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In this brief communication, we have studied the validity of the first law of thermodynamics for the
universe bounded by event horizon with two examples. The key point is the appropriate choice of
the temperature on the event horizon. Finally, we have concluded that universe bounded by the event
horizon may be a Bekenstein system and Einstein’s equations and the first law of thermodynamics on
the event horizons are equivalent.

© 2012 Published by Elsevier B.V. Open access under CC BY license.
Since the end of the last century, there are series of observa-
tional evidences [1–3] which put standard cosmology into a big
question mark. Either one has to introduce exotic matter (dark
energy) having large negative pressure within the framework of
Einstein gravity or one has to modify the gravity theory itself, so
that observed present accelerating phase of the universe can be
explained. On the other hand, due to this accelerated expansion
the existence of event horizon is assured and it is relevant to ex-
amine universe bounded by event horizon as a thermodynamical
system. In this context, Wang et al. [4] in 2006 investigated the
laws of thermodynamics in an accelerating universe dominated by
dark energy with a time dependent equation of state. They showed
that both the first law and second law of thermodynamics are sat-
isfied on the dynamical apparent horizon while thermodynamical
laws break down on the cosmological event horizon. They were
not able to rescue the thermodynamical laws by redefining any
parameter. So they claimed that the cosmological event horizon is
unphysical from the point of view of the laws of thermodynamics.

Further they pointed out that the apparent horizon is the
largest surface whose interior can be treated as a Bekenstein sys-
tem i.e. satisfies Bekenstein’s entropy/mass bound S � 2π R E and
Bekenstein’s entropy/area bound S � A

4 . In case of event horizon,
although the Bekenstein entropy/mass bound can be satisfied, the
Bekenstein entropy/area bound is violated. So they concluded that
the thermodynamic system outside the apparent horizon is no
longer a Bekenstein system and the usual thermodynamic descrip-
tion breaks down.
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In this short communication, we shall show the validity of the
first law of thermodynamics by two examples with appropriate
choice of temperature on the event horizon. In this connection we
should mention that in recent past, generalized second law of ther-
modynamics has been shown [5] to be satisfied assuming the first
law for the universe bounded by the event horizon as a thermo-
dynamical system for various matter distribution and in different
gravity theories.

Assuming the homogeneous and isotropic FRW model of the
universe, the metric can locally be expressed in the form

ds2 = hij
(
xi)dxi dx j + R2 dΩ2

2 (1)

where i, j can take values 0 and 1. The two-dimensional metric

dγ 2 = hij
(
xi)dxi dx j (2)

where

hij = diag

{
−1,

a2

1 − κr2

}
(3)

is referred to as the normal metric, with xi being associated co-
ordinates (x0 = t , x1 = r). R = ar is the area radius, considered as a
scalar field in the normal two-dimensional space. Another relevant
scalar quantity on this normal space is

χ(x) = hij(x)∂i R∂ j R = 1 −
(

H2 + κ

a2

)
R2, (4)

with κ = 0,+1,−1 for flat, closed and open model respectively.
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Now the apparent horizon, a null surface is defined at the van-
ishing of the scalar, i.e.,

χ(x) = 0,

which gives

R A = 1√
H2 + κ

a2

. (5)

The surface gravity on the apparent horizon is defined as

κA = −1

2

∂χ

∂ R

∣∣∣∣
R=R A

= 1

R A
(6)

and hence the usual Hawking temperature on the apparent horizon
turns out to be

T A = |κA |
2π

= 1

2π R A
. (7)

On the other hand, the event horizon is defined as

R E = a

∞∫
t

dt

a
, (8)

where the infinite integral converges if a ∼ tα with α > 1, i.e., the
event horizon has relevance only in the accelerating phase. Usually
in the literature, the Hawking temperature on the event horizon is
defined similar to the apparent horizon (i.e., Eq. (7)) and one takes

T E = 1

2π R E
. (9)

This is also supported from the measurement of the temperature
by a freely falling detector in a de-Sitter background (where both
the horizons coincide) using quantum field theory [6].

