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Abstract

This paper studies the global behaviors of the periodic logistic system with periodic imp
perturbations. The results of D.D. Bainov and P.S. Simeonov (1993) are extended and dy
different from the corresponding continuous system are found. It is shown that the system ma
a unique positive periodic solution which is globally asymptotically stable, or go extinct whe
two periods are rational dependent. When they are rational independent, the system has no
solutions, however, still has a global attractor or go extinct under some conditions.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

For modelling the dynamics of an ecological system, Cushing [1] pointed out tha
necessary and important to consider models with periodic ecological parameters or
bations which might be quite naturally exposed (for example, those due to seasonal
of weather, food supply, mating habits, etc.). On the other hand, the ecological sys
often deeply perturbed by human exploit activities such as planting and harvesting
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ally, these activities are considered continuously by adding some items in the system
Whereas this is not how things stand. It is often the case that planting and harves
the species are seasonal or occur in regular pulses. These perturbations may also n
be periodic, for example, a fisherman may go fishing at the same time once a day o
a week. Systems with short-term perturbations are often naturally described by imp
differential equations, which are found in almost every domain of applied sciences
merous examples are given in Bainov and his collaborators’ books [5–7]. Some imp
equations have been recently introduced in population dynamics in relation to: popu
ecology [8,9] and chemotherapeutic treatment of disease [10,11].

In this paper, we will study the following logistic system with impulsive perturbatio{
x ′(t)= x(t)(r(t)− a(t)x(t)), t �= tk, k ∈N,

∆x(tk)= bkx(tk), k ∈N,

(1.1)
(1.2)

whereN is the set of positive integers,t0 � 0 < t1 < · · · < tk < tk+1 < · · · , ∆x(tk) =
x(t+k ) − x(tk), r(·), k(·) ∈ PC[R,R] andPC[R,R] = {φ :R �→ R, φ is continuous for
t �= tk , φ(t

+
k ) andφ(t−k ) exist andφ(tk)= φ(t−k ), k ∈N}. Suppose (1.1) isω-periodic and

(1.2) isT -periodic, i.e.,

r(t +ω)= r(t), a(t +ω)= a(t), t ∈ R, (1.3)

andT is the least positive constant such that there arel tks in the interval(0, T ) and

tk+l = tk + T , bk+l = bk, k ∈N. (1.4)

Denote the right hand side of (1.1) bef (t, x). We assume thatf (t, x) is not constan
for any fixedx so that (1.1) is nonautonomous. The following additional restriction
system (1.1), (1.2) are natural for biological meanings:

r(t) > 0, a(t) > 0, t ∈R+, (1.5)

1+ bk > 0, bk �= 0, k ∈N. (1.6)

Whenbk > 0, the perturbation stands for planting of the species, whilebk < 0 stands for
harvesting. By the basic theories of impulsive differential equations in [6,7], system
(1.2) has a unique solutionx(t) = x(t, x0) ∈ PC[R,R] for each initial valuex(0)= x0 ∈
R+ and furtherx(t) > 0, t ∈ R+ if x(0)= x0 > 0.

The logistic equation (1.1) describes the variation of the population numberx(t) of an
isolated species in a periodically changing environment. The intrinsic rate of changer(t) is
related to the periodically changing possibility of regeneration of the species, the de
dependent coefficienta(t) is related to the periodic change of the resources maintainin
evolution of the population. The dynamic of the continuous system (1.1) is quite cle
has a unique positive periodic solution which is a global attractor [12]. The jump cond
(1.2) reflects the possibility of impulsive effects on the population. As we assumed,
impulsive perturbations areT -periodic. Naturally, this period is distinct fromω, the period
of the change of environment. Even when we want to carry out the perturbations acc
to the periodω, we cannot do it since we do not knowω exactly. Thus, it is interesting how
the dynamics of (1.1) is affected by the periodically changing of environment togethe
the periodic impulsive perturbations.
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The aim of this paper is to study the global behaviors of system (1.1), (1.2). W
system (1.1), (1.2) is periodic with periodicT if T = ω. In this case, [7] established suf
cient conditions for system (1.1), (1.2) to admit a unique positive periodic solution, w
is locally asymptotically stable. We show that ifγ = ω/T is rational, i.e.,ω andT are
rational dependent, then system (1.1), (1.2) may have a unique positive periodic s
which is global asymptotically stable or go extinct in the sense that limt→∞ x(t) = 0, for
any solutionx(t)= x(t, x0) of system (1.1), (1.2) withx(0)= x0 > 0. And if γ is irrational
(or ω,T are rational independent), under the same conditions whenγ is rational, all the
positive solutions of system (1.1), (1.2) attract each other or tend to zero in the se
lower limit. Under some other conditions, we also show that system (1.1), (1.2) still
positive global attractor or go extinct. Numeric results show that the positive global a
tor may be a quasi-periodic solution or at least almost periodic solution. Thus our r
extend the results in [7] and is quite different from the continuous system (1.1).

