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Abstract 

Non-Gaussian upper and lower bounds are obtained for the transition probabilities of the simple 
random walk on the Sierpinski graph, the pre-fractal associated with the Sierpinski gasket. They 
are of the same form as bounds previously obtained for the transition density of Brownian 
motion on the Sierpinski gasket, subject to a scale restriction. A comparison with transition 
density bounds for random walks on general graphs demonstrates that this restriction represents 
the scale at which the pre-fractal graph starts to look like the fiactal gasket. 
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1. Introduction 

Barlow and Perkins (1988) obtained the following bounds on the transition density 
b,(x,y) of Brownian motion on the infinite Sierpinski gasket G 

clt-d>i2 exp{-c2(lx - yjd~/t)‘l(d~\-‘)} <b&c, y) 

<,/“I2 exp{-c4(Ix - yld>\/t)li(dw-‘)} (1) 

where cl, . . . . c4 are positive constants, d, = 2 log 3/lag 5 is the spectral dimension 
of G, d, = log 5Jlog 2 is the random-walk dimension of G, x and y E G and t > 0. 

It has been reasonably assumed, though not proven, that the transition probabilities 
of the simple random walk on the Sierpinski graph Go satisfy similar bounds. In this 
paper we show that this is indeed the case, for large time. For the continuous time 
walk we get the following (Theorems 8 and 16. The analogous result for the discrete 
time walk is given by Theorems 17 and 18): if pr(x,y) is the transition density of 

the simple random walk on the Sierpinski graph Go, then there exist positive constants 

CO, . . . , c4 such that for all t > CO Ix - y j 

clt +A” exp{ -c2( (x - y(d”/t)“(dw-“} < Pt(X, Y> 

<C/J2 exp{-c4(lx - y(d”/t)“‘d”-‘)}, 

where d, and d, are as before. 

(2) 
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Fig. 1. The Sierpinski gasket G (detail) 

Fig. 2. The Sierpinski graph Go (detail). 

A comparison of these bounds with some general transition density bounds is 
given in Section 6. This comparison demonstrates that the range t > colx - yJ is 
the right one, and represents the scale at which - from the point of view of the 
random walk - the fractal-like structure of the graph GO becomes apparent. This 
restriction appears because, while any given triangle within GO can be compared 
with arbitrarily larger triangles, it cannot be compared with arbitrarily smaller tri- 
angles, as is the case with G. That is, the graph is only partially self-similar. 
G and Go are illustrated in Figs. 1 and 2, and a definition of Go is given 
below. 

Bounds analogous to (1) have previously been found for the transition density of 
Brownian motion in a variety of fractal spaces: see Barlow and Bass (1992), Fitzsim- 
mons et al. (1994), Hambly (1992) and Kumagai (1993). In each case, the non- 
Gaussian nature of the transition density stems directly from the self-similarity of the 
given fractal. The bounds (2) are, as far as the author is aware, the first of this sort 
to be found for a random walk on a graph. 

We will proceed by firstly bounding the resolvent density of the process, then con- 
verting these bounds into bounds on the transition density. The upper bound can then 
be refined by decomposing the set of sample paths of the process, to allow a sepa- 
rate treatment of space and time parameters, while a refinement of the lower bound is 
achieved by a chaining argument, linking a number of primitive bounds to produce a 
somewhat better large time bound. 
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1.1. Notution and dgfinitions 

Let Go be the doubly infinite Sierpinski graph, it is defined as follows. Let 

Vo = {(0>0),(1,0),(1/2,~/2)) 

and 

Now, recursively define ( VI, E I ), ( VZ, Ez), ( V3, E3 ), . . by 

V n+l = v, u [(2”,0) + V,] u [(2”-‘,2”-‘Jj) + V,] 

E ,,+, = E, U [(2”,0) + E,] U [(2”-‘J-‘J5) + E,], 

where(x,y)+S:={(x,y)+s:sES}.Let V==V,U[-Voc]andE=E,U[-E,] 
then Go := (V,E). For any m E Z, define G, = 2”Go and note that for m 30, 
2mVJc v. 

For any graph G = (V, E), we will write x E G if x E V and A c G if A is a maximal 
subgraph of G. Also, when there is no ambiguity of meaning, we will identify a graph 
with its vertex set and vice versa. 

We consider two processes on Go: 

X = {X,,} the simple random walk on GO and 

Y = {Y,} the continuous time version of X using exp( 1) jump times, 

For A c Go define hitting times 

T$ = inf{naO:X, E A}, 

TAy =inf{t>/O:Y! E A}, 

where unambiguous the X or Y superscript will be dropped. Also, if A = {x} then we 
will write TX instead of TiX}. 

For O<tI<l and 230 let 

Ti N geom( 1 - 0) independently of X, 

Tl N exp(A) independently of Y. 

Allowing (1 = 1 and A = 0 requires the trivial generalisation of appending M to the 
appropriate state spaces. 

For m E L+ we will mean by a 2” triangle a maximal subgraph of Go whose vertices 
consist of three adjacent G, points and all those Go points between them. Also, for 
any A c Go, c?A will be used to denote those points in A adjacent to some point not 
in A and intA will be used to denote A\aA. For x E G,, let n&(x) be the pair of 
2m triangles with common vertex x. For x E Go, let n,(x) be a 2” triangle containing 
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Fig. 3. D,(x) (with A,(x) shaded) 

Fig. 4. Typical Ll_l(x), A,(x) and Ak+l (x). 

x and Gd-4 = UyEaA,,,(xj O&(y). See Figs. 3 and 4. For x E G,,, there will be two 
2” triangles containing x, in which case we may choose n,(x) to be either of the 
two. 

