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Abstract

The aim of this paper is to price an American option in a multiperiod binomial model, when there is uncertainty on the
volatility of the underlying asset. American option valuation is usually performed, under the risk-neutral valuation para-
digm, by using numerical procedures such as the binomial option pricing model of Cox et al. [J.C. Cox, S.A. Ross,
S. Rubinstein, Option pricing, a simplified approach, Journal of Financial Economics 7 (1979) 229–263]. A key input
of the multiperiod binomial model is the volatility of the underlying asset, that is an unobservable parameter. As it is hard
to give a precise estimate for the volatility, in this paper we use a possibility distribution in order to model the uncertainty
on the volatility. Possibility distributions are one of the most popular mathematical tools for modelling uncertainty. The
standard risk-neutral valuation paradigm requires the derivation of the risk-neutral probabilities, that in a one-period
binomial model boils down to the solution of a linear system of equations. As a consequence of the uncertainty in the vol-
atility, we obtain a possibility distribution on the risk-neutral probabilities. Under these measures, we perform the risk-
neutral valuation of the American option.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this paper is to price an American style option when there is uncertainty on the volatility of the
underlying asset. An option contract can be either European or American style depending on whether the
exercise is possible only at or also before the expiry date. An European option gives the holder the right to
buy or sell the underlying asset only at the expiry date of the option. On the other hand, an American option
gives the holder the right to buy or sell the underlying asset at any time up to the expiry date. Therefore, in
American option pricing, the likelihood of the early exercise should be carefully taken into account. American
option valuation is usually performed, under the risk-neutral valuation paradigm, by using numerical
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procedures such as the binomial option pricing model of Cox et al. [7]. A key input of the multiperiod bino-
mial model is the volatility of the underlying asset, that is an unobservable parameter.

The volatility parameter can be estimated either from historical data (historical volatility) or implied from
the price of European options (implied volatility). In the first case, the length of the time series, the frequency
and the estimation methodology may lead to different estimates. In the second case, as options differ in strike
price, time to expiration and option type (call or put), which option class yields implied volatilities that are
most representative of the markets’ volatility expectations, is still an open debate. Various papers have exam-
ined the predictive power of implied volatility extracted from different option classes. Christensen and Prab-
hala [3] examine the relation between implied and realized volatility on S&P100 options. They found that at
the money calls are good predictors of future realized volatility. Christensen and Strunk [4] consider the rela-
tion between implied and realized volatility on the S&P100 options. They suggest to compute implied volatility
as a weighted average of implied volatilities from both in the money and out of the money options and both
puts and calls. Ederington and Guan [13] examine how the information in implied volatility differs by strike
price for options on S&P500 futures. They suggest to use implied volatilities obtained from high strike options
(out of the money calls and in the money puts) since the information content in implied volatilities varies
roughly in a mirror image of the implied volatility smile.

As it is difficult to have a precise and reliable estimate of the volatility parameter in this paper we assume
that the volatility parameter is not known precisely, but lies in a weighted interval of possible values. The
choice of modelling volatility with a weighted interval of possible values is made for the following reasons.
As different estimates for the volatility can be obtained from implied volatilities by varying strike price, mon-
eyness or option type and from historical volatility by varying length of the time series, frequency and esti-
mation methodology, then it is reasonable to assume an interval of possible values for the volatility
parameter. As the choice of using plain intervals may lead to a severe overestimation of the interval width,
if some expert judgment is available about the actual value of the parameters, it is possible to assign a greater
degree of membership to some values within the interval and a fuzzy number can be found. For example the
implied volatilities extracted from options with strike price, maturity and type very similar to the option that
one wants to price may have a higher degree of membership than other volatility estimates. Fuzzy numbers
combine qualitative and quantitative assessments in a single tool that is able to handle uncertainty. They pro-
vide us with a simple framework that is intuitively appealing and computationally simple. Fuzzy numbers
and possibility distributions can be considered as two faces of the same coin since they have a common math-
ematical expression and possibility distributions can be manipulated by the combination rules of fuzzy num-
bers (for more details, see Dubois and Prade [10,11]). Therefore, in the following, we will use the two terms
as synonyms, keeping in mind that, even if they have a common mathematical expression, the underlying
concepts are different: while a fuzzy number can be seen as a fuzzy value that we assign to a variable, viewed
as a possibility distribution, the fuzzy number is the set of non-fuzzy values that can possibly be assigned to a
variable.