2. γ is rational

Firstly, we extend the results in [7] when system (1,1), (1.2) isT -periodic.

Theorem 2.1. SupposeT = ω. Let conditions(1.3)–(1.6)hold and let

µ=
l∏

k=1

1

1+ bk
e− ∫ T0 r(τ ) dτ < 1.

Then system(1.1), (1.2)has a unique positiveT -periodic solutionx∗(t, x∗
0) for which

x∗(0, x∗
0)= x∗

0 andx∗(t, x∗
0) > 0, t ∈ R+, andx∗(t, x∗

0) is global asymptotically stable i
the sense thatlimt→∞ |x(t, x0)− x∗(t, x∗

0)| = 0, wherex(t, x0) is any solution of system
(1.1), (1.2)with positive initial valuex(0, x0)= x0 > 0.

Proof. The first part of the conclusion is the result of Theorem 4.4 in [7]. We prove
x∗(t, x∗

0) is global asymptotically stable.
For (1.1) and (1.2), we carry out the change of variablex = 1/z and obtain a linea

nonhomogeneous impulsive equation.{
z′(t)= −r(t)z(t)+ a(t), t �= tk, k ∈N,

z(t+k )= 1
1+bk

z(tk), k ∈N.
(2.1)

Thusx(t) = x(t, x0) is the solution of system (1.1), (1.2) withx(0) = x0 if and only if
z(t)= z(t, z0) is the solution of (2.1) withz(0)= z0 = 1/x0. Let

W(t, s)=
∏

s�tk<t

1

1+ bk
e− ∫ ts r(τ ) dτ

be the Cauchy matrix for the respective homogeneous equation. Then

z(t)=W(t,0)z(0)+
t∫
W(t, s)a(s) ds (2.2)
0
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is the solution of (2.1). Sincex(t, x0), the solution of system (1.1), (1.2) is ultimately upp
bounded, which will be proved in Theorem 3.1, we need only to prove that

lim
t→∞

∣∣z(t)− z∗(t)
∣∣= 0,

wherez∗(t) is the periodic solution of (2.1) withz∗(0) = 1/x∗
0 andz(t) is the solution of

(2.1) withz(0)= 1/x0. Since∣∣z(t)− z∗(t)
∣∣=W(t,0)

∣∣z(0)− z∗(0)
∣∣, (2.3)

the result is obtained ifW(t,0) → 0 ast → ∞. Supposet ∈ (nT , (n + 1)T ] and letb =
maxs∈[0,T ]

∏
0�tk<s

1/(1+ bk). Then

W(t,0)=
∏

0<tk<t

1

1+ bk
e− ∫ t0 r(τ ) dτ =

∏
0<tk<nT

1

1+ bk

∏
nT�tk<t

1

1+ bk
e− ∫ t0 r(τ ) dτ

=
( ∏

0<tk<T

1

1+ bk
e− ∫ T0 r(τ ) dτ

)n ∏
0�tk<t−nT

1

1+ bk
e− ∫ tnT r(τ ) dτ

� b

( ∏
0<tk<T

1

1+ bk
e− ∫ T0 r(τ ) dτ

)n
= bµn.