The spectral, random walk and fractal dimensions of G and Go are denoted d, = 
2 log 3/lag 2, d, = log S/log 2 and df = log 3/lag 2, respectively. Note that they 
satisfy the so-called Einstein relation, d, = 2df/d,. Finally, the symbols cl, q, ~3, etc. 
are used generically throughout for positive constants. Any other notation we need will 
be introduced as it arises. 

2. Resolvent densities 

We will consider firstly the process Y. Let P;’ be the transition operator of the process 
killed on exiting A c GO and let lJf be its resolvent operator. Denote by p;‘(., .) and 
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4(., .) their respective densities. We have 

P:‘f(x)=EXU-(W;t < TIC) = &&x,y)f(y), 
YEA 

J’ 
T4c 

U:‘,f(x) = EX 
0 

e-‘“.f( Y,) ds = c u$(x, y).f’(y) 
.VEA 

and 

u;(x,y) = 
sm 

eCJJpt(x,y)ds. 
0 

Let p be counting measure on Go, then it is clear that P;” and ZJ; are p-symmetric in 

GO. That is, P;‘(x,Y) = I$‘(YJ) and &GY) = u$Y,x>. 
Write ~1, for ~7 and UA for ut . Our immediate goal is to obtain bounds for U;(X,x). 

This is done by obtaining bounds on UQ,,(.~J(X,X) and the Px law of TD,,,txy and then 
showing that when TD”,(,~ and Ti are of the same order of magnitude so are ZQ,(~)(X,X) 
and u;.(x,x). 

2.1. Bounding UD,,,(~)(X, x) 

Let Lf be local time for Y, then for any A c Go and i, 3 0 

As Go is discrete, L); is just the amount of time Y spends in x up to time t. Thus 
UD,,,(,,(X,X) is just the PI-expected time Y spends in x before leaving D,(x). 

It is clear from the structure of Gs (in particular, that it is finitely ramified and 
partially self-similar) that for x E G,,, 

=<;y. (3) 

Thus, conditioning on Yri_,,, ,,,, we get for any x, y E G, such that n&(x) CA C Go 

.I 

T4C 
UA(X,Y)=E~ LL;, 

-a(x.I,(i,” +; c W(Z, v). (4) 
zE?n&,,(x) 

Note that, even if U&(x) CA we still have 

Q(X,Y) 9 K&Yx;)m + $ c kdZ,Y). 
:E8AA,,,(x) 

(5) 
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We can rephrase (3) as Uinrnn,,,(x)(X,x) = (z)“, so the following lemma should 
come as no surprise. Essentially, it is saying that the process Y cannot get stuck inside 
G, triangles. 

Lemma 1. There exist positive constants cl and c2 such that for all x E GO 

c,(~)“~~UD,,,(x)(x,x)~C*(~)m. 

Proof. (i) Lower bound: Choose some arbitrary a E C?&(X) then, noting that 

t~,c~)(a,x) = p’(T, < TD,~~(,F )Q,(&x), we have 

= c px (YT;A”,,l, = z) ~D,,,(x)k a) 
Zen&&) 

and from (4) 

since if z # a then a E aA&( 
(ii) Upper bound: Consider 

Now 

since E’ so Ti~A!,,c:l Lrl = ($)” and we can bound the expected number of 2” steps the 
process makes from any z E a&(x) before exiting D,(X). Similarly, 

s TPA,,~I 
E” -Lit ,< SUP %t L&(x)(4x) 

T;a,_,w z~dAi _ I (x) 

< sup Uint &(x)(&z) 
r~dAr_l(x) 

< c&jk-‘, 
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since E” 
r?AA,_,,:, 

so Lf,, = (:)“-I and we can bound the expected number of 2k-’ steps 
the process makes from any z E d&~(x) before hitting a&(x). 0 

Note that these bounds can in fact be deduced directly from Barlow and Perkins 
(1988). For let 2 be Brownian motion on the Sierpinski gasket, with local time process 
L;(Z). Define r(t) = inf{s : xxEoo L;(Z) > t} then (modulo a deterministic linear 
resealing of time) the process {Zr(t,} is equal in law to Y. Markov process theory now 
tells us that the potential kernel of Y killed on exiting D,(x) is proportional to the 
restriction to Go n D,(x) of the potential kernel of Z killed on exiting D,(x). Thus 
the Barlow and Perkins estimate of the latter kernel allows one to directly read off the 
bounds on IQ,,,(~) of Lemma I, as well as the bounds on uA given in Lemmas 9-11 
below. 

2.2. The P’ law of T,,<I,c,r, 

It is known that, given X0 = 0, 5+‘~,&n,~,(o, converges in distribution to an abso- 
lutely continuous r.v. W such that 

PO (W < t) <cl exp{ -czt-“(d~‘-‘)}, 

where cl and c2 are positive constants. The result comes from the embedded branch- 
ing process and is given in Barlow and Perkins (1988, Corollary 3.3). We use this 
branching process in the following two lemmas. 

Lemma 2. There exist positive constunts cl und c2 such that for uny m 20, x E G, 
und n30 

P” (T;Ynn,,,cxj 6n)dq exp{-c2(5-mn)-“‘d~-‘1}. 

Proof. The G, decimation of X is obtained by observing X on G,, discounting sequen- 
tial visits to the same point. Call this random walk X”. It follows from the structure of 

Ga (in particular, that it is finitely ramified and partially self-similar) that Xm g 2mX 
for all m >O. Because of this X is often termed ‘decimation invariant’. 