Given the stock-varying and time-varying volatility exhibited by financial data, several ways have been pro-
posed in the literature in order to introduce non-constant volatility in an option pricing model. We can dis-
tinguish between deterministic and stochastic models, depending on whether volatility is assumed to be a
deterministic function of other variables or it is assumed to follow a stochastic process. Both approaches
can be subdivided into traditional models and smile-consistent models. In the first approach, a stochastic pro-
cess for the underlying asset is assumed and the market price of options is derived under no-arbitrage or equi-
librium conditions. In the second approach, the market price of options is taken as given and used to infer the
underlying asset process: the obtained process is used to price and hedge American and exotic options. In a
deterministic volatility model, volatility is assumed to be a deterministic function of other variables such as
stock price and time. Among deterministic models, we recall the traditional models of Cox and Ross [6]
and Geske [14] that make volatility deterministically dependent on stock price and the smile consistent models
of Dupire [12], Derman and Kani [9] and Rubisnstein [21] that make volatility deterministically dependent on
stock price and time. In a stochastic volatility model, volatility varies randomly, following a stochastic pro-
cess. Among stochastic models, we recall the traditional models of Hull and White [15] and Wiggins [24] that
use a geometric diffusion process and the model by Scott [22] that considers an Ornstein Uhlenbeck process in
order to model the volatility stochastic process. Under this category we find also the so-called smile-consistent



142 S. Muzzioli, H. Reynaerts / Internat. J. Approx. Reason. 49 (2008) 140–147
stochastic volatility models, (see, e.g. Derman and Kani [8], Britten-Jones and Neuberger [1]), that consider a
stochastic process for the volatility that is calibrated to the market price of options.

Even if our approach can be considered as a way to model heteroschedasticity (i.e. volatility of volatility), it
is difficult to include it in any of the above mentioned categories. It is a traditional model since we assume a
stochastic process for the underlying asset and we derive, by the no-arbitrage argument, the price of options.
However, the volatility parameter is neither deterministically dependent on other variables nor it is assumed to
follow a stochastic process. By contrast, the aim of our model is to describe another dimension of volatility:
imprecision. As it is difficult to have a precise and reliable estimate of the volatility parameter, we assume that
the volatility parameter is not known precisely, but lies in a weighted interval of possible values. The volatility
bounds and the most possible values in this paper are held constant. As possible extensions we can make them
deterministically dependent on strike price and/or time (giving rise to an imprecise deterministic volatility
model) or we can let them evolve stochastically (giving rise to an imprecise stochastic process), both
approaches are left for future research.

Recent literature on option pricing in the presence of uncertainty has mixed probability with fuzziness.
Probability is used to model the uncertainty of an event that can occur or not, while fuzziness is used to model
the imprecision on a value. Fuzzy European option pricing has been examined in continuous time by Yoshida
[26] and Wu [25] and in discrete time by Muzzioli and Torricelli [18]. Fuzzy American option pricing has been
examined both in discrete and continuous time by Yoshida [27]. Yoshida [27] has addressed the issue by using
fuzzy random variables and fuzzy expectation based on the decision maker’s subjective judgement. The
approach hinges on a simplifying assumption on the evolution of the fuzzy stochastic process. In particular,
it assumes that the amount of fuzziness is constant through time and symmetrical w.r.t. the crisp stochastic
process. By contrast, in this paper, we drop this assumption: we let the fuzziness amount decrease as time goes
by and allow it to be non symmetrical w.r.t. the crisp stochastic process.

Starting from the Cox et al. [7] binomial model in which the American option has a well known valuation
formula, we follow the approach of Muzzioli and Torricelli [18] and we assume the two jump factors, up and
down, that describe the possible moves of the underlying asset in the next time period, as uncertain parame-
ters. We extend the Muzzioli and Torricelli [18] approach that is based on triangular fuzzy numbers, by using
trapezoidal fuzzy numbers. In order to compute the option price, we first show how to derive the risk-neutral
probabilities, i.e. the probabilities of an up and a down move of the underlying asset in the next time period in
a risk-neutral world. The problem boils down to the solution of a linear system of equations with fuzzy coef-
ficients. Once the risk-neutral probabilities are derived, they are used in the option valuation. The plan of the
paper is the following: In Section 2, we present the Cox et al. binary tree model for the pricing of American put
options. In Section 3, we illustrate the case in which trapezoidal fuzzy numbers are used. In Section 4, we
briefly illustrate the case in which triangular fuzzy numbers are used in order to provide a comparison with
the Yoshida [27] approach. The last section concludes.