In the present work, we shall define the temperature on the
event horizon similar to the apparent horizon starting from the
definition of surface gravity in Eq. (6), i.e., we define

κE = −1

2

∂χ

∂ R

∣∣∣∣
R=R E

= R E

R A
2
. (10)

So the Hawking temperature on the event horizon becomes

T E = |κE |
2π

= R E

2π R A
2
. (11)

As flat FRW model is much relevant in the context of the
Wilkinson Microwave Anistropy probe data [7] so we take κ = 0
throughout the work. Also for flat model the two horizons are re-
lated by the relation

R A = 1

H
= R H < R E , (12)

so the Hawking temperature on the event horizon can now be
written as

T E = H2 R E

2π
. (13)

Clearly from the inequality (12), we have

T A = H

2π
< T E . (14)

Now we shall show the validity of the first law of thermodynamics
for the following two dark energy models.
1. Dark energy as a perfect fluid with constant equation of state

The Friedmann equations are

H2 = 8πG

3
ρ, Ḣ = −4πG(ρ + p) (15)

where p = ωρ (ω, a constant, −1 < ω < − 1
3 ) is the equation of

state of the dark energy (DE) – fluid having energy density ρ and
thermodynamic pressure p and they obey the conservation rela-
tion

ρ̇ + 3H(ρ + p) = 0. (16)

For this DE model of the fluid the scale factor grows with time as

a(t) = t
1
α , α = 3

2
(1 + ω), 0 < α < 1 (17)

and the event horizon evolves linearly with time in the form

R E =
(

α

1 − α

)
t. (18)

Now, the amount of energy flux across the horizon within the time
interval dt as [1]

−dE H = 4π R2
h Tabκ

aκb dt (19)

with κa a null vector. So for the event horizon we get,

−dE = 4π R3
E Hρ(1 + ω)dt = α dt

G(1 − α)3
. (20)

Due to Bekenstein area-entropy relation we have

S E = π R2
E

G
. (21)

So we have

T E dS E = H2 R2
E(H R E − 1)dt

G
= α dt

G(1 − α)3
. (22)

Thus we have the first law: −dE = T E dS E on the event horizon. It
should be noted that to get the last equality in Eq. (20) we have
used the 1st Friedmann equation given in Eq. (15).

2. Holographic DE model

We shall consider non-interacting two fluid system – one in the
form of holographic DE and the other component as dark matter.
Here we choose a dark energy model which follows the holo-
graphic principle. Using effective quantum field theory with R E as
the I R cut off, the energy density of the holographic DE is of the
form [8]

ρD = 3c2

R2
E

, (23)

where c is a dimensionless free parameter. The Friedmann equa-
tions for the present two fluid system are (8πG = 1 = c)

H2 = 1

3
(ρm + ρD) and Ḣ = −1

2
(ρD + ρm + pD) (24)

where ρm is the energy density of the dark matter (dust) and ρD

and pD are the energy density and the thermodynamic pressure of
the holographic DE with equation of state [9]

ωD = −1 − 2
√

ΩD
. (25)
3 3c
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Here ΩD = ρD
3H2 is the density parameter for the DE. Now the flux

of energy across the event horizon becomes

−dE = 4π R3
E H(ρm + ρD + pD)dt

= 3

2
R3

E H3(1 + ωDΩD)dt, (26)

while

T E dS E = 3

2
H3 R3

E(1 + ωD)dt. (27)

Thus we have −dE �= T E dS E . However, if we consider only the
holographic DE fluid instead of two fluid system then ΩD = 1 and
the first law of thermodynamics is satisfied.

Thus we are able to show the validity of the first law of ther-
modynamics on the event horizon with the newly proposed tem-
perature on the event horizon (given in Eq. (11)) for two perfect
fluid models – one with constant equation of state and the other in
the form of holographic dark energy. Moreover, it should be noted
that in deriving the first law of thermodynamics we have to use
the first Friedmann equation. So on the other way starting from
the first law of thermodynamics on the event horizon one is able
to derive Einstein’s field equations. Hence for the proposed temper-
ature on the event horizon, Einstein’s equations and the first law
of thermodynamics on the event horizon are equivalent at least
for the two cited examples and universe bounded by the event
horizon may be considered as a Bekenstein system. Therefore, we
conclude that this modified temperature on the event horizon is
the first step towards a general prescription for the validity of the
first law of thermodynamics on the event horizon and hence this
thermodynamical prescription with event horizon agrees (quali-
tatively) with observations. For future work, we shall attempt to
formulate such a general description on the event horizon.
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