If we allow for negative values of m, it is not hard to show that we can construct 
a sequence of random walks X = Xo,X-‘,X-2,. . , defined on Go, G-1, G-2,. . . , such 

that for any 0 <m <n, 2mX-m 2 2”XPn 2 X and X-m is the G-, decimation of 
X-“. Moreover, taking X0 = 0, { 7’&~,co,}~~o is a supercritical branching process 
with offspring distribution given by the p.g.f. 

thus, as f’( 1) = 5 and ,f”( 1) < co, given Xa = 0 
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Now let &(u) = EepUW- and 4(u) = Ee@‘” then &(u) = f(@,,_1(~/5)) and as 
the W, converge, &(u) -+ 4(u) for all U. In fact, &(u) 7 4(u), for by Jensen’s 
inequality 

$1(u) = Ee- UW aedUE w, = eeU = &(u) 

and assuming &(u) 3 &,_ I(U) 

bz+1(u) = f(~m(UIS))kf(~m-I(UI5)) = 4*(U) 

noting that f is increasing. Now from Barlow and Perkins (1988) Proposition 
we have positive constants CI and c2 such that +(u)<cI exp{-c2u”dW}. So, for 
u>o 

PO (W, < t) = PO (ewucv”’ > eP) 

< eU’&,,(u) Chebychev’s inequality 

d cl exp{ut - c2z4 lid, }. 

Minimising the RHS in u gives at u = c$-dwi(d*-l) 

PO ( W, < t) d cl exp{ -c~t-“(dw-‘)}. 

3.1, 

any 

The result now follows on noting that for x E G,,,, (W,/& = 0) g W:(x) := 
(5-“T&&,cX,I& = x). 0 

Lemma 3. There exist positive constants CO, cl and c2 such that for any m 20, x E 
G, and t > ~702~ 

Proof. Put W,‘(x) = 5-MT&n,(x) and 4:(u) = EXe-UWi(X), then conditioning on 
T&,8,,(Xj we get #f(u) = &(5m log(l + 55”‘~)). It is easily shown that 4:(u) = 

f(&,(u/5)) and d:(u) + 4(u). However, 

434 = I 1 + u + 4u2/25 

so by induction +6:(u) 1 4(u). (Recall that in the discrete case &(u) T 4(u).) This 
is because for the continuous time process the distribution of W,‘(x) becomes more 
and more concentrated as m ---f cq while for the discrete-time process the opposite is 
happening. 

Now if 55”‘~ <cl for some cl > 0, then 5* log( 1 + 5-Q) >czu for some cz > 0 
and so as &(.) is decreasing, +f(~)<+~(czu) and we can proceed as in Lemma 2 
to show that 

Px (W,‘(x) < t) Gc3 exp{ -c,t-l’(dw-l)} 
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provided that the crucial value c,t-dw/(dh -‘) of u satisfies 5+“u <ct. That is, provided 
t > c65 -Ww - 1 )/du. . Multiplying this by 5” gives the required restriction. 0 

Observe that as W:(O) 2 W and W is non-negative and absolutely continuous, 
for any 6 > 0 we can find an M such that for all m >M, x E G, 

PX (TJAn,,cX, < t) < cl exp{-c~(5-“t)-‘i(d”-‘)} + Px (W,‘(x) < cg( f )“) 

< cl exp{-c~(5-mt)-‘i(d~-‘)} + 6. 

Considering paths of the process it is clear that for any x E Go, m >,O and t 3~2”’ 

PX (Tb,(~y < t) < p (T~AA,,,(o) < t) 

< cl exp{-c~(5-mt)-"(d~-')}. 

Alternatively, given 6 > 0, for any m >,M(6) and t b 0 

px (T&(X)‘ < t) < pa (riAA,(O) < t> 

(6) 

d C] exp{ -c2(5-“t)-“(dn -“} + 6. (7) 

To obtain a lower bound on PX (T,,,,jC < t) we will proceed via Chebychev’s 
inequality. To do this we need firstly an upper bound for EX TD,,,(+. From Lemma 1 

= c Q,(X)(X~ Y) 
YE&z(X) 

cc W”,&J) 
YE&,(X) 

d cl($)m I&l(x)l. 

But IDm(x)l = 41&(x)1 - 4, where I&,,(x)\ = 3m - c;l,’ 3k = 5 + 63”, so 

EX TD~<(,,c d cl 5m. 

Note that this bound is of the right form, as it can be easily shown that E”TaAA,,,cO) = 

Y. Applying Chebychev’s inequality gives 

Cl 5m px (~~,,(x)c > t) 6 --j-. 

This can be refined to give us the following lemma. 

(8) 

Lemma 4. There exists a positive constant cl such that for all x E Go 

PX (TD,(~)c > t)<e-c15-“‘r. 
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Proof. For any tl > 0 

PX(TLI.,(X)c > 2fl) = c P”(~fL(xy > 24TD&Y ’ fl,rt, =Y) 

YGMX) 

xP”(Y,, = VlTD”&) > t1 >p” (TD”&)’ > tl), 

but for y E D,(X), D,(X) CD,+l(y) so we get 

P” (TD,,,(X)’ > 2fl) 

6 
Cl5 In+1 c,5m 
-. - 

t1 tl c PX(y,, = YI~D&)c > ll> by (8) 

YE&(x) 

Clearly, we can extend this argument to show by induction that 

c25m n 
px(TDn,(,y > ntr)G - ( >- t1 

The result now follows immediately. 0 

2.3. Comparing TD”~(,~ to T). and UD,,,&,X) to U&X,X) 

We know that E” TQ+~ M Y and E Ti = l/1, so we would hope that for 1 E 5+, 
uj.(x,x) = E”L;, M E”L;D,,~,l,C = uD,,,(&x) F=Z (;)” = (5-m)‘o~3”og-1 = A-(‘-dA’2). 
This is indeed the case, as we are now in a position to show. 