2. The binary tree model for the pricing of an American put option

The binary tree model of Cox et al. [7] is used to price options and other derivative securities. As the price of
an American call option written on a non dividend paying stock is the same of that of an European call
option, in this paper, we analyse the only interesting case of a put option. An American put option is a finan-
cial security that provides its holder, in exchange for the payment of a premium, the right but not the obliga-
tion to sell a certain underlying asset before or at the expiration date for a specified price K. Let us consider a
one-period model where t ¼ f0; 1g is time and the two basic securities are the money market account and the
risky stock. The money market account, is worth 1 at t ¼ 0 and its value at t ¼ 1 is 1þ r, where r is the risk-
free interest rate. The stock price at time zero, S0, is observable, while its price at time one, is obtained by mul-
tiplying S0 with the jump factors u; d. In the binary tree model of Cox et al.[7], the following assumptions are
made: (A1) The markets have no transaction costs, no taxes, no restrictions on short sales, and assets are infi-
nitely divisible. We remark that several authors (e.g. Leland [17]) have considered the problem with transac-
tion costs. (A2) The lifetime T of the option is divided into N time steps of length T =N . (A3) The market is
complete. This is a very strong assumption, for more insights on how to relax this assumption we refer to
Karatzas and Kou [16]. (A4) The interest rate r is constant. (A5) No-arbitrage opportunities are allowed,



S. Muzzioli, H. Reynaerts / Internat. J. Approx. Reason. 49 (2008) 140–147 143
which implies for the risk-free interest factor, 1þ r, over one step of length T=N , that d < 1þ r < u, where u is
the up and d the down factor. In fact, if 1þ r 6 d < u (d < u 6 1þ r), then the stock pays out more (less) than
the money market account in each state and this implies a risk-less arbitrage opportunity involving the stock
and risk-free borrowing and lending.

Fundamental for the option valuation is the derivation of the up and down risk-neutral transition proba-
bilities, pu and pd respectively, which are obtained from the following system:
pu þ pd ¼ 1

upu þ dpd ¼ 1þ r:

�
ð1Þ
The solution is given by: pu ¼
ð1þrÞ�d

u�d and pd ¼
u�ð1þrÞ

u�d .
In order to estimate the up and down jump factors from market data, the standard methodology (see Cox

et al. [7]) leads to set: u ¼ er
ffiffiffiffiffiffiffi
T=N
p

; d ¼ e�r
ffiffiffiffiffiffiffi
T=N
p

, where r is the volatility of the underlying asset.

In order to price the American put option, the American algorithm is applied (see for example, Shreve [23]).
Define the functions vnðsÞ; n ¼ N ;N � 1; . . . ; 0, as follows:
vN ðsÞ ¼ ðK � sÞþ; s ¼ S0uidN�i; i ¼ 0; 1; . . . ;N ;

vnðsÞ ¼ max K � s;
1

1þ r
ðpuvnþ1ðusÞ þ pdvnþ1ðdsÞÞ

� �
; n ¼ N � 1;N � 2; . . . ; 0;

s ¼ S0uidn�i; i ¼ 0; 1; . . . ; n;
where K is the exercise price and S0 is the price of the underlying asset at time the contract begins.

3. The use of trapezoidal fuzzy numbers

In this section, we model the imprecision in volatility by using trapezoidal fuzzy numbers. In order to intro-
duce trapezoidal fuzzy numbers, some basic concepts about fuzzy sets should be recalled. A fuzzy set F of R is
a subset of R, where the membership function of each element x 2 R, denoted by lF ðxÞ, is allowed to take any
value in the closed interval [0,1]. lF ðxÞ ¼ 0 indicates no membership, lF ðxÞ ¼ 1 indicates full membership: the
closer the value of the membership function is to 1, the more x belongs to F. A fuzzy number N is a normal
(i.e. at least one value x has full membership) and convex (the membership function should not have distinct
local maximal points) fuzzy set of R. Fuzzy numbers can be considered as possibility distributions (see, e.g.
Dubois and Prade [11]): let a fuzzy number A 2 N and a real number x 2 R, then lAðxÞ can be interpreted
as the degree of possibility of the statement ‘‘x is A’’.

