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Perceptual judgments related to stimulus-sets are represented computationally different than individual
items. In particular, the perceptual averaging hypothesis contends that the visual system represents tar-
get properties (e.g., eccentricity) via a statistical summary of the individual targets included within a
stimulus-set. Here we sought to determine whether perceptual averaging governs the visual information
mediating an oculomotor task requiring top-down control (i.e., antisaccade). To that end, participants
completed antisaccades (i.e., saccade mirror-symmetrical to a target) – and complementary prosaccades
(i.e., saccade to veridical target location) – to different target eccentricities (10.5�, 15.5� and 20.5�) located
left and right of a common fixation. Importantly, trials were completed in blocks wherein eccentricities
were presented with equal frequency (i.e., control condition) and when the ‘proximal’ (10.5�: i.e., prox-
imal-weighting condition) and ‘distal’ (20.5�: i.e., distal-weighting condition) targets were respectively
presented five times as often as the other eccentricities. If antisaccades are governed by a statistical sum-
mary then amplitudes should be biased in the direction of the most frequently presented target within a
block. As expected, pro- and antisaccade across each target eccentricity were associated with an under-
shooting bias and prosaccades were refractory to the manipulation of target frequency. Most notably,
antisaccades in the proximal-weighting condition had a larger undershooting bias than the control con-
dition, whereas the converse was true for the distal-weighing condition; that is, antisaccades were biased
in the direction of the most frequently presented target. Thus, we propose that perceptual averaging
extends to motor tasks requiring top-down cognitive control.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The most frequent motor act that humans perform is an eye
movement that brings the fovea to a target of interest (i.e., prosac-
cade). In fact, an individual can make upwards of 100,000 prosac-
cades on a daily basis (Irwin & Carlson-Radvansky, 1996). Notably,
the direct spatial relations between stimulus and response permit
absolute visual information to mediate prosaccade sensorimotor
transformation via retinotopically organized motor maps within
the superior colliculus (Wurtz & Albano, 1980). In spite of the
direct spatial relations, primary and secondary (i.e., corrective)
prosaccades typically undershoot veridical target location
(Abrams, Meyer, & Kornblum, 1989; Becker & Fuchs, 1969;
Deubel, Wolf, & Hauske, 1986; Gillen, Weiler, & Heath, 2013;
Prablanc & Jeannerod, 1975; Robinson, 1964; Weber & Daroff,
1971). In particular, prosaccades exhibit a 10% undershooting bias
that is thought to reflect an invariant control strategy that mini-
mizes saccade flight time (i.e., saccadic flight time hypothesis:
Harris, 1995) and/or the energy requirements of the response
(i.e., energy minimization hypothesis: Becker, 1989). Indeed,
undershooting represents an optimal strategy for prosaccades
because it reduces the potential of an overshooting error and the
time-consuming and energy-demanding requirements of imple-
menting a corrective response in a direction opposite to the pri-
mary saccade (Becker, 1989; Harris, 1995; see also Elliott et al.,
2004).

In contrast to prosaccades, antisaccades require decoupling the
spatial relations between stimulus and response and implement-
ing a saccade to a target’s mirror-symmetrical location (i.e., 180�
spatial transformation). As such, antisaccades provide a framework
for understanding how top-down and cognitive control influences
motor output. Extensive work has shown that antisaccades pro-
duce longer reaction times (RT) than prosaccades (Fischer &
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Weber, 1992; Hallett, 1978) – a behavioral ‘cost’ that has been
related to the time-consuming processes of suppressing of a stim-
ulus-driven prosaccade (i.e., response suppression) and the visual
remapping of a target’s spatial properties (i.e., vector inversion)
(for extensive review see Munoz & Everling, 2004). Moreover, it
is not surprising that antisaccades are less accurate and more var-
iable than prosaccades (Dafoe, Armstrong, & Munoz, 2007;
Evdokimidis, Tsekou, & Smyrnis, 2006; Heath et al., 2011;
Krappmann, Everling, & Flohr, 1998); after all, decoupling the spa-
tial relations between stimulus and response does not permit
direct sensorimotor transformation via retinotopically organized
motor maps in the superior colliculus. Instead, vector inversion
requires that a relative target percept support sensorimotor trans-
formations. In other words, the top-down control of antisaccades
influences the nature of the visual information supporting motor
output.1

