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Abstract

This paper studies the global behaviors of the periodic logistic system with periodic impulsive
perturbations. The results of D.D. Bainov and P.S. Simeonov (1993) are extended and dynamics
different from the corresponding continuous system are found. It is shown that the system may have
a unique positive periodic solution which is globally asymptotically stable, or go extinct when the
two periods are rational dependent. When they are rational independent, the system has no periodic
solutions, however, still has a global attractor or go extinct under some conditions.
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1. Introduction

For modelling the dynamics of an ecological system, Cushing [1] pointed out that it is
necessary and important to consider models with periodic ecological parameters or pertur-
bations which might be quite naturally exposed (for example, those due to seasonal effects
of weather, food supply, mating habits, etc.). On the other hand, the ecological system is
often deeply perturbed by human exploit activities such as planting and harvesting. Usu-
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ally, these activities are considered continuously by adding some items in the system [2—4].
Whereas this is not how things stand. It is often the case that planting and harvesting of
the species are seasonal or occur in regular pulses. These perturbations may also naturally
be periodic, for example, a fisherman may go fishing at the same time once a day or once
a week. Systems with short-term perturbations are often naturally described by impulsive
differential equations, which are found in almost every domain of applied sciences. Nu-
merous examples are given in Bainov and his collaborators’ books [5—7]. Some impulsive
equations have been recently introduced in population dynamics in relation to: population
ecology [8,9] and chemotherapeutic treatment of disease [10,11].

In this paper, we will study the following logistic system with impulsive perturbations:

X)) =x@)r@) —a®)x(t)), t#tu, keN, (1.2)
Ax(ty) = brx (ty), keN, (1.2
where N is the set of positive integergg 20 <1 < --- <ty < fyp1 < -+, Ax(fp) =

x(t,:r) — x(t), r(-),k(-) € PC[R,R] and PC[R,R] ={¢: R~ R, ¢ is continuous for
t # tg, ¢(t,j') ande(z, ) existandp (t) = ¢(t, ), k € N}. Suppose (1.1) i@-periodic and
(1.2) isT-periodic, i.e.,

rt+w)=r), alt+w)=a(), teR, (1.3)
andT is the least positive constant such that therd ags in the interval0, 7) and
et =tx +T, bryi=br, keN. (1.4)

Denote the right hand side of (1.1) bf&z, x). We assume thaft (¢, x) is not constant
for any fixedx so that (1.1) is nonautonomous. The following additional restrictions on
system (1.1), (1.2) are natural for biological meanings:

r(t)>0, a(t)>0, teR,, (1.5)
1+b,>0, br#0, keN. (1.6)

Whenb; > 0, the perturbation stands for planting of the species, while 0 stands for
harvesting. By the basic theories of impulsive differential equations in [6,7], system (1.1),
(1.2) has a unique solution(r) = x (¢, x0) € PC[R, R] for each initial valuex(0) = xo €

R, and furtherx () > 0,7 € R if x(0) =x0 > 0.

The logistic equation (1.1) describes the variation of the population nus{beof an
isolated species in a periodically changing environment. The intrinsic rate of chanige
related to the periodically changing possibility of regeneration of the species, the density-
dependent coefficient(z) is related to the periodic change of the resources maintaining the
evolution of the population. The dynamic of the continuous system (1.1) is quite clear, it
has a unique positive periodic solution which is a global attractor [12]. The jump condition
(1.2) reflects the possibility of impulsive effects on the population. As we assumed, these
impulsive perturbations arB-periodic. Naturally, this period is distinct from, the period
of the change of environment. Even when we want to carry out the perturbations according
to the periodv, we cannot do it since we do not knawexactly. Thus, itis interesting how
the dynamics of (1.1) is affected by the periodically changing of environment together with
the periodic impulsive perturbations.
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The aim of this paper is to study the global behaviors of system (1.1), (1.2). We say
system (1.1), (1.2) is periodic with perioditif T = w. In this case, [7] established suffi-
cient conditions for system (1.1), (1.2) to admit a unique positive periodic solution, which
is locally asymptotically stable. We show thatyif= w/T is rational, i.e.w andT are
rational dependent, then system (1.1), (1.2) may have a unigue positive periodic solution
which is global asymptotically stable or go extinct in the sense that.ligw (1) = 0, for
any solutiornx (r) = x (¢, xg) of system (1.1), (1.2) witki (0) = xo > 0. And if y is irrational
(or w, T are rational independent), under the same conditions whisrrational, all the
positive solutions of system (1.1), (1.2) attract each other or tend to zero in the sense of
lower limit. Under some other conditions, we also show that system (1.1), (1.2) still has a
positive global attractor or go extinct. Numeric results show that the positive global attrac-
tor may be a quasi-periodic solution or at least almost periodic solution. Thus our results
extend the results in [7] and is quite different from the continuous system (1.1).