A trapezoidal fuzzy number f is uniquely defined by the quartet ðf1; f2; f3; f4Þ where f1andf4 are the lower
and the upper bounds of the interval of possible values and ½f2; f3� is the interval of the most possible values. A
trapezoidal fuzzy number is used to describe an interval whose lower and upper bounds are uncertain. The
membership function lðf ÞðxÞ ¼ 0 outside ðf1; f4Þ, and lðf ÞðxÞ ¼ 1 at x 2 ½f2; f3�, the graph of the membership
function is a straight line from ðf1; 0Þ to ðf2; 1Þ and from ðf3; 1Þ to ðf4; 0Þ. Alternatively, one can write a trap-
ezoidal fuzzy number in terms of its a-cuts, f ðaÞ, a 2 ½0; 1�:f ðaÞ ¼ ½f ðaÞ; �f ðaÞ� ¼ ½f1 þ aðf2 � f1Þ; f4�
aðf4 � f3Þ�. For simplicity of the notations, the a-cuts will also be noted by ½f ; �f �.

In this setting the up and down factors are represented by the trapezoidal fuzzy numbers: u ¼ ðu1; u2; u3; u4Þ
and d ¼ ðd1; d2; d3; d4Þ. Assumptions (A1), (A2), (A3) and (A4) are still valid, while assumption (A5) changes
as follows:
d1 6 d2 6 d3 6 d4 < 1þ r < u1 6 u2 6 u3 6 u4:
In fact, if d3 6 1þ r 6 d4 (u1 6 1þ r 6 u2), then for a 6 ðd4 � ð1þ rÞÞ=ðd4 � d3Þ (a 6 ðð1þ rÞ�
d1Þ=ðd2 � d1Þ) there is an interval of possible values for the stock in which it pays out more (less) than the
money market account in each state and this implies a risk-less arbitrage opportunity involving the stock
and risk-free borrowing and lending.

System (1) is a fuzzy linear system of the form:
1 1

ðd1; d2; d3; d4Þ ðu1; u2; u3; u4Þ

� �
pu

pd

� �
¼

1

1þ r

� �
ð2Þ
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where some of the elements, aij, i ¼ 1; 2; j ¼ 1; 2 of the matrix A are trapezoidal fuzzy numbers and the ele-
ments, bi, of the right-hand vector b are crisp. Note that the no-arbitrage condition guarantees that the result-
ing fuzzy matrix has always full rank for all d 2 ½d1; d4� and for all u 2 ½u1; u4�.

In order to investigate the solution of System (1), we follow the approach given in Buckley and Qu [2] and
in Muzzioli and Reynaerts [19,20] and we solve the following non linear programming problem:
max
u;d

ðresp:min
u;d
Þ 1þ r � d

u� d
max

u;d
ðresp:min

u;d
Þ u� ð1þ rÞ

u� d

where ð1þ r <Þu 6 u 6 �u and d 6 d 6 �dð< 1þ rÞ.

Since opu

ou ¼
d�ð1þrÞ
ðu�dÞ2 < 0 (resp. opu

od ¼
ð1þrÞ�u

ðu�dÞ2 < 0) the maximum of pu is obtained for umax ¼ u (resp. dmax ¼ d)

and the minimum for umin ¼ �u (resp. dmin ¼ �d). Since opd

ou ¼
ð1þrÞ�d

ðu�dÞ2 > 0 (resp. opd

od ¼
u�ð1þrÞ
ðu�dÞ2 > 0) the maximum

of pd is obtained for umax ¼ �u (resp. dmax ¼ �d) and the minimum for umin ¼ u (resp. dmin ¼ d).

Therefore, the solution of the system is
 
ð1þ rÞ � �d

�u� �d
;
ð1þ rÞ � d

u� d

� �
;
ðu� ð1þ rÞÞ

u� d
;
ð�u� ð1þ rÞ

�u� �d

� �!
ð3Þ
where u ¼ u1 þ aðu2 � u1Þ, �u ¼ u4 � aðu4 � u3Þ, d ¼ d1 þ aðd2 � d1Þ and �d ¼ d4 � aðd4 � d3Þ.
In order to get the price of the American put option, the American algorithm should now be applied. The

functions vnðsÞ; n ¼ N ;N � 1; . . . ; 0; are defined as
vNðsÞ ¼ ðK � sÞþ; s ¼ S0½ui; �ui�½dN�i; �dN�i�; i ¼ 0; 1; . . . N ;