Thus limt→∞W(t,0)= 0, sinceµ< 1 and limn→∞ µn = 0. The proof is complete.✷
Now we can give the asymptotical properties of system (1.1), (1.2) with rationalγ .

Theorem 2.2. Supposeγ is rational and conditions(1.3)–(1.6)are satisfied. Let

µ=
l∏

k=1

(
1

1+ bk

)γ
e− ∫ ω0 r(τ ) dτ < 1. (2.4)

Then system(1.1), (1.2)has a unique positive periodic solution which is global asympt
cally stable.

Proof. Sinceγ is rational, letγ = p/q , p,q ∈ N andp,q are relatively prime. LetT0 =
pT (= qω), then system (1.1), (1.2) isT0-periodic. Since

µT0 =
∏

0<tk<T0

1

1+ bk
e− ∫ T0

0 r(τ ) dτ =
l∏

k=1

(
1

1+ bk

)p
e−q

∫ ω
0 r(τ ) dτ

=
(

l∏
k=1

(
1

1+ bk

)γ
e− ∫ ω0 r(τ ) dτ

)q

< 1,

we have directly from Theorem 2.1 that system (1.1), (1.2) has a unique positivT0-
periodic solution which is a global attractor. The proof is complete.✷
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Theorem 2.3. Let (1.3)–(1.6)hold. Supposeγ is rational. If (2.4) is reversed, i.e.,

µ=
l∏

k=1

(
1

1+ bk

)γ
e− ∫ ω0 r(τ ) dτ > 1, (2.5)

thenx(t)= x(t, x0)→ 0, as t → ∞, wherex(t) is any solution of system(1.1), (1.2)with
x(0)= x0 > 0.

Proof. As in the proof of Theorem 2.1, it is sufficient to prove that limt→∞ z(t) = ∞,
wherez(t) is the solution of (2.1) withz(0)= 1/x0. By (2.2), we have

z(t)�W(t,0)z0.

Thus we need only to prove that limt→∞W(t,0)= ∞. Let γ = p/q = ω/T , p,q ∈N are
relatively prime,b = mins∈[0,pT ]

∏
0�tk<s

1/(1+ bk) > 0, r̄ = supt∈[0,ω] r(t) > 0. Sup-
poset ∈ (mpT, (m+ 1)pT ], m ∈N ∪ {0}. Then

W(t,0)=
∏

0<tk<t

1

1+ bk
e− ∫ t0 r(τ ) dτ

=
∏

0<tk<mpT

1

1+ bk
e− ∫ mpT0 r(τ ) dτ

∏
mpT�tk<t

1

1+ bk
e
− ∫ tmpT r(τ ) dτ

=
(

l∏
k=1

(
1

1+ bk

)γ
e− ∫ T0 r(τ ) dτ

)mq ∏
0�tk<t−mpT

1

1+ bk
e
− ∫ tmpT r(τ ) dτ

� be−r̄pT

(
l∏

k=1

(
1

1+ bk

)γ
e− ∫ T0 r(τ ) dτ

)mq

= be−r̄pT µmq.

Therefore, limt→∞W(t,0)= ∞, since limm→∞ be−r̄pT µmq = ∞ by (2.5). ✷

3. γ is irrational

We begin with proving that system (1.1), (1.2) is uniformly ultimately upper bound

Theorem 3.1. Let (1.3)–(1.6)hold. Then system(1.1), (1.2)is uniformly ultimately uppe
bounded, i.e., there exists a constantM > 0 such thatx(t) � M for t sufficiently large,
wherex(t)= x(t, x0) is any solution of system(1.1), (1.2)with x(0)= x0 > 0.

Proof. Let r̄ = supt∈[0,ω] r(t), a = inft∈[0,ω] a(t). Then r̄ > 0, a > 0 by (1.5). Choose
λ > 0 such that

l∏
k=1

(1+ bk)e
−λT < 1. (3.1)

By (1.1), we have
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x ′(t)+ λx(t)� x(t)
(
r̄ + λ− ax(t)

)
. (3.2)

Since the right hand side of (3.2) is bounded, supposeK > 0 is a bound, (3.2) can b
rewritten as

x ′(t)� −λx(t)+K.

