(x,x) to give Proposition 13 below.
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4.1. Off-diagonal bounds for ui(x,y)

We will be making extensive use of the geometry of Gy throughout this subsection.
The approach used is based on that of Barlow and Bass (1992).

Lemma 9. There exists a positive constant ¢; such that for any x,y € A C Gy satis-
fying vy € 0Lm(x) and Dy(x) C A for some m, we have

uA(y’ y) - uA(x’x)guA(y’ y) - MA(X, J’)gcl(%)m-

Proof. It follows from (5) that for any z € 6ADN(Y)NA, uy(z, YYZusly, y) —4(%)’".
Thus, as u4(-, y) is harmonic on int A, (x)

uax, ¥)= min  ug(z, y)Zuy,y) —43)"
2€00(x)

as required. [

Lemma 10. There exists a positive constant ¢, such that for any x,y € A C Gqy sat-
isfying y € 00u(x) and Ayu(x)C A for some m, we have

MA(X,X) - uA(ya J’)ﬁcl('sj)m

Proof. It follows from (5) that for any z € 04 ,(x), uA(z,z)<4(§)’” + u4(y, y). Thus
the result will follow if we can show that

)<l + max uiz2) (12)

For n = 0,1,...,m define a, = max,cpn, ) 44(z,2). We show to begin with that for
any w € 04\,(x)
us(w,w)<es(3) + anr.

If w € G, then trivially uy(w,w)<a,s, so suppose w € G,\G,y;. Label the G,
points of A, 1(x) using w, y1, ¥2,21,23,23 so that w, yy, y» € G,\Gyy1 and 2,22,23 €
Gps1, as shown in Fig. 5. Then from (5)

<
ug(yr1,w) <
ug(y2, w) <

Putting these together we get uy (w, w) <C}(%)" +a,41 as claimed. Now choose xg,x),x;
veesXm—1 sO that a, = uy(x,,x,), then

ua(x,x) < 1q(x9,%0)

m—1

<Yy () +ay,

n=0

< ea(3)" + am,

which is precisely (12). O
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<9

Y, Y

23 w <21
Fig. 5. Dpei(x).

Define af(x, y) = P*(T, < T4 ATy) and Bi(x,y) =1 —af and write a,(x, y) and
Ba(x, y) for «f(x,y) and Bi(x, y), respectively. Clearly,

wh(x, y) = od(x, Y (y, »).

Lemma 11. There exists a positive constant ¢, such that for any x,y € AC Gy sat-
isfying y € Dp(x) C A for some m, we have

ug(y, p) — uslx, y)<cpfx — y| 4.

Proof. 1t is clear that we can choose A\, (x), Am(y) C A in which case there will exist
some z € 00p,(x) N 0A(y). Noting that f4(x, y) < B4(x,z) + Ba(z, y) we have from
Lemmas 9 and 10 that
us(y,y) — wa(x, y) = Ba(x, y)ua(y, y)
SPalx,2)ua(y, y) + Ba(z, yyua(y, y)
= (14 Bua(x,2)) (ua(p, ¥) — us(2,2))
+(Balx,2) + Ba(3,2))us(z,2)

<a(3)".

Let m be the smallest m satisfying y € Dp(x), then 2"~ ! < fx— y|<2™! and ¢(3)" =

1 2™y~ L2e)|x — y|®™=9, which gives the result. O

Lemma 12. There exists a positive constant ¢, such that for any x,x’,y € AC Gy
satisfying x' € Dy(x) C A for some m, we have

Wi, y) —uf (&, p)l <crfx = x|
Proof. Note firstly that
u(x,y) — ul(, y) = ul(y,x) — (5%
= (f(,%) ~ o (r.x))uf (', x")
+af (%) (] (7, x) — wf (&', X)),
Now considering possible paths

(3, x) — (P, X VS P (T S Tye A Ty ST ) <o (0, )5 (x,x7),
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S0

wi(x, y) — w7, ¥) < o (,x) (B Cex Wi (%) + e (x, %) — (¢, x'))
= & (3, x) (] (x,x) ~ wf(x,x")). (13)