2. yisrational
Firstly, we extend the results in [7] when system (1,1), (1.2)-iseriodic.

Theorem 2.1. Supposd’ = w. Let conditiong1.3)—(1.6)hold and let

1
1 T

— —Jormdr _q

m k|_|11+bke <1

Then systen(l.1), (1.2)has a unique positive-periodic solutionx*(z, xg) for which
x*(0, x5) = x5 andx*(z, x5) > 0, t € Ry, andx*(t, x) is global asymptotically stable in
the sense thatm; . [x (¢, x0) — x*(¢, x3)| = 0, wherex(z, xo) is any solution of system
(1.1), (1.2)with positive initial valuex (0, xg) = xg > 0.

Proof. The first part of the conclusion is the result of Theorem 4.4 in [7]. We prove that
x*(t, x3) is global asymptotically stable.

For (1.1) and (1.2), we carry out the change of variable 1/z and obtain a linear
nonhomogeneous impulsive equation.

{50)=—¢0k0)+a0% t#t, keN,

2(65) = T 2 @), keN. (2.1)

Thusx(t) = x(¢, xo) is the solution of system (1.1), (1.2) with(0) = xg if and only if
z(t) = z(t, zo) is the solution of (2.1) witlz(0) = zo = 1/x0. Let

1 :
Wi(t,s) = l_[ T o~ Jir@dr

s<t<t

be the Cauchy matrix for the respective homogeneous equation. Then

t
dn:wmmdm+/wmnmnw (2.2)
0
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is the solution of (2.1). Since(z, xo), the solution of system (1.1), (1.2) is ultimately upper
bounded, which will be proved in Theorem 3.1, we need only to prove that

timoo|z(t) —Z*()| =0,

wherez*(¢) is the periodic solution of (2.1) with*(0) = 1/x; andz(z) is the solution of
(2.1) withz(0) = 1/x0. Since

|2(t) — 2*(1)| = W (2, 0)|z(0) — z*(0)

: (2.3)

the result is obtained iW (¢,0) — 0 ast — oco. Suppose € (nT, (n + 1)T] and letb =
maXe[0,7] H0<rk<s 1/(1+ by). Then

1 ' 1 1 1
we.0= [[ —— —Jor@adr _ — fir@ar
-9 T+b¢ [T = I o

O<t <t O<ty<nT nT <ty <t
n
_ ( 1—[ 1-:-bkefOTr(f)dt) 1_[ 1-’:_Lbke7 ;Tr(t)dr
O<t<T 0ty <t—nT
<b< [1 ! efoT’(fo)n =bu"
= 1+ by ’
O<y<T

Thus lim_ . W(#,0) =0, sinceu < 1 and lim,_, o u”* = 0. The proof is complete. O
Now we can give the asymptotical properties of system (1.1), (1.2) with ratjanal

Theorem 2.2. Suppose is rational and condition§1.3)—(1.6)are satisfied. Let

1
uw= l_[( 1 )yefowr(r)dr <1 (2.4)
i1 1+ b

Then systerfil.1), (1.2)has a unique positive periodic solution which is global asymptoti-
cally stable.

Proof. Sincey is rational, lety = p/q, p,q € N andp, ¢ are relatively prime. Lefp =
pT (= qw), then system (1.1), (1.2) iK-periodic. Since

[

1 fTO 1 p w
— —Joor(mydr _ —q Jo' r(t)drt
k=[] T+be l_[(1+bk) ‘
O<t<Tp k=1

I q
B (l_[(l 1b )yefomrmdt) <t
i} + D

we have directly from Theorem 2.1 that system (1.1), (1.2) has a unique poEjtive
periodic solution which is a global attractor. The proof is complete.
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Theorem 2.3. Let (1.3)—(1.6)hold. Supposg is rational. If (2.4)is reversed, i.e.,

!
I,L:l_[( 1 )yefomr(f)df>1’ (25)
i\ br

thenx () = x (¢, x0) — 0, ast — oo, wherex (¢) is any solution of systefi.1), (1.2)with
x(0)=x0>0.