As mentioned above, prosaccades exhibit an invariant under-
shooting bias; however, antisaccades are associated with a tar-
get-specific bias based on the eccentricities included within a
stimulus-set. For example, Dafoe, Armstrong, and Munoz (2007)
and Evdokimidis, Tsekou, and Smyrnis (2006) reported that the
‘proximal’ and ‘distal’ targets within their stimulus-sets respec-
tively over- and undershot veridical target location, whereas their
central targets exhibited a null bias (Dafoe et al. 0.5�, 1.0�, 2.0�, 4.0�
and 8.0�; Evdokimidis et al. 2.0�, 3.0�, 4.0�, 5.0�, 6.0�, 7.0�, 8.0�, 9.0�
and 10.0�) (see also Bell, Everling, & Munoz, 2000; Heath et al.,
2011; Weiler & Heath, in press; Weiler et al., 2011). One interpre-
tation of this finding is that the visual percept supporting antisac-
cades overestimates ‘proximal’ targets and underestimates ‘distal’
targets within a stimulus-set (i.e., the range effect hypothesis: see
Kapoula, 1985; Poulton, 1981). We (Gillen & Heath, in press)
recently sought to test the range effect hypothesis by having par-
ticipants antisaccade in separate blocks (i.e., proximal and distal)
that contained the same number of target eccentricities but dif-
fered with respect to their magnitudes. In the proximal block, tar-
get eccentricities were 3.0�, 5.5�, 8.0�, 10.5� and 13.0�, whereas in
the distal block target eccentricities were 10.5�, 13.0�, 15.5�,
18.0� and 20.5�. In line with Dafoe et al. and Evdokimids et al.,
the proximal block showed that the ‘proximal’ (i.e., 3.0�, 5.5�)
and ‘distal’ (i.e., 10.5�, 13.0�) targets were respectively over- and
undershot, whereas responses to the central target (8.0�) did not
reliably differ from veridical. In contrast, the distal block showed
an undershooting bias that was independent of target eccentricity.
Most notably, that the target eccentricities common to each block
(i.e., 10.5� and 13.0�) produced an undershooting bias directly
counters the range effect hypothesis’ assertion that the ‘proximal’
and ‘distal’ targets within a stimulus-set respectively over- and
undershoot veridical target location. To account for our findings,
we drew upon the perceptual averaging hypothesis’ assertion that
the properties of a stimulus-set (e.g., extent, size, luminance) are
rapidly summarized without precise information about individual
targets (Albrecht, Scholl, & Chun, 2012; Ariely, 2001; Chong &
Treisman, 2003; Davarpanah Jazi & Heath, 2014). For example, Ari-
ely reported that although participants were unable to identify
whether an individual circle was a member of a stimulus-set, they
were able to accurately represent the average size of all circles
included in the set. Indeed, such a strategy is thought to diminish
task-based attentional demands when a performer is unable to
predict when an individual member of a stimulus-set will be pre-
sented. In the context of our previous work, we proposed that the
top-down nature of antisaccades rendered the mediation of target
eccentricity via a statistical summary (i.e., the average) of the range
1 The sensorimotor transformation supporting antisaccades are not based on
absolute target eccentricity; rather, they are supported via visual information related
to perceived target eccentricity.
of eccentricities included in each stimulus-set. Accordingly then,
the statistical summary for the proximal and distal block corre-
sponded to each block’s central target. As such, the fact that anti-
saccades to the central target in the proximal block (i.e., 8.0�) did
not reliably differ from veridical, whereas the ‘proximal’ and ‘distal’
targets respectively over- and undershot target location demon-
strates that amplitudes were, in part, mediated via a statistical
summary. In turn, because the percept supporting antisaccades
exhibits an increased undershooting bias with increasing target
eccentricity (Dafoe, Armstrong, & Munoz, 2007; Evdokimidis,
Tsekou, & Smyrnis, 2006), the reliable and large magnitude under-
shooting associated with the distal block’s central target (i.e.,
15.5�) resulted in a similar bias for the other target eccentricities
included within the block. In other words, perceptual averaging
asserts that the endpoint bias (or lack thereof) associated with a
stimulus-set’s central target (i.e., the statistical summary) deter-
mines the direction and magnitude of the endpoint bias for the
individual targets included within the set.