Using Lemma 11 this is enough to give the result in the case 4 = 0. Suppose now that
4 > 0. From the resolvent equation we get u?(-, ¥) = us(-, y) ~ AUu(:, y), whence

1 (x, ») — wj (<", ¥)| <lualx, y) — ua(x’, »)|
+ AU, y)x) — Ugdl(, )|
= lus(x, y) — ug(x’, y)|

+ 4 Z(MA(JC,Z) - ua(x',2))ui(z, )

z€A

<erlx — X |7 4 deyx — X1kl ).
Finally,

il =Y wd e )< Y e yy =Y wi(yx) = 1/4,

x€A x€Gy x€Gy

which establishes the result for all A>0. O

Proposition 13. There exists a positive constant ¢, such that for any x,x’ € AC G
satisfying x' € Dy(x) C A for some m, we have for 0 < A < 1 and f € L>®(Gy)

\U# f(x) = Uf FD <eard™ P e = 21574 fl] oo
Proof. From Lemma 12 and (13) we have
w(x, ) — wf(x, p) < (0] (3,x) + af(p,x)) x — /[P

whence

U £(0) = U £ <Y I, ») = {1 LA O

y€4

<arllfllools = ¥4 Y (o (3 + 2 (3,x) -

y€A

But cxj{(y,x) = PP (T €Ty AN TSP (T, £Ty) = uj(y,x)/u;(x,x), so from Propo-
sition 5

S <unx) T AT <o R,
y€eAd

Plugging this back in above gives the result. O
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4.2. Off-diagonal bounds for p(x,y)

As for the upper bound, we use the spectral representation of the resolvent and tran-
sition densities to translate information about u‘jf(x, y) into information about pfi(x, y).
The following lemma comes about by applying this procedure to Proposition 13.

Lemma 14. There exists a positive constant ¢, such that for any x,x',y € AC G,
satisfying x' € Dyu(x) C A for some m, we have for t > 1
Pl ) = P p) et e — x|

Proof. (i) Finite A: Recall from Lemma 6 that for any finite 4 we can find scalars
4; > 0 and orthonormal vectors ¢, such that for any 4 > 0, the eigenvalues of Uf
are (4 + 4;,)~! and their corresponding eigenvectors ¢;. That is

wi(,y) = > _(A+ ) dix)pi(»)

and, by the uniqueness of the Laplace transform, for any ¢ > 0

Plxy) =) e Mpi(x)pi(y).

Fix t > 0 and y and put g(x) =3 (A + A)e" % ¢i(x)pi(y). Then Ufg(x) = pi(x, y),
whence

| P ¥) =PI p)| = [Ufg(x) = Usg(x).
Now, noting that supyo(A+ e #2 <AV 2r~!, we have from (10) that for ¢ > 1
9G] < AV 27> e M P (x)i(y)
= (AV2 ) pihx, »)
<AV 2 Y %2,
Thus from Proposition 13 we have for 0 < 1 < 1
TACSOR ACIEY i B L (A2 e

Putting A = ¢~ gives the result for finite 4.
(i) Infinite A: Take the limit as m — oo of | pi" >4 Oy,
0

FAYAN
y) ~ pinee O ).

We use this to extend our diagonal lower bound (11) to an off-diagonal lower bound.
Corollary 15. There exist positive constants co and c| such that for t >colx — y|?* v 1

iz, y)Zeit™
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Proof. We have from (11) and Lemma 14 that for ¢ > 1

p(x,¥) 2 pi(x,x) — | pi(x, y) — pu(x,x)]
>t R ! |x — yld“ —di

Now if |x ~ y| <est!s then jx — p|ds = SC‘;““/’tl‘d*’/z, so choosing c¢3 small enough
that cc§* ™% < ley, we get py(x, )= 1eit742 as required. O

Corollary 15 forms the basis of the chaining argument used to obtain the lower
bound we are after. Denote by d(x, y) the graph distance between x and y in Gy and
by Bg,(x, o) the ball of centre x radius o in Gy using this distance. Also, write Bg:(x, o)
for the usual Euclidian ball in R2. It is easily checked that the two metrics d(-,-) and
| - — - | are equivalent, with

X — y|<d(x, y)<V3x — yl.