Proof. As in the proof of Theorem 2.1, it is sufficient to prove that,lim, z() = oo,
wherez(z) is the solution of (2.1) with(0) = 1/x0. By (2.2), we have

z(t) = W(t, 0)zo.

Thus we need only to prove that lime, W(z,0) = co. Lety = p/¢g =w/T, p,q € N are
relatively prime,b = minge(o, p7] Hogqu 1/(L+bx) > 0, 7 = SUR¢( 7 (1) > 0. Sup-
poset € (impT, (m + 1)pT], m € N U{0}. Then

'
Wiz, O) — l_[ e—fo r(t)dr
O<t <t 1+ bk
_ l_[ 1 e 5"1’Tr(r)dr l_[ 1 e—f,;pTr(r)dr
O<ty<mpT 1+ bi mpT <ty <t +bi

! 1\ 1 " 1 .
= l_[ e*fo r(t)dt 1_[ e—jmpTr(r)dr
1+ by 1+ by

k=1 o<ty <t—mpT
l

1 \V _r " .
k

k=1

2 éepr<

Therefore, lim_, oo W(z, 0) = 0o, since lim,_ o« be "PT 44 = 0o by (2.5). O

3. y isirrational
We begin with proving that system (1.1), (1.2) is uniformly ultimately upper bounded.

Theorem 3.1. Let (1.3)—(1.6)hold. Then systerfl.1), (1.2)is uniformly ultimately upper
bounded, i.e., there exists a constait> 0 such thatx(z) < M for t sufficiently large,
wherex (1) = x (¢, xg) is any solution of systefi.1), (1.2)with x(0) = xo > 0.

Proof. Let 7 = sup¢(g,,7(t), a = inficjowa(?). Thenr > 0, a > 0 by (1.5). Choose
A > 0 such that

I
[Ja+o0e™ <1 (3.1)
k=1

By (1.1), we have
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x'(t) 4+ ax(t) < x @) (F + A — ax(@)). (3.2)
Since the right hand side of (3.2) is bounded, suppse 0 is a bound, (3.2) can be
rewritten as

@) < -xx(@)+ K.

Consider the following system:
{ Y(©)=—-ry®+K, t#n. keN,
Ay(tr) = by (f), keN.
By Theorem 3.1.1 in [6], we have(z, xo) < y(t, yo), t € R+, wherey(z, yo) is solution
of (3.3) with y(0, yo) = yo = xo0. Thus we need only to prove thatz, yo) is uniformly
ultimately upper bounded. By Theorem 4.1 in [7], (3.3) has a positigeriodic solution
y*(t, yp) With
K (1= TTea @+ 00e™) + ey [Tjmpga L+ b KT
1—[T (L4 bp)eT

We will prove thaty*(z, y;) is a global attractor. For any solutiotz, yo) of (3.3) with

yo > 0, since

y(t.y0) =y .39 = [ @+be ™ yo— 5.

O<t <t

(3.3)

Yo = > 0.

we shall prove lim., o H0<tk<t(1 + by)e ™ = 0. Suppose € (nT, (n + 1)T], let B =
maXe(o,71 [ [ogy, <5 (1 + bk). Then

l_[ (1+bk)e_)‘t= l_[ (1+bk) l_[ (1+bk)e—AnTe—A(t—nT)

O<t <t O<ty<nT nT <t <t
1 n
< (]‘[(1+ bk>e”) B.
k=1

Therefore lim_ ]_[0<,k<,(1+ br)e ™ =0 in view of (3.1). Hence lim. s |y (¢, yo) —
y*(t, y3)| = 0. As an obvious consequence, system (3.3) is uniformly ultimately upper
bounded. The proof is complete

Next we show that system (1.1), (1.2) has no periodic solutions. We need the following
lemma.