Consider the following system:{
y ′(t)= −λy(t)+K, t �= tk, k ∈N,

∆y(tk)= bky(tk), k ∈N.
(3.3)

By Theorem 3.1.1 in [6], we havex(t, x0) � y(t, y0), t ∈ R+, wherey(t, y0) is solution
of (3.3) with y(0, y0) = y0 = x0. Thus we need only to prove thaty(t, y0) is uniformly
ultimately upper bounded. By Theorem 4.1 in [7], (3.3) has a positiveT -periodic solution
y∗(t, y∗

0) with

y∗
0 =

K
λ

(
1−∏l

k=1(1+ bk)e
−λT

)+∑l
k=1

∏l
j=k+1(1+ bj )bk

K
λ
e−λ(T−tk)

1−∏l
k=1(1+ bk)e−λT

> 0.

We will prove thaty∗(t, y∗
0) is a global attractor. For any solutiony(t, y0) of (3.3) with

y0 > 0, since∣∣y(t, y0)− y∗(t, y∗
0)
∣∣= ∏

0<tk<t

(1+ bk)e
−λt |y0 − y∗

0|,

we shall prove limt→∞
∏

0<tk<t (1 + bk)e
−λt = 0. Supposet ∈ (nT , (n + 1)T ], let B =

maxs∈[0,T ]
∏

0�tk<s
(1+ bk). Then∏

0<tk<t

(1+ bk)e
−λt =

∏
0<tk<nT

(1+ bk)
∏

nT�tk<t

(1+ bk)e
−λnT e−λ(t−nT )

�
(

l∏
k=1

(1+ bk)e
−λT

)n

B.

Therefore limt→∞
∏

0<tk<t (1 + bk)e
−λt = 0 in view of (3.1). Hence limt→∞ |y(t, y0) −

y∗(t, y∗
0)| = 0. As an obvious consequence, system (3.3) is uniformly ultimately u

bounded. The proof is complete.✷
Next we show that system (1.1), (1.2) has no periodic solutions. We need the foll

lemma.

Lemma 3.2. Letγ = ω/T be irrational. Then{nT modω: n ∈N} is dense in[0,ω]. And
further there exist sequences{pn}, {qn} and{θn} such that

pnT = qnω+ θn, 0< θn <
1

n
, pn, qn are relatively prime,

and

lim
n→∞

pn

qn
= γ, lim

j→∞ qnj = ∞, for some subsequence{qnj } ⊂ {qn}.



X. Liu, L. Chen / J. Math. Anal. Appl. 289 (2004) 279–291 285

est
Proof. It is well known that{nT modω: n ∈ N} is dense in[0,ω] [13–15]. Thus there
existpn ∈N such that

pnT modω ∈
(

0,
1

n

)
,

which means there existqn ∈N , θn ∈ (0,1/n) such that

pnT = qnω+ θn. (3.4)

We may assumepn, qn are relatively prime since (3.4) still hold when divided by the larg
common factor ofpn andqn. (3.4) can be rewritten as

pn

qn
= γ + θn

qnT
.

Thusγ < pn/qn < γ + θn/T and, obviously, limn→∞ pn/qn = γ.

As a consequence, it is clear that there exist a subsequence{qnj } of {qn} such that
limj→∞ qnj = ∞. The proof is complete. ✷
Theorem 3.3. Let (1.3)–(1.6)hold. If x(t, x0) is a periodic solution of system(1.1), (1.2),
then its period must benT for somen ∈N .

Proof. Let T0 be the period ofx(t)= x(t, x0). Then

x
(
(T0 + t)± 0

)= x(t ± 0), t � 0.