Theorem 16. There exist positive constants cq, ¢, and ¢y such that for all x,y € G
and t=colx — y| vV 1

pilx, Y)Yzt exp{—ex(fx -yt ) D).

Proof. For x = y the result is given by (11), so assume that x # y in all that follows.
Also, if t=colx — y|% then the result follows immediately from Corollary 15. In this
case we have that 1> exp{—(|x — y|%*/0)/@+=D} > exp{—cy """}, so there is no
information lost in including this extra factor.

Suppose now that ¢ <colx — p[?*. Let n be the smallest integer such that
tfn>collx — yl/ny™. (14)

n will be the number of steps in our chain. Condition (14) is equivalent to
nzei(fx — y|™ D, (15)

where ¢; = (co(4v/3)™)@ =1 As we are taking the smallest such integer, there
exists some constant ¢y, independent of x, vy and ¢, such that

n<ex|x — y| ™ /0, (16)
ie.,
tin<ey(fx — yl/n)d“’, a7
where ¢; = cg“'l.
Claim we can find x = xp,x1,...,x, = y such that

d(x;—y,x;)<2d(x, y)/n.
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(The factor 2 appears to take into account the fact that d(-,-) is integer valued.)
This requires only that 2d(x, y)/n>1, which condition is equivalent to 2d(x,y)>
ea(x — p|% /)Y@ =D from (15) and (16). Since d(x, )= |x — y|, this is again equiv-
alent to the condition 2)x — y|=cy(Jx — |9 /) @=D e,

t=cylx -y

For x # y this is the same as requiring ? > ¢4|x — y| V¢4, which is the form of constraint
used in the theorem statement.

Let ¢ = v/3]x — y|/n and put B; = Bg:(x;,€) N Gy. Then for any y;_; € B;_, and
y; € B; we have

|yie1 = yil < [yimy = xica| +dlxiz,x:) + | yi — xi

< 4V3Jx — yl/n.

Thus from (14), t/n>cs|y;—1 — y:|* and, provided #/n>1, Corollary 15 gives us a
constant cg < 1 such that

Pyn(Vie1, yi) 2 ce(t/n) %/,

From (15) and (16), the condition t/n>1 is equivalent to ¢>c7|x — y|, which is the
condition already obtained above.
So

P )= Y D Y e YD) w1 ¥2) Pyt ¥n)

NEB y€EB; Yn—1€EBy_

n—1
> (H !B,-|) Yty .
i=1

Putting « = d(x, y)/n and m = [log(x/2)/log 2] we have D,(x;) C Bg,(x;,2) C B; and
SO

> nglog 3/log 2

> ol — iyt 2

> co(t/n)™?  from (17).
Thus
pi(x, ¥) = cyoci(t/n) 42
> ¢y cpt™4?

d,)2

= ciot " exp{—n log c; '}

recalling that ¢ < 1. Substituting for » from (16) gives the result. ]
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5. The discrete-time process

Bounds on the transition probabilities p,(x, y) of the discrete-time random walk X
can be obtained using exactly the same methods we used to bound the transition density
of the continuous-time random walk Y. The details are similar enough that we will
only sketch the various stages of the proof here, highlighting how they differ from
the continuous-time case. There is essentially only one complication distinguishing the
discrete-time case from the continuous, namely the small time oscillations (of period
2) present in p,(x, y). These are of course present in any random walk on a graph,
however the geometry of Gy serves to smooth out small time periodic behaviour very
quickly. Compare this, for example, with the simple random walk on Z¢, which has a
strict period of 2. A full working of the discrete-time case can be found in the author’s
Ph.D. Thesis (submitted 1995).

5.1. Resolvent operators

Let P, be the one-step transition matrix of the discrete-time process, killed on exiting
AC Gy. Write P4 = (P4)" for its n-step transition matrix and pf(x, y) for the n-step
transition probabilities. Resolvent operators for the process X killed on exiting 4 can
be defined for 0<O<1 by

Tge—1
Vire) = i y)f() =E" > 0"f(X,).
veAd n=0

The resolvent density vj(x, y) satisfies

e y) =Y 0" pi(x.»)

n=0

and, if M, is the number of times X has visited x up to and including time »n
w5, ¥) = E M7,

recalling that Ty ~ geom(l — ). We are interested in the behaviour of vj(x,y) for
values of 8 close to 1.