Proposition 5. There exist positive constants cl and c2 such that for all x E Go and 
A<1 

Proof. (i) Upper bound: Note to begin with that 

QM&,x) = EXGD# 

3 P” (Ti < TD,~~(,~ )EX L; 

= P” (TA < To,,,,,, )~i(v). 
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Now from (7) we have for m>M(6) 

d 
SX 0 ( 

cl exp{-cz(5~mt)-‘,(d”-‘)} + 6) i,ee”‘dt 

= 
J’ 

x 
cl exp{-u - c~(~/(i.5”))-“(~~-“} du + 6 

II 

= q/25”) + 6, 

where Z(x) 1 0 as x + cc. Choose 6 < 4, then we can find a constant c3 such that 
for i, < 1 and 5m <qi.- < 5”‘+’ we have m 2 M(6) and Z(E,Sm) 6 i. Substituting 
this back in above and applying Lemma 1 gives 

q(x,x)<c@m <c&(‘-Q? 

(ii) Lower bound: As for the upper bound, note that 

Ui(X,X) 3 PX (T&(X,, < ri,)uD,,,(x)(X,X). 

Now from Lemma 4 

s zc 

< e -C,5-“‘tAe-it & 

0 

Applying Lemma 1 we get for 5”’ <I,-’ 
i, < 1) 

C2(~)m >c3j-(l-d,i2) Ui(X,X)3 ___ / 
1+5” + Cl ” . 

: grn” (such an m can always be found for 

3. Transition density upper bound 

Again, we will be dealing mainly with Y throughout the section. Before we apply 
the resolvent density bound of the previous section, we need some basic facts about 
random walks on graphs. Note that the following lemma and its corollary do not 
actually depend on the geometry of Go. 

Fix CI > 0 and A c Go, with IAl < 00. U,” is real symmetric and thus diagonalisable. 
That is, CIi has eigenvalues (Xi with corresponding orthonormal eigenvectors ~~ such 
that 

lc;(X, .v) = C %bi(x>4i(.Y>. 
i 
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Let ii = cri’ - GI, then we have: 

Lemma 6. ltii > 0 for all i and for any i > 0 

Uf(-%.Y)= x(2 + A-'k(xk#)i(.Y>. 

Proof. The generator AA of the resolvent semigroup { Ui}i,o is PA - 1, where PA is 
the one-step transition matrix for the discrete r.w. X killed on exiting A. PA is positive, 
symmetric and strictly substochastic, so it has a largest eigenvalue 0 <A < 1. Thus 

as ut = (@I-AA)-’ we have that Hi E [(a + 1 + A)-‘,(a + 1 - A)-‘] and thus 
ii 2 1 - A > 0 for all i. 

Put cj(x, v) = Ci(3, + A,)-‘&(x)~;(JJ). We have for 0 < 3, < 2a that 

(3, + Ai)-’ = g(U. - A)k(X + ,Ai)-(k+‘) = F(@. - ;l)kC1:+l, 
k=O k=O 

so for any f :A -+ R and 0 < 3, < 2cr 

(a - n)ka~+‘~i(x)k(v)f(v) 

yEA i k=O 

= g(ct - A)k (u;)k+l f(x). 

k=O 

(9) 

However, it follows from the resolvent equation that Uf also satisfies (9), so rf = Ui 
for 0 < A < 2a and thus for all 1 > 0. 0 

Corollary 7. For any A c GO, possibly injinite, t H p;“(x,x) is decreasing on [O,C.X) 
and ~;~(~~Y)~P;~(~,~)~~~P;~(Y,Y)‘~~. 

Proof. (i) Finite A: From the uniqueness of the Laplace transform we have that 

P;“(x, Y) = xi e-‘Jr4Lx)4i(y). Th us as the Ai are strictly positive, t H p;‘<x,x) is 
strictly decreasing. Moreover, from Cauchy-Schwarz we have 

P:‘(X, Y) d (J$ .*“$i(X)2) 1’2 (F Ci”#i(y)‘) 1’2 

= P;l(x,x)“2P;4(Y,Y)1’2. 

(ii) Infinite A: Just take the limit as m -+ CC of pt .4nnnR,(o)(x, y). ??

We are now in a position to prove our result. We start with a diagonal upper bound 
and then refine this by decomposing the set of sample paths of the process, to allow 
us to treat space and time separately. 
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Theorem 8. There exist positive constants CO, cl and c2 such that for all x, y E Go 
Llnd t > co/x - y 1 v 1 

pt(x, y) d c, t-dJ2 exp{-c2(lx - y\d”/t)‘!(d~~-‘)}. 

Proof. Since pt(x,x) is decreasing we have 

.I 

00 
u;_(x,x) = e-is p,(x,x) ds 3 te-“’ pt(x,x). 

0 

Putting i = I/t and applying Proposition 5 gives for t > 1 (i.e. i. < 1): 

Applying Corollary 7 this can be extended to an off-diagonal bound, namely, for all 
x, y E Go and t > 1 

pt(x, y) Q-v (10) 

This bound is not the best that can be done however. 
Fix x, y and t and define 

At ={z E Go:Jz-x~~~z-y~} and 

A2 = Go\A,. 

We have 

P&, Y) = f’” (K = y, Yti2 E AI > + Px (Yt = y, Yt/2 E A2) 

and 

Px (r, = Y, Y,2 E A21 = EX (7(Yt/2), Yti2 E A2)r 

where 

r(z) = QY, = y I y1/2 = z> = ‘R/2(4 Y>. 

Thus from (IO), as t > 1 

EX (r(Yt/2), Yq2 E A2Kc2W2)-dq’2~ (Yt,2 E A2). 

Now, for any 6 22 put m = [log d/log 21 - 1, so that Y’+’ <S < 2m+2. Then it 
follows from (6) that for t > co6 

PX(SUps~rlY, - Yol > 8) d P”(TD,,,(X)L < t) 
< c3 exp{-~~(5-“t)-“‘dw-“} 

< c3 exp{ -c4(Kd” t)-“(dv-‘)}, 
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since a-dw = 8-h 51 log 2 < 5-m . Thus, for t > CO/X - yJ 

mytI2 EA2) G ~(SUPs4q21Ys - Yol > ;Ix - VI) 

d c3 exp{-cd((i(x - ~l)-~“t/2)-“(~,-‘)}. 