The goal of the present investigation was to directly test the
assertion that perceptual averaging influences the nature of the
visual information supporting antisaccades. To accomplish that
objective, participants completed antisaccades – and complemen-
tary prosaccades – to three target eccentricities (10.5�, 15.5� and
20.5�) located left and right of a central fixation in conditions that
differed with regard to the frequency individual target eccentrici-
ties were presented. In the control condition, target eccentricities
were presented with equal frequency. In the proximal-weighting
condition, the ‘proximal’ target eccentricity (10.5�) was presented
five times as often as the other target eccentricities, whereas in
the distal-weighting condition the ‘distal’ target eccentricity
(20.5�) was presented five times as often as the other target eccen-
tricities. We are aware that previous work has shown that proba-
bilistic information related to the spatial location of a target (i.e.,
left or right and/or above or below a central fixation) influences
pro- and antisaccade reaction times – a finding that has been
linked to improved target detection and increased pre-saccadic
collicular buildup neuron firing rates in the receptive field of the
frequently presented target (Dorris & Munoz, 1998; Geng &
Behrmann, 2005; Liu et al., 2010; see also Gmeindl, Rontal, &
Reuter-Lorenz, 2005). Notably, however, the current study differs
from previous work in that we were interested in determining
whether the frequent presentation of a target eccentricity influ-
ences antisaccade endpoint bias. Indeed, if the perceptual averag-
ing hypothesis is correct, then the proximal- and distal-
weighting conditions should render statistical summaries – and
associated visual percepts – that are biased in the direction of
the most frequently presented target. More specifically, it is pre-
dicted that amplitudes for each target eccentricity in the proxi-
mal-weighting condition will undershoot veridical target location
more than their matched target eccentricities in the control condi-
tion. In turn, the converse pattern is predicted for the distal-
weighting condition; that is, responses will produce a decreased
undershooting bias compared to the control condition. Last, and
as indicated above, we included prosaccades to the same target
eccentricities and conditions as used for antisaccades. Prosaccades
were included to demonstrate that responses mediated via abso-
lute visual information are refractory to context-dependent manip-
ulations (i.e., frequency) of target eccentricity.
2. Methods

2.1. Participants

Twenty participants from the University of Western Ontario
community volunteered for the present study (11 females and 9
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males; age range = 19–29 years). All participants had normal or
corrected-to-normal vision. This research was conducted in accor-
dance with the Declaration of Helsinki and all participants signed a
consent form approved by the Office of Research Ethics, The Uni-
versity of Western Ontario.
2.2. Apparatus and procedures

Participants sat comfortably at a normal tabletop (height =
770 mm) with their head placed in a head-chin rest for the dura-
tion of data collection. Visual stimuli were presented on a 30-inch
LCD monitor (60 Hz, 8 ms response rate, 1280 � 960 pixels; Dell
3007WFP, Round Rock, TX, USA) located at a viewing distance
550 mm from the participant and centered on their midline. The
gaze location of participant’s left eye was sampled at 360 Hz using
a video-based eye recording system (Eye-Trac6: Applied Sciences
Laboratories, Bedford, MA, USA). Prior to data collection, a nine-
point calibration of the participant’s viewing space was completed.
Two computer monitors that were visible only to the experimenter
provided real-time point of gaze information, trial-by-trial saccade
kinematics (e.g., displacement, velocity), and information related
to the accuracy of the eye tracking system (i.e., to perform recali-
bration when necessary). Computer events and the presentation
of visual stimuli were controlled via MATLAB (7.8.0: The Math
Works, Natick, MA, USA) and the Psychophysics Toolbox exten-
sions (ver 3.0; see Brainard, 1997). The lights in the experimental
suite were extinguished throughout data collection.

Visual stimuli were presented against a high-contrast black
background and included a white fixation cross (1� and 135 cd/
m2) centered horizontally on the monitor and yellow target crosses
(1� and 127 cd/m2) presented 10.5� (i.e., ‘proximal’ target), 15.5�
(‘middle’ target), and 20.5� (i.e., ‘distal’ target) left and right of fix-
ation. Stimuli were located on the horizontal meridian and at the
participant’s eye level. Each trial began with the presentation of
the white fixation cross which alerted the participant to direct
their gaze to its location. After a stable fixation was achieved
(±1.5� for 420 ms), a randomized foreperiod (1000–2000 ms) was
introduced during which time the fixation cross remained visible.
Following the foreperiod, a target stimulus was briefly (i.e.,
50 ms) presented and its onset cued participants to pro- or antisac-
cade ‘‘as quickly and as accurately as possible.’’ The fixation cross
and target were concurrently extinguished (i.e., overlap paradigm).
Prosaccades required a response to veridical target location,
whereas antisaccades required a response mirror-symmetrical to
the target. The 50 ms target presentation was used so that the tar-
get was unavailable throughout response planning and execution –
a method requiring visual vector inversion for antisaccades as
opposed to a continuous target presentation wherein antisaccades
may be mediated via an obligatory shift of attention from the tar-
get to a homologous region in space (Olk & Kingstone, 2003).