As one would expect, 1 — 0 behaves much as 4 does in the continuous-time case.
Given this, we can set about bounding Ug(x, y) in exactly the same way we bounded
uf(x,y) in Section 2. In particular, noting that v4(x, y) = v’f(x,y) = uy(x, y), it
follows that there exist constants 8y € (0,1) and ¢y,c; > 0 such that for all x € Gy
and 6 € 6y, 1)

er(1 - 0)—(1-d.</2) <vg(x,x)<cr(1 — 9)7(1—115/2).

Off-diagonal bounds also follow exactly as they did in Section 4.1. That is, there exists
a constant ¢3 > 0 such that for all x,x’ € A C Gy satisfying x’ € D,(x) C A4 for some
m, we have for 8 € (6y,1) and f € L>(Gy)

Vi fx) = Vi £ <es(1 = 0)7 4 x — X147 £l oo (18)
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5.2. Transition probabilities via the two-step chain

Fix 4 C Gy with |4] = k < oo. Since P, is non-negative symmetric, it has real
eigenvalues 4j,..., 4 with orthonormal eigenvectors ¢y, ..., ¢y. Moreover,

PA, ) =) )il y)

and

o 3)= 3 75 D).

Unlike the continuous case, the 4; are not all positive and p(x,x) is not decreasing
in n. However, p4 (x,x) is decreasing in n and the Tauberian theorems used in the
continuous case can be applied to the two-step chain. That is, there exist constants
ng € Z, and c¢y,c; > 0 such that for all x € Gy and n=ng

dy/2

e < paa(xx) <o, (19)

Eq. (19) is all we need to complete our upper bound, as we have by Cauchy—
Schwarz that (for any random walk on a graph) for any 4 C Gy, possibly infinite,
P VIV Pl (6, ») < P (2, x)V2 pd (3, )2, Tt follows from this and (19) that there
exists some ¢3 > 0 such that p,(x, y)<csn~%/2, as per (10). We can proceed as in
Theorem 8 to prove the following theorem.

Theorem 17. There exists an ny and positive constants ¢, and ¢y such that for all
x,y € Gy and nzny

Palx, Y e~ exp{—ca(lx — y|* /m)!/@ 7D},

Note that, because Lemma 2 places no restriction on » (unlike Lemma 3), Theorem
17 only has an absolute range restriction and not the relative range restriction that
appears in Theorem 8. However, for n < |x — y|<d(x,y) we have p,(x,y) = 0, so
this is not a significant improvement.

The small time oscillations present in p,(x, y) also cause complications when ap-
plying our previous method of finding a lower bound. These complications are dealt
with by applying the following result. For any x, ¥ € Gy and n>1

Pur1 (%, 1) =1 pa(x, ¥). (20)

This is a consequence of the fact that for any x, y € Gy, all paths from x to y of length
n=1 (and probability (%)") can be associated with distinct paths of length »n + 1 (and
probability (3)"*!). This can be done, for example, by replacing the first step of the
path with the two steps which, together with the original, make up a Gy triangle. This
is illustrated by Fig. 6.

Inequality (20) can be immediately applied to (19) to show that there exists some
c; > 0 such that p,(x,x)=csn~%? An off-diagonal bound is obtained by applying
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Initial step of the First two steps of
original path the new path

Fig. 6. Constructing a path of length n + 1 from a path of length n.

(18) to

g(x) == "> (1 = )X di(x)i(»)

(for fixed n and y) in the manner of Lemma 14. We have that Vig(x) = pi(x,y)+
6p! . ,(x,y) and thus from (18) there exists some ¢4 > O such that for any x,x’,y €
A C Gy satisfying x’ € D,,(x) C A4 for some m, we get for n=ng

[P (%, ¥) = pax, y) + (1= )0h (6 ) = Pl (s )
Seatlx — x|
Formally, taking the sum p?(x, y) + 6 p? ,1(x, y) instead of just p(x,) has the effect
of smoothing out those oscillations present. This still enables us to proceed as we did

in the continuous-time case, since from (20), p,(x,y)+(1— %) Pri1(x, VISS prii(x, v),
and we still get

pulx, y)Zesn 42

for n=colx — y|% Vny. Using this, the following theorem can be proved in exactly the
same way that Theorem 16 was proved.