Substituting this back in above gives 

P” (& = y, Y,2 E A~)<c~~K”“‘~ exp{-ce((x - yj-d”t)-“(d~~-l)}. 

Finally, by the symmetry of pt(x,y) 

which can be bounded in exactly the same way as Px (Y, = y, Y,, E A2). Adding the 
two bounds gives the result. 0 

4. Transition density lower bound 

A diagonal lower bound can be 
of the hitting time 7”,,,,,. 

Recall from (7) that for any 6 
m>M and t>O 

obtained easily from our upper bound on the law 

> 0 there exists an M = M(6) such that for all 

P”(T~~~,~,~ < t)<q exp{-c2(5-mt)-“(d~-‘)} + 6. 

Choose a so that c’ exp{ -c2u-“(d~~-‘)} < i and let m = [log(t/a)/log5]. We can 
guarantee m>:M by requiring t 2 to for some to and then decreasing a as necessary. 

Now, pn (r, E &Lx)) >P” V’D”,,,, > t)> i - 6, so by Cauchy-Schwarz 

,< I&(x)J P2rCW). 

But I&(x)/ = 2 . 3m + 2 <c3t dd2 (from our definition of m) whence, for all t 3 to 

pt(x,x)3C4t-dsf2, (11) 

where c4 depends on to. 
Off-diagonal lower bounds prove somewhat more difficult. We proceed by developing 

off-diagonal bounds for 4(x, y). These will be combined with our lower bound on 
u;,(x,x) to give Proposition 13 below. 
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4.1. Of-diagonal bounds jbr u:(x, y) 

59 

We will be making extensive use of the geometry of Go throughout this subsection. 
The approach used is based on that of Barlow and Bass (1992). 

Lemma 9. There exists a positive constant cl such that j& any x, y E A c Go satis- 
fying y E a.&,,(x) and n,(x) c A for some m, we have 

UA(Y,Y) - UAk.~)G~uA(Y>Y) - k4(WKcl(;)m. 

Proof. It follows from (5) that for any z E 
Thus, as UA(., y) is harmonic on int A,(x) 

as required. ??

Lemma 10. There exists a positive constant cl such that for any x, y E A c Go sat- 
isfEng y E a&,,(x) and &(x)cA for some m, we have 

u&,x) - UA(Y,YKcCl(~)m. 

Proof. It follows from (5) that for any z E a&(x), UA(Z,Z)<~(;)~ + u~(y, y). Thus 
the result will follow if we can show that 

&,X)<C2($ +zCm~xCxj~n(z,z). (12) //I 

For n = O,l,... ,m define a,, = max,,an,,(,) u.~(z,z). We show to begin with that for 
any w E an,(x) 

244(~,w)<c3($)~ + a,+l. 

If w E Gn+t then trivially u~(w,w)<a,+l, so suppose w E G,\G,+t. Label the G, 

Points of @%+1(x> using w,Yl~YZ,zl,z2,z3 SO that WYl,.Y2 E (%\($,+I and -?I,z2$3 E 

G n+l, as shown in Fig. 5. Then from (5) 

u,4(w,w) d ($)n + i(2 a,+1 + U,~(YI,~) + ~.4(~2,w)), 

%4(y1,w) G i(2 antI + t~(y2,w) + u~(w.w)), 

Qy2.w) d $(2a,+l + UA(YI,W) + ~(w,w)). 

Putting these together we get UA(U~, w) <cs( 5 )” +a,+~ as claimed. Now choose x0, XI ,x2 
. . . ,x+1 so that a, = uA(x,,x,), then 

UA(X,X) d &4(XO>XO) 
IV--l 

Gc3 ($>“+a, c 
II=0 

d CJ($)~ + a,, 

which is precisely (12). 0 
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Fig. 5. A,+,(x). 

Define 4(x, y) = P’(T, < TAG A Tl) and /$(x, y) = 1 - c$ and write CQ(X, y) and 
/3,&q y) for OI{(X, y) and #(x, y), respectively. Clearly, 

4(x, y) = 44 Y)&Y> Y). 

Lemma 11. There exists a positive constant cl such that for any x, y E A c GO sat- 
isfying y E D,(x) c A for some m, we have 

M(Y,Y) - W(~,.JJ)~ClI~ - Ypdf. 

Proof. It is clear that we can choose A,(x), Am(Y) c A in which case there will exist 
some z E a&(x) n a&(y). Noting that /?A(x,Y)</?A(x,z) + P,&,y) we have from 
Lemmas 9 and 10 that 

W(Y, Y) - %4(x, Y> = P&Y YhA(Y>Y) 

<P,4(X,Z)W(Yv, Y> + P&Y YMY? Y) 

= (1 + P&A) (W(Y,Y) - U&J)) 
+(m,4 + MYA)WW 

ea<y. 
Let m be the smallest m satisfying y E D,,,(x), then 2+’ < IX - y/ <2m+1 and cl<: )” = 
cl (2m)dw-df <2cljx - yjdw-df, which gives the result. 0 

Lemma 12. There exists a positive constant cl such that for any x,x’, y E A c GO 
satisfying x’ E D&x) c A for some m, we have 

/z&x, y) - z&x’, y)I <Cl 1x - x’ldw--df. 

Proof. Note firstly that 

44 Y) - &'>Y) = &YA - u;;l(y,x') 

= (&VA - 4(Y,+w,X'> 

+~(Y~~>(~w) - &',x')). 