Lemma3.2. Lety = w/T be irrational. Then{nT modw: n € N} is dense irf0, w]. And
further there exist sequencgs, }, {¢,»} and{6,} such that

1 . .
nT =gno+6,, 0<0, <=, pu, g, arerelatively prime
n

and

lim &:y, lim g,, =00, forsome subsequentg,;} C {gn}.

n—oo gy, j—o0
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Proof. It is well known that{nT modw: n € N} is dense in0, w] [13-15]. Thus there
existp, € N such that

n

1
pnT Mmodw € (O, —),
which means there exigt, € N, 6, € (0, 1/n) such that

T = Gnew + 0. (3.4)

We may assumeg,,, ¢, are relatively prime since (3.4) still hold when divided by the largest
common factor ofp,, andg,,. (3.4) can be rewritten as

pu_ o O

dn qnT

Thusy < p,/qn <y +6,/T and, obviously, lim_,c pn/qn = y-
As a consequence, it is clear that there exist a subsequegndeof {g,} such that
lim ;00 gn; = co. The proofis complete. O

Theorem 3.3. Let (1.3)—(1.6)hold. If x(¢, xp) is a periodic solution of systefd.1), (1.2),
then its period must beT for somen € N.

Proof. Let Tp be the period of () = x(z, xo). Then
x((To+1)+£0)=x(t+0), 1>0.

Clearly, To is not an impulsive moment, suppose theresasgs in the interval0, Tp). Let
t =11. We have

x(To+11) = x(t1)
and
x((To+m)") =x(tf) = A+ bpx(t) = 1+ b)x(To+ 1),

which meandy+ 11 is one of the impulsive moments. Clearly, there iggsin the interval
(To, To + t1). For otherwise, supposes (To, Tp + 1) is an impulsive moment; then

x((To+ T = To)) ") =x((") #x(7) = x(To+ (7 — To))
=x(i —To) =x((t — To)"),
which is a contradiction. Thug + t1 = t5+1 andb;1 = by. Similarly, we have
To+ tx =ts+k, bsyx =br, keEN. (3.5)

Now we claim thats = n/ for somen € N. Otherwise, suppose= n/ + j for somen €
N U{0} and 1< j < /. As a consequencal < To < (n + 1)T. By (3.5) and (1.4), we
have

To+tx = Tsrk = tnivj+k =0T +tjrk, brk =bstk =bpi+j+k =bjk, k€N,
or
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(To—nT)+ty =tjsk, bjrr=br, keN.

ThusTo — nT € (0, T) is a period of the impulsive perturbations (1.2), which contradicts
to thatT is the least positive period. Therefore,

Tot+n=t1=tyr1=nT +1n1

and7p =nT for somen € N. The proof is complete. O

Theorem 3.4. Let (1.3)—(1.6)hold. Suppose is irrational. Then systenil.1), (1.2)has
no periodic solutions.

Proof. Suppose the conclusion is not correct andlegl = x (¢, xo) be a periodic solution
of system (1.1), (1.2). By Theorem 3.3, [Bf=nT, n € N, be its period. Since (¢, xp)
is not constant for € [0, w], we can find:, 7 € (0, w), and botht and? are not impulsive
moments, such that

f(t,x0) < f(t, x0).

By the continuity of f (¢, xp) at the pointg ¢, xo) and(z, xo), there exis$; > 0 such that

f . x)y < fa",x"), 1 €Bs (1), 1" € By (1), x',x" € By (x0), (3.6)

whereBs, (1) ={t: |t —t| <81} C [0, w], Bs, (1) ={t: |t — t| < 81} C [0, w], Bs,(x0) =
{x: |x —xo| < 81}.

Sincey is irrational, theno/ To = y /n is irrational. By Lemma 3.2nTo modw: m €
N} is dense in0, w]. Hence we can findny, m2> € N such thatt™! = m1Ty modw €
Bs, (1) andi™2 = maTo modw € B, (7). Chooses, > 0 sufficiently small thags”1, £™1 +
82] C Bs, (1), [t™2, ™2 4+ §3] C Bs, (f) andx(z, xo) € Bs, (xo) for ¢ € [0, 82]. Then by the
periodicities off (¢, x), x(¢) and (3.6), we have

f(miTo+1, x(m1To+1', x0)) < f(m2To+1", x(m2To + 1", x0)), (3.7)

for ¢/, 1" € [0, §2]. Sincex(m1Ty, xo) = x(m2To, x0), by (1.1), (3.7) and the mean value
theorem, we have

x(m1To+1t, x0) < x(maTo+t,x0), te€(0,82].