Theorem 18. There exists an ng and positive constants cg, ¢y and c; such that for
all x,y € Gy and nzcolx — y| V ng

pux, ¥y Zein™ 2 exp{—cy(jx — y|% /m)! D},

6. Comparison with general graphs

The upper and lower bounds obtained for p,(x, y) and p,(x, y) hold for ¢ = ced(x, y)
and n>=cod(x, y), respectively. In this section we compare these bounds with some
recently obtained for general graphs, focussing on what happens when ¢ < ¢ d(x, y) or
n<cd(x, ).

6.1. Continuous time

Recently, Davies (1993) and Pang (1993) obtained a global upper bound for the
transition density of the (continuous time) simple random walk on a general graph.
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Specifically for k ~ 2.32 they give for t>k~'d(x, y)

Pix, ») < exp{—3(d(x, p)}/)(1 - d(x, ) /(10£°))} (1)
(which is essentially Gaussian for ¢ >> d(x, y)) while for t <k~ 'd(x, y)
pi(x, p) < exp{—d(x, y) log(2d(x, y)/(et))}. (22)

Both bounds are in fact global and are derived from a single slightly better result
pilx,») <exp {1 (VI+ @G y)i7? - 1)
—d(x, y)log (d(x, y)/t + T+ @(x )/eR) }.

However for the given ranges of ¢, (21) and (22) are reasonable approximations.
It is easily checked that on Gy, Theorem 8 gives a better bound than (21). Note
however that as ¢ | cod(x, y) our bound tends to

ot~ %2 exp{—cd(x, y)},

which except for the £~%/2 term, is of the same form as (21) and (22) for ¢ ~ d(x, ).
Accordingly, we can think of the range ¢>cod(x, y) as indicating the scale at which,
from the point of view of the r.w. Y, the graph Gy starts exhibiting its fractal structure.

An elementary Poisson-type lower bound for ¢ <cpd(x, y) can be found as follows.
Let 0 = Ty, Ty, T3, ... be the jump times of Y, so T, ~ I'(n,1). Then

o0
pxy)= D GYPI<St < )
n=d(x,y)

= Y Gyeiem

n=d(x,y)
> e (L)Y /d(x, y)!

Stirling’s formula gives d(x, y)! & v2nd(x, y )= +Y2e=d52)  whence

Pi(x, y) 2 e3d(x, y) ™1 exp{d(x, y) — t — d(x, y)log(4d(x, y)/1)}. (23)

For d(x,y) =~ t this looks like c4d(x,y)~'/? exp{—csd(x,y)}, which except for the
d(x,y)"1? term, is of the same form as (21) and (22) when d(x,y) = ¢. Thus the
range ¢ = cod(x, y) of Theorems 8 and 16 would appear to be the correct one. Moreover,
for ¢t <cod(x, y) there is little room for any significant improvement of the bounds (22)
and (23). Formally, if the r.w. ¥ wishes to jump from x to y in time ¢<cod(x, y),
then it is most likely to take the most direct route, and so it will not be particularly
influenced by the fractal nature of Gj.

6.2. Discrete time

For discrete time the question of whether the range n > cyd(x, y) is appropriate does
not arise as for n < d(x, y), pn(x,y) = 0. Of course the question, ‘what is the correct
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value of ¢,?" still arises, though we will not answer it here. A Gaussian-type upper
bound for the transition probabilities p,(x, y) of the (discrete time) simple r.w. on a
general graph has been given by Carne (1985)

Pl(x, ) <2 exp{—1d(x, y)/n}. o
Consider
(d(x, y)* fm)l/ds=1) d(x, y)\ " D@D
d(x, yy/n - ( n )
=1 for nzd(x, y).

So our upper bound (Theorem 17) is better than (24). In fact, that we get upper and
lower bounds of the same form is in itself enough to show that these bounds are the
right ones.
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