Now considering possible paths 

4YJ> - ~(Y,x’)dPy(T,a4c A T,,<T,,)~~(y,x)P~(x,x’), 
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SO 

4kY) - 4(x’, Y) G ~(Y,X)(P~(X,X')~(X',x'> + &x,x) - &‘,x’)) 
= %i(r,x)(4x,x) - &,x’)). (13) 

Using Lemma 11 this is enough to give the result in the case 1. = 0. Suppose now that 
1, > 0. From the resolvent equation we get 4(., y) = UA(., y) - XJA~(., y), whence 

Finally, 

which establishes the result for all A 20. 0 

Proposition 13. There exists a positive constant cl such that for any x,x’ E A c Go 
satisfying x’ E &(x) c A for some m, we have $or 0 < 2 < 1 and f E C”(Go) 

IU,“f(x) - U,“f(x’)I <c,PJ2Jx - X’pqf(lm. 

Proof. From Lemma 12 and (13) we have 

(t&x, y) - z&‘, Y)l <Cl (&Y>X> + &YJ')) lx - 4dw-df 

whence 

w,Am - w-<x’>l G c I&%Y) - 4(x’, VI IS( 
YEA 

<Cl Ilfllml~ - 4dw-df c (&YA + &Y,X’)) . 
YEA 

But oc~(y,x) = PY(TxdT~E A Z’;)fPY(Txd7’~) = ui(y,x)/un(x,x), so from Propo- 
sition 5 

Plugging this back in above gives the result. 0 
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4.2. Off-diagonal bounds for p;‘(x, y) 

As for the upper bound, we use the spectral representation of the resolvent and tran- 
sition densities to translate information about 4(x, Y) into information about p;“(x, Y). 
The following lemma comes about by applying this procedure to Proposition 13. 

Lemma 14. There exists a positive constant cl such that for any x,x’, y E A c Go 
satisfying x’ E D,(x) c A for some m, we have for t > 1 

Ip:‘(x, y) - p;“(x’, y)J <c,t-‘lx -x’Jd,-df. 

Proof. (i) Finite A: Recall from Lemma 6 that for any finite A we can find scalars 
3&i > 0 and orthonormal vectors $i such that for any 3, > 0, the eigenvalues of Uf 
are (2. + l&i)-’ and their corresponding eigenvectors 4i. That is 

4(x, Y) = CO* + Ai)-l #%(X)#i(Y) 

and, by the uniqueness of the Laplace transform, for any t > 0 

P:‘(x, Y) = C e-“‘Mx>MY>. 

Fix t > 0 and y and put g(x) = z,(n + &)e-“it&(x)+i(Y). Then ufg(x) = p;“(X, Y), 
whence 

Id@> Y) - P;“<X’, VII = lU;‘&) - &7(x’)/. 

Now, noting that supD,,( A+ P)e-B”‘2 d 3, V 2t-‘, we have from (10) that for t > 1 

(g(X)( d (A V 2t-‘) C e-“t’2$i(x)&(Y> 

= (A v 2t-‘)P$x,Y) 

< (3, v 2t-‘)c*t-dsJ2. 

Thus from Proposition 13 we have for 0 < 2 < 1 

Ip:‘(x, y) - p:‘(x’, y)l dC*~-dsJ21x - x’ld,-df(J. v 2t-‘)t-d,‘2. 

Putting ;1 = t-’ gives the result for finite A. 
(ii) Infinite A: Take the limit as m --f w of Ip~“nA”‘io)(x, y) - pfnAnm(o)(x’, y)l. 

0 

We use this to extend our diagonal lower bound (11) to an off-diagonal lower bound. 

Corollary 15. There exist positive constants CO and cl such that for t>coIx - yldw v 1 

pt(x, y)>cC? 
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Proof. We have from (11) and Lemma 14 that for t > 1 

Pk Y> b PtkX) - IPtk Y) - &,x)1 

> C,t-4/2 - c.2t-’ lx _ yld”-df, 

Now if Ix - yI <c3t’idn then /x - y(n\q-dt <c~“-dtt’-db/2, so choosing c3 small enough 
that c2c3 d,\-dt < 1, , 2 ‘, we get pl(x, y)b ic’ trd,!* as required. ??

Corollary 15 forms the basis of the chaining argument used to obtain the lower 
bound we are after. Denote by d(x, y) the graph distance between x and y in Go and 
by &(x, cl) the ball of centre x radius N in GO using this distance. Also, write Bnz(x, a) 
for the usual Euclidian ball in 5X2. It is easily checked that the two metrics d(., .) and 
( - . 1 are equivalent, with 

Theorem 16. There exist positive constunts co, c’ und c2 such that jbr all x,y E Go 
and t>,c,,(x - yl v 1 

pr(x, y) 3 C’ t-d”!2 exp{ -c2( Ix - yld” /t)‘l(d~s-‘f}. 

Proof. For x = y the result is given by (1 l), so assume that x # y in all that follows. 
Also, if t > CO Ix - yld, then the result follows immediately from Corollary 15. In this 
case we have that 1 > exp{-((x - y(d”/t)“(d*-‘)} > exp{-c~“(d”-‘)}, so there is no 
information lost in including this extra factor. 

Suppose now that t < colx - yldbs. Let n be the smallest integer such that 

t/n >co( (x - yl/n)d”. (14) 

n will be the number of steps in our chain. Condition (14) is equivalent to 

?23c,(lx - yld”/t)‘i(du-‘), (15) 

where c’ = (~(4&)~*)‘~(~~-‘). A s we are taking the smallest such integer, there 
exists some constant 122, independent of x, y and t, such that 

n<cz(lx - yld”/t)‘:(d\,-“, (16) 

i.e.. 

t/n dc3(lx - ylln)““, (17) 

d,b - I where c3 = c2 
Claim we can findx=xo,x’,...,x,=y such that 
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(The factor 2 appears to take into account the fact that d(., .) is integer valued.) 
This requires only that 2d(x, y)/n > 1, which condition is equivalent to 2d(x, y) 2 

c2(lx - Yl% W-‘) from (15) and (16). Since d(x, y) 2 Ix - yl, this is again equiv- 
alent to the condition’2)x - yJ >cz(Jx - y)dh,/t)‘l(dw-l), i.e., 

t2c41x - yl 

For x # y this is the same as requiring t > cd/x - y] Vcq, which is the form of constraint 
used in the theorem statement. 