Pro- and antisaccades were completed across conditions that
differed with respect to the weighting of target eccentricity
(Fig. 1). In the control condition, an equal number of trials (i.e.,
10) were completed to each target eccentricity by visual space
combination (i.e., 60 pro- and antisaccade trials). In the proximal-
weighting condition, the ‘proximal’ target (i.e., 10.5�) was presented
five times as often as the ‘middle’ (i.e., 15.5�) and ‘distal’ (i.e., 20.5�)
target eccentricities. Thus, 50 trials were completed to each left
and right visual field ‘proximal’ target, and 10 trials were com-
pleted to each left and right visual field ‘middle’ and ‘distal’ target.
In the distal-weighting condition, the ‘distal’ target was presented
five times as often as the ‘proximal’ and ‘middle’ target eccentric-
ities. As such, 50 trials were completed to each left and right visual
field ‘distal’ target, whereas 10 trials were completed to each left
and right visual field ‘proximal’ and ‘middle’ target. Therefore,
140 pro- and antisaccade trials were performed in each of the
proximal- and distal-weighting conditions.

The three weighting conditions (i.e., control, proximal-weight-
ing, distal-weighting) were completed in separate sessions with
each separated by a minimum of 24 h. We employed the separate
sessions in order to minimize eye strain and mental fatigue. All
participants performed the control condition during the first ses-
sion, whereas the ordering of the proximal- and distal-weighting
conditions was counterbalanced across the remaining sessions.
Notably, within each weighting condition pro- and antisaccades
were performed in separate and counterbalanced blocks, and prior
to each block participants received written instructions related to
the nature of the task (prosaccade vs. antisaccade). The ordering
of target presentation (visual space by target eccentricity) was ran-
domized. During data collection a trial associated with signal loss
(e.g., eye-blink) was deleted and re-entered into the trial matrix.

2.3. Data analysis

Displacement data were filtered offline using a dual-pass But-
terworth filter employing a low-pass cut-off frequency of 15 Hz.
Filtered displacement data were used to compute instantaneous
velocities via a five-point central finite difference algorithm. Accel-
eration data were similarly obtained from the velocity data. Sac-
cade onset was marked when velocity and acceleration values
exceeded 30�/s and 8000/s2, respectively. Saccade offset was
marked when saccade velocity fell below a threshold value of
30�/s for 15 consecutive frames (i.e., 42 ms).

2.4. Dependent variables and statistical analyses

The dependent variables were saccade amplitude in the primary
(i.e., horizontal) movement direction and reaction time (RT: time
from stimulus presentation to saccade onset). RT data were
removed due to: (1) RT greater than two standard deviations above
the mean group performance (i.e., RT >650 ms, and <1% of trials),
and (2) An anticipatory response (i.e., RT <85 ms, and <2% of trials)
(Wenban-Smith & Findlay, 1991). As well, trials involving a direc-
tionally incorrect response (i.e., antisaccade to veridical target
location instead of the mirror-symmetrical location, or vice versa)
were excluded from the RT and amplitude analyses: less than 1%
and 5% of trials were removed due to pro- or antisaccade direc-
tional errors, respectively. The low antisaccade error rate is attrib-
uted to the use of an overlap paradigm and the completion of pro-
and antisaccades in separate blocks. Post hoc decompositions for
pro- and antisaccades were completed via paired-samples t-tests,
whereas the decomposition of target eccentricity was computed
via power polynomials (i.e., trend analysis: see Pedhazur, 1997).
Only significant effects are reported below (p < 0.05).
3. Results

3.1. Pro- and antisaccade amplitudes

Our first analysis examined amplitudes via 2 (task: pro-, anti-
saccade) by 2 (visual field: left, right) by 3 (weighting condition:
control condition, proximal-weighting, distal-weighting) by 3 (tar-
get eccentricity: ‘proximal’ [10.5�], ‘middle’ [15.5�], ‘distal’ [20.5�])
repeated measures ANOVA. Results produced main effects for task,
F(1,19) = 57.04, p < 0.001, weighting condition, F(2,38) = 17.48,
p < 0.001, target eccentricity, F(2,38) = 951.05, p < 0.001, and inter-
actions involving task by weighting condition, F(2,38) = 20.36,
p < 0.001, and task by target eccentricity, F(2,38) = 298.16,
p < 0.001. In terms of the task by weighting condition interaction,
antisaccades, F(2,38) = 24.46, p < 0.001, but not prosaccades,