Howeverx(m1Ty + ¢, xo) = x(t, x0) = x(m2To + ¢, xo) Sincex (z, xo) is Tp-periodic. This
is a contradiction. Thus system (1.1), (1.2) has no periodic solutions and the proof is com-
plete. O

Theorem 3.5. Let (1.3)—(1.6)hold. Suppose is irrational and (2.4) is satisfied. Let
x1(t) = x1(¢, x1), x2(t) = x2(¢, x2) be any two solutions of systdh 1), (1.2)with x1(0) =
x1>0andx2(0) =x2 > 0. Then

liminf|x1() — x2(t)| = 0.
11— 00
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Proof. By Theorem 3.1, the solutions of system (1.1), (1.2) with positive initial values are
uniformly ultimately upper bounded. As a consequence, each solution of (1.1), (1.2) with
positive initial value is bounded. Létf > 0 such that1(r) < M, x2(t) < M,t € R. Thus

[x1(2) — x2(2)] < lx1(t) — x2(0)|
M? S xa)x2(t)
where z1(t), z2(t) are the solutions of (2.1) with1(0) = 1/x1, z2(0) = 1/x2, respec-
tively. We need only to prove limipf,  |z1(¢) — z2(2)| = 0. By (2.2),]z1(t) — z2(¢)| =
W(t,0)|z1(0) — z2(0)|. It is sufficient to prove that liminf, ., W (¢, 0) = 0.
By Lemma 3.2, lelp,, g, € N andp,, ¢, are relatively prime such that

= |z2(t) — z2(1)

’

1
T =g +6,, 0<06,<—,
n

and
lim 27—, (3.8)

n—o00 qn

Without loss of generality, we may assume that,lim, g, = co. Let § > 0 such that
uw+ 68 <1.By (2.4) and (3.8), there exisdé > 0 such that

l
1 Pn/dn w
anl_[< ) g—fo r(f)d7<(u+5), forn > Ny.

PR
Hence, fom > Ny,
pnT
WpaT.0= [] e~ rdr

O<tx<pnT 1+ b

! Pn
~T1 LYl r@an - a4 sy,
i1 1+ by

Therefore, lim_.c W(p,T,0)=0. Then liminf_ . W(t, 0) =0, since
0L liminf W(,0) < lim W(p,T,0) =0.
11— 00 n—oo

The proofis complete. O
Similarly, we have the following result.

Theorem 3.6. Let(1.3)—(1.6old. Suppose is irrational and(2.5)is satisfied. Let (1) =
x(t, xp) be any solution of syste(.1), (1.2)with x(0) = xo > 0. Then

liminfx() =0.
11— 00

Theorems 3.5 and 3.6 show that the positive solutions of system (1.1), (1.2) tend to each
other or tend to zero in the sense of lower limit. There are some difficulties in proving each
positive solution or the zero solution of system (1.1), (1.2) to be globally asymptotically
stable under conditions (2.4) and (2.5), respectively. We will discuss it in the last section.
However, under some other conditions, the results could be possible.
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Theorem 3.7. Let (1.3)—(1.6)old. Letr = inf,¢0,0) 7 () > 0. If

l
1
/ —rT
= = 1,
=™ =

then each positive solution of systéml), (1.2)is global asymptotically stable.

Proof. Letx1(r) = x1(¢, x1), x2(t) = x2(¢, x2) be any two solutions of system (1.1), (1.2)
with x1(0) = x1 > 0 andx2(0) = x2 > 0. We shall prove that lim, o |x1(z) — x2(¢)| = 0.
Similarly to Theorem 3.5, it is sufficient to prove that Jim,, W(z,0) = 0. Let

1
Wi(t,0) = ]_[ T bkﬂt'

O<ty <t

Obviously, 0< W (z, 0) < W1(z, 0) and it is easy to verify that lim, .o W1(z,0) =0 as in
Theorem 2.1. Thus lim,« W(¢,0) = 0. The proof is complete. O

Similarly, the following result is clear.

Theorem 3.8. Let (1.3)—(1.6)hold. If

I
1 _
u//znl p e—rT>1’
el =+ D
wherer = Ssuf g ) 7 (1), thenlim,_,  x(t) = 0, wherex(¢) = x(z, xo) is any solution of
systen(1.1), (1.2)with x (0) = xo > O.