Let E = &Ix - yl/ y1 and put B; = Bnl(xi, s) fl Go. Then for any yi_1 E &_I and 
yi E Bi we have 

J.Yi-1 -yi( 6 IYi-1 -Xi--11 +d(xi-l~~i)+ [Yi -Xi/ 

Thus from (14), r/n~cslyi_t - yjld* and, provided t/n 0 1, Corollary 15 gives us a 
constant c6 < 1 such that 

From (15) and (16), the condition t/n 2 1 is equivalent to t 2c~Ix - y J, which is the 
condition already obtained above. 

so 

Putting c( = d(x, y)/ n and m = [log(a/2)/ log 21 we have D,(xi) C BG”(Xi, a) C Bi and 
so 

JBil 2 IDm(Xi)l = 2 '3" t 

3 CSa log 3/ log 2 

3 cg(lx - Yl/n)d”~d”‘2 

2 

>, ~s(t/n)~s’~ from (17). 

Thus 

z-+(x, Y) 3 Cl0 cx~/w’2 

n -d,/2 
> cl,, c,jt 

= qo t-d,/2 exp{-n log c;‘} 

recalling that cg < 1. Substituting for n from (16) gives the result. III 
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5. The discrete-time process 

Bounds on the transition probabilities pn(x, y) of the discrete-time random walk X 
can be obtained using exactly the same methods we used to bound the transition density 
of the continuous-time random walk Y. The details are similar enough that we will 
only sketch the various stages of the proof here, highlighting how they differ from 
the continuous-time case. There is essentially only one complication distinguishing the 
discrete-time case from the continuous, namely the small time oscillations (of period 
2) present in P,,(x, y). These are of course present in any random walk on a graph, 
however the geometry of Go serves to smooth out small time periodic behaviour very 
quickly. Compare this, for example, with the simple random walk on Zd, which has a 
strict period of 2. A full working of the discrete-time case can be found in the author’s 
Ph.D. Thesis (submitted 1995). 

5.1. Resolvent operators 

Let PA be the one-step transition matrix of the discrete-time process, killed on exiting 
A c Go. Write P;;” = (PA)” for its n-step transition matrix and p;;‘(x, y) for the n-step 
transition probabilities. Resolvent operators for the process X killed on exiting A can 
be defined for Odi3d 1 by 

T,c-I 

%%X) = c &~)f(y) = E” c /3”f(x,). 
YEA n=O 

The resolvent density L$(x, y) satisfies 

and, if M,” is the number of times X has visited x up to and including time n 

recalling that To N geom( 1 - 0). We are interested in the behaviour of z$(x, y) for 
values of 8 close to 1. 

As one would expect, 1 - 0 behaves much as /z does in the continuous-time case. 
Given this, we can set about bounding 4(x, y) in exactly the same way we bounded 
u:(x, y) in Section 2. In particular, noting that rA(x, y) := v;1(x,y) = UA(x, y), it 
follows that there exist constants 00 E (0,l) and CI,Q > 0 such that for all x E Go 
and H E (80, 1) 

c,(l _ 0)-O-W) <V~,(X,X)bC~(l - e)-(‘-+ 

Off-diagonal bounds also follow exactly as they did in Section 4.1. That is, there exists 
a constant es > 0 such that for all x,x’ E A c Go satisfying x’ E D,(x) c A for some 
m, we have for 0 E (&,l) and f E L”(Go) 

(V/f(X) - V;Pf(x')I bcs(1 - 0)-d”‘2(X - X’ld*--dtIlf/Im, (18) 
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5.2. Transition probabilities via the two-step chain 

Fix A c Go with IAl = k < co. Since PA is non-negative symmetric, it has real 
eigenvalues ;1i,. . , ;lk with orthonormal eigenvectors 41, . . , &. Moreover, 

Pt(4 y) = C nrC4(x)k(.Y) 

and 

&x,y)=C i-_lsrk(xMi(Y). 
i “I 

Unlike the continuous case, the 1bi are not all positive and 4(x,x) is not decreasing 
in n. However, &‘,(x,x) is decreasing in n and the Tauberian theorems used in the 
continuous case can be applied to the two-step chain. That is, there exist constants 
no E Z+ and cl, c2 > 0 such that for all x E Go and n 3no 

cln -dSJ2 < p2* ( x,x) <c2n-+ (19) 

Eq. (19) is all we need to complete our upper bound, as we have by Cauchy- 
Schwarz that (for any random walk on a graph) for any A c GO, possibly infinite, 

~~(~,Y)v~~+1(x,Y)~~~(~~~)*‘=~~(Y,Y) . 1/2 It follows from this and (19) that there 

exists some c3 > 0 such that pn(x,y)<c3n-dS/2, as per (10). We can proceed as in 
Theorem 8 to prove the following theorem. 

Theorem 17. There exists an no and positive constants cl and c2 such that for all 
x,y E GO and n>no 

pn(x, y) <cInN2 exp{ -cz( Ix - y(d”/n)‘i(d8 -I’}. 

Note that, because Lemma 2 places no restriction on n (unlike Lemma 3) Theorem 
17 only has an absolute range restriction and not the relative range restriction that 
appears in Theorem 8. However, for n < /x - yJ ,<d(x, y) we have pn(x, y) = 0, so 
this is not a significant improvement. 