Fig. 1. Schematic representation of the visual stimuli and target eccentricity weighting conditions. A central fixation was presented for a randomized foreperiod after which a
target stimulus was presented left or right of fixation. For the purposes of this figure each target eccentricity is displayed to show the frequency by which individual
eccentricities were presented within control, proximal- and distal-weighting conditions (i.e., the numerical value below each target indicates the frequency of its
presentation). Target onset served as the response imperative and both target and fixation were extinguished 50 ms later. Note: targets were presented as yellow crosses but
are rendered as white for the purposes of this figure.

Fig. 2. Mean pro- (left panel) and antisaccade (right panel) amplitudes (�) as a function of weighting condition and target eccentricity and their respective linear regression
equations. Black closed circles, light gray open squares, and dark gray open triangles represent control, proximal- and distal-weighting conditions, respectively. The solid line
in each panel represents veridical target location, whereas the hatched lines represent the linear regression for each weighting condition to target eccentricity. Error bars
represent the 95% within-participants confidence intervals (Loftus & Masson, 1994).

2 Here and elsewhere confidence intervals are computed as a function of within-
participants variability (Loftus & Masson, 1994).
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F(2,38) = 0.72, p = 0.50, were reliably influenced by the different
weighting conditions. In particular, Fig. 2 shows that antisaccade
amplitudes for the proximal-weighting condition were less than
the control condition (t(19) = �3.75, p < 0.001), whereas ampli-
tudes for distal-weighting condition were greater than the control
condition (t(19) = 6.24, p < 0.001). Moreover, the bottom panels of
Fig. 3 present difference scores (computed separately for pro- and
antisaccades) contrasting proximal- and distal-weighting condi-
tions to the control condition (e.g., proximal-weighting condition
antisaccade minus control condition antisaccade). The figure
shows that antisaccade amplitudes in the proximal- and distal-
weighting conditions were respectively less than and greater than
their control condition counterpart, whereas prosaccade ampli-
tudes did not vary as a function of weighting condition. In other
words, antisaccade amplitudes scaled in relation to the most fre-
quently presented target included in a block. In terms of the task
by target eccentricity interaction, pro- and antisaccades ampli-
tudes increased in relation to increasing target eccentricity (only
linear effects significant: Fs(1,19) = 3207.31 and 140.57, respec-
tively for pro- and antisaccades, ps < 0.001). To further decompose
the interaction, we first contrasted pro- and antisaccade ampli-
tudes separately for matched target eccentricities and subse-
quently computed participant-specific slopes relating pro- and
antisaccade amplitudes to target eccentricity. Pro- and antisaccade
amplitudes to the ‘proximal’ target did not reliably differ,
t(19) = �0.50, p = 0.62; however, antisaccade amplitudes to the
‘middle’ and ‘distal’ targets were less than their prosaccade coun-
terparts (ts(19) > �7.65, ps < 0.001). Additionally, antisaccades
produced a shallower slope (0.35�, CI95% = 0.06) than prosaccades
(0.89�, CI95% = 0.06), t(19) = 19.14, p < 0.001 (Fig. 2).2

Fig. 2 provides qualitative evidence that pro- and antisaccades
across each block and weighting condition undershot veridical tar-
get location. To directly address this issue, the top panels of Fig. 3
present difference scores relating pro- and antisaccade amplitudes
to veridical target location (i.e., prosaccade [antisaccade] ampli-
tude minus veridical target location) for each weighting condition
and target eccentricity combination. Notably, the top panels of
Fig. 3 demonstrate that pro- and antisaccades reliably undershot
target location independent of weighting condition and target
eccentricity (ts(19) > �6.60, ps < 0.001). As well, Fig. 3 shows that
the magnitude of the antisaccade undershooting bias increased
with increasing target eccentricity.
3.2. Pro- and antisaccade RTs

RT data were subjected to the same ANOVA model as described
above and elicited main effects for task, F(1,19) = 122.42, p < 0.001,
and weighting condition, F(2,38) = 7.32, p < 0.01. RTs for antisac-



Table 1
Correlation coefficients and p-values for the relationship between pro- and antisac-
cade reaction times and amplitudes in the control, proximal- and distal-weighting
conditions.