vnðsÞ ¼ maxfK � s;
1

1þ r
ðpuvnþ1ðusÞ þ pdvnþ1ðdsÞÞg; n ¼ N � 1;N � 2; . . . ; 0;
with pd and pu defined as in Eq. (3).
The maximum of two fuzzy numbers f and g is defined as
maxðf ; gÞðaÞ ¼ ½maxðf ðaÞ; gðaÞÞ;maxð�f ðaÞ; �gðaÞÞ�; a 2 ½0; 1�:
For simple and fast computation between fuzzy numbers a restriction to trapezoidal shaped fuzzy numbers is
often preferable. Therefore, we use the following approximations, let A and B be two trapezoidal fuzzy num-
bers and c 2 R:
A � B ¼ ða1 � b1; a2 � b2; a3 � b3; a4 � b4Þ
maxðA;BÞ ¼ ðmaxða1; b1Þ;maxða2; b2Þ;maxða3; b3Þ;maxða4; b4ÞÞ
maxðA; cÞ ¼ ðmaxða1; cÞ;maxða2; cÞ;maxða3; cÞ;maxða4; cÞÞ
The risk-neutral probabilities are approximated by the following trapezoidal fuzzy numbers:
pu ¼
1þ r � d4

u4 � d4

;
1þ r � d3

u3 � d3

;
1þ r � d2

u2 � d2

;
1þ r � d1

u1 � d1

� �

pd ¼
u1 � ð1þ rÞ

u1 � d1

;
u2 � ð1þ rÞ

u2 � d2

;
u3 � ð1þ rÞ

u3 � d3

;
u4 � ð1þ rÞ

u4 � d4

� �
3.1. Numerical example

For this example, we use data on Dax-index options and Dax index recorded from Datastream on 02/02/
2007. For the risk-free rate, we took the one-month Euribor rate, equal to 3.609%. The dax index was worth
6851.28. We price an American option with maturity 14 days and strike price 6850.00. The one-period interest
rate was r ¼.0007. The volatility parameter is proxied by the trapezoidal fuzzy number (.1202; .1234; .1281;
.12951). The volatility lower and upper bounds are respectively given by using two estimates of implied vol-
atility provided by Datastream: the one-month implied volatility and the interpolated volatility at the money.
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The lower and upper most possible values are given respectively by the implied volatility computed from an
European put option with same strike and maturity of the option we are pricing, and the implied volatility at
the money near strike (for more details on the computation of these estimates, we refer to the Datastream
manual). The binomial tree for the price of the underlying asset is illustrated in Fig. 1. The up and down prob-
abilities are: pu ¼ ð:497; :506; :525; :534Þ and pd ¼ ð:466; :475; :494; :503Þ.

By applying the American algorithm one obtains the American put option prices reported in Fig. 2, as
follows:
v2ðSuu
2 Þ ¼ maxf6850:00� ð7083:21; 7089:49; 7098:73; 7101:50Þ; 0g ¼ ð0; 0; 0; 0Þ

v2ðSud
2 Þ ¼ maxf6850:00� ð6842:45; 6846:82; 6855:74; 6860:12Þ; 0g ¼ ð0; 0; 3:18; 7:55Þ

v2ðSdd
2 Þ ¼ maxf6850:00� ð6609:88; 6612:46; 6621:07; 6626:94Þ; 0g ¼ ð223:06; 228:93; 237:54; 240:12Þ

v1ðSu
1Þ ¼ maxf6850:00� ð6966:28; 6969:37; 6973:91; 6975:27Þ; 1

1:0007

½ð:497; :506; :525; :534Þv2ðSuu
2 Þ þ ð:466; :475; :494; :503Þv2ðSud

2 Þ�g ¼ ð0; 0; 1:57; 3:79Þ

v1ðSd
1Þ ¼ maxf6850:00� ð6729:50; 6730:81; 6735:19; 6738:18Þ; 1

1:0007

½ð:497; :506; :525; :534Þv2ðSud
2 Þ þ ð:466; :475; :494; :503Þv2ðSdd

2 Þ�g ¼ ð111:82; 114:81; 119:19; 124:72Þ

v0ð6851:28Þ ¼ maxf6850:00� 6851:28;
1

1:0007

½ð:497; :506; :525; :534Þv1ðSu
1Þ þ ð:466; :475; :494; :503Þv1ðSd

1Þ�g;¼ ð52:03; 54:51; 59:64; 64:71Þ
The weighted interval of possible values can be used by the decision maker in order to compare the theoretical
price with the market price of an option. If the market price of the option is below (above) the lowest (highest)
value of the interval then riskless trading strategies result in a positive payoff, therefore, the option is
Fig. 2. American put option prices.
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underpriced (overpriced). Moreover, the decision maker can resort to a higher confidence level a > 0 and shrink
the interval of possible values of the theoretical price. In particular, if the decision maker uses a subjective
defuzzification method in order to find a crisp value that summarizes the information contained in the fuzzy
number (see e.g. Cox [5]), than the theoretical price is crisp and thus can be directly compared with the market
price.