The small time oscillations present in pn(x, y) also cause complications when ap- 
plying our previous method of finding a lower bound. These complications are dealt 
with by applying the following result. For any x, y E GO and n > 1 

(20) 

This is a consequence of the fact that for any x, y E Go, all paths from x to y of length 
n 2 1 (and probability ($ )“) can be associated with distinct paths of length n + 1 (and 
probability ($ )n+i ). This can be done, for example, by replacing the first step of the 
path with the two steps which, together with the original, make up a GO triangle. This 
is illustrated by Fig. 6. 

Inequality (20) can be immediately applied to (19) to show that there exists some 
cs > 0 such that p,(x,x) >cg -dSJ2. An off-diagonal bound is obtained by applying 
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Initial step of the 
original path 

First two steps of 
the new patli 

Fig. 6. Constructing a path of length n + I from a path of length n 

(18) to 

g(x) := C( 1 - e2A;)A;$j(x)&j(,v) 

(for fixed n and Y) in the manner of Lemma 14. We have that Vtg(x) = p;;‘(x, Y) + 
Bd+,(x, Y) and thus from (18) there exists some c4 > 0 such that for any x,x’, y E 
A c Go satisfying x’ E D&x) c A for some m, we get for n > no 

IPA~~Y) - &‘>Y) + (1 - ;)(P;;l+l(x>Y) - P:+l(x’,Y))l 

.$c4$ -.q+~f. 

Formally, taking the sum 4(x, y) + B&+,(x, y) instead of just p;;‘(x, y) has the effect 
of smoothing out those oscillations present. This still enables us to proceed as we did 
in the continuous-time case, since from (20), p,(x, Y)+( 1 - ~)P~+,(x, y) <5p,+i (x, y), 
and we still get 

p,(x, y) 3c5n-d~J2 

for n >CO(X - yld* V no. Using this, the following theorem can be proved in exactly the 
same way that Theorem 16 was proved. 

Theorem 18. There exists an no and positive constants co, cl and c2 such that for 
allx,yEGo andn>,co)x-y(Vno 

p&, y)>clnBd“’ exp{-q(lx - y\d”/n)‘l(d”P’)}. 

6. Comparison with general graphs 

The upper and lower bounds obtained for pt(x, y) and pn(x, y) hold for t > cod(x, y) 
and n >,cod(x, y), respectively. In this section we compare these bounds with some 
recently obtained for general graphs, focussing on what happens when t < qd(x, y) or 

n <czd(x, y). 

6.1. Continuous time 

Recently, Davies (1993) and Pang (1993) obtained a global upper bound for the 
transition density of the (continuous time) simple random walk on a general graph. 
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Specifically for k NN 2.32 they give for t Z/c-‘&x, y) 

POX, Y) d exp{-$(4x, y)2/t>(l - 4x, y)2/(10t2>>) (21) 

(which is essentially Gaussian for t > d(x, y)) while for t <k-‘d(x, y) 

~44 Y) G exp{-4x, y) lwW(x, y)l(et)>l. (22) 

Both bounds are in fact global and are derived from a single slightly better result 

P&Y) d exp t { (Jl + (W,_JJ)lt)* - 1) 

-4% Y) log (4x7 YW + Jl + (4% JW) } . 
However for the given ranges of t, (21) and (22) are reasonable approximations. 

It is easily checked that on Go, Theorem 8 gives a better bound than (21). Note 
however that as t 1 c&(x, y) our bound tends to 

ci t-ds’2 exp{ -c&x, y)}, 

which except for the tpdsi2 term, is of the same form as (21) and (22) for t z d(x, y). 
Accordingly, we can think of the range t 2 c&x, y) as indicating the scale at which, 
from the point of view of the r.w. Y, the graph GO starts exhibiting its fractal structure. 

An elementary Poisson-type lower bound for t <c&(x, y) can be found as follows. 
Let 0= To,T,,Tz,... be the jump times of Y, so T, - I’(n, 1). Then 

cc 

p&y) 3 c ($W,dt < T,+I) 
n=d(x,y) 

= 2 (i)“e-‘t”/n! 
n=&w) 

2 eC’( $ )d(“,y)/d(x, y)! 

Stirling’s formula gives d(x, y)! x fid(x, y)d(4y)f1i2e-d(x,y), whence 

pt(x, y) 2~344 Y)-‘/~ exp{W, iv) - t - 4x, Y) log(44x, v>lt)). (23) 

For d(x,y) x t this looks like ~+f(x,y)-‘/~ exp{ -csd(x, y)}, which except for the 
d(x, ~)-l/~ term, is of the same form as (21) and (22) when d(x, y) = t. Thus the 
range t > cod(x, y) of Theorems 8 and 16 would appear to be the correct one. Moreover, 
for t <cod(x, y) there is little room for any significant improvement of the bounds (22) 
and (23). Formally, if the r.w. Y wishes to jump from x to y in time t < c&x, y), 
then it is most likely to take the most direct route, and so it will not be particularly 
influenced by the fractal nature of GO. 

6.2. Discrete time 

For discrete time the question of whether the range n > c&(x, y) is appropriate does 
not arise as for n < d(x, y), pn(x, y) = 0. Of course the question, ‘what is the correct 
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value of CZ?’ still arises, though we will not answer it here. A Gaussian-type upper 
bound for the transition probabilities p,(x, y) of the (discrete time) simple r.w. on a 
general graph has been given by Came (1985) 

P&, Y) <2 exp{- $(x, Y)~/H). 

Consider 

(24) 

(d(x,y)d”/n)ll(d,-l) -Cd\\ -2)l(d,-I) 

= d(x, y)2/n 

> 1 for nad(x, y). 

So our upper bound (Theorem 17) is better than (24). In fact, that we get upper and 
lower bounds of the same form is in itself enough to show that these bounds are the 
right ones. 
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