Target eccentricity (�) Prosaccade Antisaccade

R-value p-value R-value p-value

Control
10.5 �0.72 0.000 �0.25 0.287
15.5 �0.38 0.100 0.15 0.566
20.5 �0.55 0.011 0.07 0.803

Proximal weighting
10.5 �0.69 0.000 �0.13 0.587
15.5 �0.23 0.320 �0.18 0.438
20.5 �0.33 0.160 �0.18 0.478

Distal weighting
10.5 �0.50 0.025 �0.12 0.607
15.5 �0.50 0.025 �0.06 0.793
20.5 �0.32 0.166 0.12 0.616

Fig. 3. The top panels depict mean target eccentricity-specific differences scores (�: amplitude minus veridical target location) for pro- (left panel) and antisaccades (right
panel). The bottom panels depict weighting-condition specific difference scores (�: proximal-weighting condition minus control condition; distal-weighting condition minus
control condition) computed separately for pro- (left panel) and antisaccades (right panel). For all panels, errors bars represent 95% confidence intervals. The absence of
overlap between error bars and zero (i.e., the horizontal dotted line) represents a reliable difference that can be interpreted mutually inclusive to a test of the null hypothesis
(Cumming, 2013).
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cades (295 ms, CI95% = 29) were longer than prosaccades (221 ms,
CI95% = 29), and control condition RTs (269 ms, CI95% = 19) were
longer than proximal- (249 ms, CI95% = 19) or distal-weighting
(256 ms, CI95% = CI95% = 19) conditions (ts(19) = 3.57 and 2.64,
ps < 0.03), which did not differ (t(19) = �1.27, p = 0.22) (Fig. 4).

To determine if saccade amplitudes were influenced by a plan-
ning-related speed-accuracy trade-off, we computed correlation
coefficients separately for pro- and antisaccades based on mean
participant performance for each target eccentricity and weighting
condition combination. For prosaccades, Table 1 shows that the
‘proximal’ and ‘distal’ targets in the control condition, the ‘proxi-
mal’ target in the proximal- and distal-weighting conditions, and
the ‘middle’ target in the distal weighting-condition produced a
reliable – and negatively correlated – relationship between RT
and amplitude; however, the remaining weighting condition and
target eccentricity combinations did not (ps > 0.05). For antisac-
cades, RT and amplitude did not elicit a reliable relationship. Thus,
Fig. 4. Mean pro- (left panel) and antisaccade (right panel) reaction times (ms) as a function of weighting-condition and target eccentricity. The lines in each panel represent
linear regressions, and associated regression equations are reported in each panel. Error bars represent the 95% within-participants confidence intervals (Loftus & Masson,
1994).
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planning times were neither reliably nor consistently related to
pro- or antisaccade amplitudes.

4. Discussion

4.1. Pro- and antisaccades, and the manipulation of target frequency
influences response latencies

Antisaccades yielded longer RTs than prosaccades. This well-
documented finding is taken to evince the additional time required
to suppress a stimulus-driven prosaccade (i.e., response suppres-
sion) and invert a target’s spatial location to mirror-symmetrical
space (i.e., vector inversion) (Hallett, 1978; for review see Munoz
& Everling, 2004). Additionally, proximal- and distal-weighting
conditions produced shorter RTs than the control condition inde-
pendent of task (i.e., pro-, antisaccade) and target eccentricity.
Recall that previous studies have shown that the frequent presen-
tation of a target in a specific visual field (e.g., left or right and/or
above or below a central fixation) results in shorter RTs for the
most frequently presented visual field (Geng & Behrmann, 2005;
Gmeindl, Rontal, & Reuter-Lorenz, 2005; Liu et al., 2010; Liu
et al., 2011) – a finding attributed to improved pre-saccade motor
preparation (Dorris & Munoz, 1998; see also Rolfs & Vitu, 2007). In
contrast to previous work, we manipulated the frequency of target
eccentricity independent of the visual field (i.e., left, right) the tar-
get was presented. In spite of the difference in methodology
between our work and previous studies, it is possible that the
manipulation of target eccentricity favoured pre-saccade motor
preparation. As such, the shorter RTs associated with the proximal-
and distal-weighting conditions may relate to an increased fre-
quency of express saccades (i.e., latencies with a peak distribution
of �100 ms: Fischer & Ramsperger, 1984; see also Rolfs & Vitu,
2007). In addressing this issue, we examined pro- and antisaccade
RT distributions (including directionally incorrect saccades) for
control, proximal- and distal-weighting conditions. As shown in
Fig. 5, neither the proximal- nor distal-weighting conditions elic-
ited a separate express-saccade peak – a finding that was consis-
tent across pro- and antisaccades. Thus, the target eccentricity
manipulations most likely did not influence pre-saccade motor
Fig. 5. Pro- (top panels) and antisaccade (bottom panels) reaction time (ms) distributio
20 ms increments. Notably, the panels show that proximal- and distal-weighting conditio
at approximately 100 ms: see Fischer & Ramsperger, 1984) relative to the control condi
preparation. Instead, a straightforward explanation may relate to
the fact that the control condition was always completed prior to
the proximal- and distal-weighting conditions. Such a finding rep-
resents a parsimonious account because pro- and antisaccades
show practice-related improvements in RT (Dyckman &
McDowell, 2005).