4. The use of triangular fuzzy numbers: a comparison with the approach by Yoshida [27]

In order to compare our approach with the one of Yoshida [27], in this section, we assume that the infor-
mation about the possible values of the jump factors can be described by means of triangular fuzzy numbers.
A triangular fuzzy number f is a special case of a trapezoidal fuzzy number when f2 ¼ f3: it is uniquely defined
by the triplet ðf1; f2; f4Þ, where f1 and f 4 are the lower and the upper bounds of the interval of possible values
and f2 is the most possible. The up and down factors are, therefore, represented by the triangular fuzzy num-
bers: u ¼ ðu1; u2; u4Þ and d ¼ ðd1; d2; d4Þ. Assumptions (A1), (A2), (A3) and (A4) are still valid, while assump-
tion (A5) changes as follows:
d1 6 d2 6 d4 < 1þ r < u1 6 u2 6 u4:
The inequalities just above are obtained from the explanation given in Section 3, above Eq. (2), putting
d2 ¼ d3 and u2 ¼ u3. As a triangular fuzzy number is a special case of a trapezoidal fuzzy number with unique
peak value, we can easily derive the American option price by following the same arguments presented in the
previous section. For example, by using the same data-set as in example 1, with the volatility estimate equal to
(.1202, .1258, .1295) the American option price is (52.03,56.64,64.71).

Yoshida [27] considers a fuzzy-valued stock price whereby the fuzziness amount is described by a constant
0 < c < 1 that represents the decision maker subjective estimate of the volatility r. The initial stock price S0 is
multiplied by the fuzzy factor b ¼ ½b�; bþ� ¼ ½1� ð1� aÞc; 1þ ð1� aÞc�; a 2 ½0; 1� and the up and down jump
factors u and d are crisp. The fuzzy factor b is a triangular shaped fuzzy number with symmetrical spreads.

The present approach differs from Yoshida [27], in at least two aspects. First the triangular fuzzy numbers
used are not restricted to be symmetrical as in Yoshida [27], but the left and right spread can have different
length. This is an important feature to better capture the information on the volatility. For example, the deci-
sion maker can be rather sure about the amount the stock will gain in case it will increase, but she can be
rather uncertain about the amount the stock will loose in case it will decrease. Moreover, the decision maker
can have a more optimistic (pessimistic) view on the single jump factor, that can be modelled by a longer
(shorter) right spread and a shorter (longer) left spread. Second, it clearly illustrates how the assumption
on fuzzy up and down jump factors changes the no-arbitrage condition and in turn affects the risk-neutral
probabilities derivation. In fact, in Yoshida [27], the fuzzy factor does not affect the no-arbitrage condition
and in turn the risk-neutral probabilities derivation. Besides, we notice that in Yoshida [27], the following con-
dition should be verified in order to ensure no arbitrage: dbþ < 1þ r < ub�, i.e. dð1þ ð1� aÞcÞ < 1þ r <
uð1� ð1� aÞcÞ, therefore, the decision maker is not allowed to choose any value of 0 < c < 1, but the interval
of possible values should be restricted by the no-arbitrage condition. Moreover, the risk-neutral probabilities
should be accordingly derived, in order to take into account the fuzziness in the model. They can be easily
obtained as a special case of our model when u and d are symmetrical triangular fuzzy numbers.

5. Conclusions

In this paper, we have investigated the derivation of the price of an American put option written on a stock
in the presence of uncertainty in the volatility. As in real markets, it is usually hard to precisely estimate the
volatility of the underlying asset, fuzzy sets and possibility distributions are a convenient tool for capturing
this kind of imprecision. We started from the Cox et al. [7] binomial model and we investigated which is
the effect on the option price of assuming the volatility as an uncertain parameter. Following the approach
of Muzzioli and Torricelli [18], we use fuzzy numbers in order to model the two jump factors. We derived
the risk-neutral probabilities by solving a linear system of equations with fuzzy coefficients. Finally, the
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risk-neutral probabilities derived are used to evaluate the option price. The present paper improves over pre-
vious approaches in at least three aspects.

First, it uses two different types of fuzzy numbers: triangular and trapezoidal ones. Second, it clarifies the
role of the no-arbitrage condition in the derivation of the risk-neutral probabilities. Third, it provides a simple
and fast computational algorithm for the derivation of the option price.
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