4. An example

Consider the following system:

X' (1) =x@)((r +e1sin(t)) — (a +e2c081))x (), t#t, k€N, 4.1
Ax (tr) = bx (1x), keN. (4.2)

We fix the parameters that= 1, ¢1 =0.01,a =1, e =0.02,11 = 1/3,1, = 0.75,b1 =
0.05,ts12 =1t + T, bxy2 = by, k € N, T > 0.75. Obviously, the right hand side of (4.1)
is 2 -periodic and (4.1) has a unique positive periodic solution which is a global attractor
when there are no impulsive effects (Fig. 1).

For the impulsive system (4.1), (4.2), clearly (1.3)—(1.6) hold. We allow the parameters
T and b, be free so thayy and u can vary. Firstly, letT = n/2. Theny = /T =4
is rational. Letp, = —0.05, thenu = 0.00188623445% 1. By Theorem 2.2, system
(4.1), (4.2) has a unique positiver eriodic solution which is globally asymptotically
stable (Figs. 2(a)—(c)). Lepo = —0.81, thenu = 1.178896537% 1. By Theorem 2.3,
lim;_ 0 x(¢) = 0, wherex (¢) is any solution of (4.1), (4.2) witk (0) = xo > 0 (Fig. 2(d)).

Next, let T = 1. Theny = /T = 27, which is irrational. By Theorem 3.3,
system (4.1), (4.2) has no periodic solutions. However, get —0.05, then u =
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2(t)
11
0.98
0.961
0.941
0.921
0.9
0.881
0.861

0 10 20

Fig. 1. Time series illustrating the global attractor of positive periodic solution for the corresponding continuous

system (1.1) withxg = 0.85.
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Fig. 2. Time series illustrating the asymptotical behaviors of system (1.1), (1.2)Fwvithr/2, y = 4. For

bp = —0.05, u < 1, each positive solution tends to a unique positige@riodic solution. Two positive solu-

tions are shown in (a}g = 0.2 and (b)xg = 1.5. (c) captures the positive periodic solution foe [45, 80].
(d) Whenbo = —0.81, 1 > 1, positive solution tends to zereg = 0.2).

0.00189704535% 1 andu’ = 0.372507960% 1. By Theorem 3.7, (4.1), (4.2) still has a
global attractor (Figs. 3(a)—(c)). Fig. 3(c) shows clearly it is not a periodic solution. And
if p=-0.7, thenu = 2.65127665> 1 andu” = 1.15625072%> 1. Fig. 3(d) shows that

system (4.1), (4.2) will go extinct.
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Fig. 3. Time series illustrating the asymptotical behaviors of system (1.1), (1.2)ithl, y = 27. For
by = —0.05, u, 1’ < 1, each positive solution tends to a positive global attractorxgay 0.2, (b) xg = 1.5.
(c) captures the global attractor for [18,50] and shows it is not periodic. (d) Whén = —0.7, u, 1" > 1,
positive solution tends to zerad = 0.2).

5. Concluding remark

In this paper, we study the periodic logistic system (1.1) coupled with periodic im-
pulsive perturbations (1.2). These two periods are generally distinct from each other. The
continuous logistic system (1.1) has a global attractor of a unique positive periodic solu-
tion. We show that if the two periods are rationally dependent, the impulsive system (1.1),
(1.2) exhibit the same behavior as the continuous one or go extinct. However, when they
are rationally independent, system (1.1), (1.2) has no positive periodic solutions. The posi-
tive solutions will tend to each other or tend to zero in the sense of lower limit. And we also
give sufficient conditions for positive solutions to be globally asymptotically stable or go
extinct. If the former one hold, then system (1.1), (1.2) has a positive global attractor. It is
an interesting problem how is the structure of the attractor like? Our numeric results show
that it may be a quasi-periodic solution. The global dynamics of system (1.1), (1.2) are
somehow similar to some well known results of the flows on the cigéler the torusr™2.

Based on numeric results and analogy, we give some conjectures to end this paper.

Conjecture 1. Let (1.3)—(1.6) hold. If (2.4) is satisfied, then each positive solution of sys-
tem (1.1), (1.2) is global asymptotically stable.
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Conjecture2. Let (1.3)—(1.6) hold. If (2.5) is revised, then lim, x(¢) = 0, wherex (¢) =
x(t, xo) is any solution of system (1.1), (1.2) witi(0) = xg > 0.

Conjecture3. Let (1.3)—(1.6) hold. If (2.4) is satisfied, then system (1.1), (1.2) has a global
attractor which is a positive quasi-periodic solution or at least almost periodic solution of
system (1.1), (1.2).
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