4.2. Prosaccade amplitudes are refractory to the manipulation of
target frequency

Prosaccades undershot each target eccentricity and the magni-
tude of the bias was independent of the different weighting-condi-
tions. The undershooting bias counters the range effect hypothesis’
assertion that saccades to the ‘proximal’ and ‘distal’ targets within
a stimulus-set respectively over- and undershoot veridical target
location (Poulton, 1981; see also Kapoula, 1985). Instead, results
support an extensive literature indicating that undershooting is
an invariant control strategy that minimizes energy expenditure
(Becker, 1989) and/or saccade flight time (Harris, 1995). Moreover,
correlation coefficients showed that prosaccade RTs were neither
consistently nor reliably related to amplitudes across each target
eccentricity and weighting condition combination. Thus, the
undershooting bias cannot be attributed to a speed/accuracy
trade-off in movement planning (c.f. Abrams, Meyer, &
Kornblum, 1989; Gillen & Heath, in press; Gillen, Weiler, &
Heath, 2013; but see Kowler & Blaser, 1995). Additionally, that
the undershooting bias was equivalent across the control, proxi-
mal- and distal-weighting conditions is consistent with the asser-
tion that prosaccade sensorimotor transformations are mediated
largely independent of top-down cortical processes via retinotop-
ically organized motor maps in the superior colliculus (Wurtz &
Albano, 1980). In other words, the top-down and context-depen-
dent properties related to target frequency did not influence the
absolute visual information mediating prosaccades.

4.3. Antisaccade amplitudes are characterized by perceptual averaging

Figs. 2 and 3 show that antisaccades undershot veridical target
location and that the bias increased to a greater degree with target
ns for proximal-weighting, control, and distal-weighting conditions. Bins represent
ns were not associated with an increased frequency of express saccades (i.e., a peak

tion.
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eccentricity than prosaccades (see also Dafoe, Armstrong, &
Munoz, 2007; Evdokimidis, Tsekou, & Smyrnis, 2006; Gillen &
Heath, in press) – a result countering the range effect hypothesis.
As such, the current findings, as well as previous work (Amador,
Schlag-Rey, & Schlag, 1998; Gillen & Heath, in press; Irving et al.,
2009; Nyffeler et al., 2007), indicate that a general undershooting
bias characterizes antisaccades.3 Moreover, the results for antisac-
cades are consistent with reports from the perceptual literature
indicating that obligatory judgments (i.e., verbal reports) are
increasingly underestimated as a function of target distance. For
example, von Helmholtz’s (1910/1962) seminal report showed that
the perceived length of a peripherally presented line was inversely
related to its eccentricity from a central fixation. Additionally,
contemporary research has shown that perceptual judgments
(Bingham & Pagano, 1998; Foley, 1980) and memory-based motor
tasks (Heath, 2005; Knapp & Loomis, 2004; Sheth & Shimojo, 2001;
Westwood, Heath, & Roy, 2003) exhibit a monotonic rise in underes-
timation/undershooting with increasing target distance. The
increased bias is thought to reflect that the proportional increase
in ‘noise’ associated with increasing stimulus magnitude (i.e., target
eccentricity: for outline of Weber’s law see: Marks & Algom, 1998)
engenders a compression of visual space toward a common and
stable frame of reference (e.g., a central fixation cross). Importantly,
the present results provide convergent evidence that the top-down
nature of antisaccades results in response mediation via the same
relative percept as that associated with visual perceptions.

The most salient finding from the present study was the modu-
lation of the antisaccade undershooting bias across the different
weighting conditions. Fig. 3 shows that the proximal- and distal-
weighting conditions produced a respective increase and decrease
in undershooting compared to the control condition. We believe
that such a result supports the contention that perceptual averag-
ing, in part, influences that visual percept supporting antisaccades.
Recall that the perceptual averaging hypothesis asserts that the
visual system represents target properties (e.g., size, luminance,
distance) via an abstract approximation (i.e., the mean) of the indi-
vidual targets included within a stimulus-set (Albrecht, Scholl, &
Chun, 2012; Ariely, 2001; Chong and Treisman, 2003; Corbett &
Oriet, 2011; Davarpanah Jazi & Heath, 2014). As indicated by Ari-
ely, perceptual averaging allows the visual system to efficiently
and effectively deal with limited attentional resources without
simply reducing the resolution of individual target properties. Fur-
ther, Treisman and Gormican (1988) reported that pre-attentive
visual processes provide an average representation that is deter-
mined by the frequency that an individual feature (e.g., eccentric-
ity) is presented within a visual set. Thus, and as demonstrated
here (see also Gillen & Heath, in press), the presentation of target
eccentricities with equal frequency resulted in the central target
(i.e. the statistical summary) within the stimulus-set determining
the direction and magnitude of the endpoint bias for the other tar-
gets in the set. In turn, the proximal- and distal-weighting condi-
tions resulted in a statistical summary that was weighted in the
direction of the most frequently presented target eccentricity.
More directly, the visual percept supporting the proximal-weight-
ing condition was governed by a statistical summary biased by the
frequently presented ‘proximal’ target (i.e., 10.5�) – a bias that
resulted in all targets within the stimulus-set eliciting more under-
shooting than the control condition. In turn, the increased fre-
quency of the ‘distal’ target (20.5�) resulted in a percept
3 As indicated in the Introduction, target eccentricities less than �6� have
demonstrated an antisaccade overshooting bias. To our knowledge however, studies
employing the range of eccentricities used here have consistently reported an
antisaccade undershooting bias (Amador, Schlag-Rey, & Schlag, 1998; Evdokimidis,
Tsekou, & Smyrnis, 2006; Gillen & Heath, in press; Irving et al., 2009; Nyffeler et al.,
2007).
producing a decreased undershooting bias compared to the control
condition.

A final issue that we address relates to the neural mechanism,
or mechanisms, supporting perceptual averaging. Although we
are unaware of neuroimaging or electrophysiological work exam-
ining this issue, perceptual averaging may be the result of indepen-
dent or interdependent cortical and subcortical processes. A
possible cortical explanation is that the neural populations associ-
ated with individual target eccentricities (Georgopoulos, Schwartz,
& Kettner, 1986) are preshaped by partial information related to
motor choices (Bastian, Schöner, & Riehle, 2003; Cisek, 2007).
The preshaping is thought to allow the neural populations to
encode a distribution of potential – as opposed to single – motor
responses (Cisek & Kalaska, 2005). Thus, the top-down nature of
antisaccades may result in the distributed peaks of neural activity
related to different motor outcomes (i.e., the different target eccen-
tricities) becoming partially aggregated into a single peak that rep-
resents the statistical summary of a stimulus-set. Although we are
unclear as to the cortical region associated with this aggregation,
the lateral intraparietal area (LIP) represents a candidate structure
because it has been shown to serve the sensorimotor transforma-
tions underlying vector inversion (Zhang & Barash, 2000). In turn,
a collicular-based explanation can be drawn from the prosaccade
distractor literature. Indeed, a distractor presented proximal to a
target results in a prosaccade amplitude that falls between the tar-
get and distractor (i.e., the global effect: see Coren & Hoenig, 1972;
Findlay, 1982; Walker et al., 1997). Notably, electrophysiological
evidence from non-human primates has linked the global effect
to a spatial combination of visual and preparatory target and dis-
tractor signals within the visuomotor neurons of the superior col-
liculus (Dorris, Olivier, & Munoz, 2007). Thus, the top-down control
of antisaccades may result in a low-level averaging of the relative
target locations used in a stimulus-set.

5. Conclusions

The present results indicate that antisaccade sensorimotor
transformations are supported via a relative visual percept. More-
over, our results show that the percept is governed, in part, via a
statistical summary of the range of target eccentricities included
in a stimulus-set (i.e., the perceptual averaging hypothesis).
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