Clearly,T0 is not an impulsive moment, suppose there ares tks in the interval(0, T0). Let
t = t1. We have

x(T0 + t1)= x(t1)

and

x
(
(T0 + t1)

+)= x
(
t+1
)= (1+ b1)x(t1)= (1+ b1)x(T0 + t1),

which meansT0+ t1 is one of the impulsive moments. Clearly, there is notks in the interval
(T0, T0 + t1). For otherwise, supposēt ∈ (T0, T0 + t1) is an impulsive moment; then

x
((
T0 + (t̄ − T0)

)+)= x(t̄+) �= x(t̄ )= x
(
T0 + (t̄ − T0)

)
= x(t̄ − T0)= x

(
(t̄ − T0)

+),
which is a contradiction. ThusT0 + t1 = ts+1 andbs+1 = b1. Similarly, we have

T0 + tk = ts+k, bs+k = bk, k ∈N. (3.5)

Now we claim thats = nl for somen ∈ N . Otherwise, supposes = nl + j for somen ∈
N ∪ {0} and 1< j < l. As a consequence,nT < T0 < (n + 1)T . By (3.5) and (1.4), we
have

T0 + tk = Ts+k = tnl+j+k = nT + tj+k, bk = bs+k = bnl+j+k = bj+k, k ∈N,

or
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(T0 − nT )+ tk = tj+k, bj+k = bk, k ∈N.

ThusT0 − nT ∈ (0, T ) is a period of the impulsive perturbations (1.2), which contrad
to thatT is the least positive period. Therefore,

T0 + t1 = ts+1 = tnl+1 = nT + t1

andT0 = nT for somen ∈N . The proof is complete. ✷
Theorem 3.4. Let (1.3)–(1.6)hold. Supposeγ is irrational. Then system(1.1), (1.2)has
no periodic solutions.

Proof. Suppose the conclusion is not correct and letx(t)= x(t, x0) be a periodic solution
of system (1.1), (1.2). By Theorem 3.3, letT0 = nT , n ∈ N , be its period. Sincef (t, x0)

is not constant fort ∈ [0,ω], we can findt , t̄ ∈ (0,ω), and botht and t̄ are not impulsive
moments, such that

f ( t, x0) < f (t̄ , x0).

By the continuity off (t, x0) at the points( t, x0) and(t̄, x0), there existδ1 > 0 such that

f (t ′, x ′) < f (t ′′, x ′′), t ′ ∈Bδ1( t ), t
′′ ∈ Bδ1(t̄ ), x

′, x ′′ ∈ Bδ1(x0), (3.6)

whereBδ1( t ) = {t : |t − t | < δ1} ⊂ [0,ω], Bδ1(t̄ ) = {t : |t − t̄ | < δ1} ⊂ [0,ω], Bδ1(x0) =
{x: |x − x0|< δ1}.

Sinceγ is irrational, thenω/T0 = γ /n is irrational. By Lemma 3.2,{mT0 modω: m ∈
N} is dense in[0,ω]. Hence we can findm1,m2 ∈ N such thattm1 = m1T0 modω ∈
Bδ1( t ) andtm2 =m2T0 modω ∈Bδ1(t̄ ). Chooseδ2 > 0 sufficiently small that[tm1, tm1 +
δ2] ⊂ Bδ1( t ), [tm2, tm2 + δ2] ⊂ Bδ1(t̄ ) andx(t, x0) ∈ Bδ1(x0) for t ∈ [0, δ2]. Then by the
periodicities off (t, x), x(t) and (3.6), we have

f
(
m1T0 + t ′, x(m1T0 + t ′, x0)

)
< f

(
m2T0 + t ′′, x(m2T0 + t ′′, x0)

)
, (3.7)

for t ′, t ′′ ∈ [0, δ2]. Sincex(m1T0, x0) = x(m2T0, x0), by (1.1), (3.7) and the mean valu
theorem, we have

x(m1T0 + t, x0) < x(m2T0 + t, x0), t ∈ (0, δ2].
However,x(m1T0 + t, x0)= x(t, x0)= x(m2T0 + t, x0) sincex(t, x0) is T0-periodic. This
is a contradiction. Thus system (1.1), (1.2) has no periodic solutions and the proof is
plete. ✷
Theorem 3.5. Let (1.3)–(1.6)hold. Supposeγ is irrational and (2.4) is satisfied. Le
x1(t)= x1(t, x1), x2(t)= x2(t, x2) be any two solutions of system(1.1), (1.2)with x1(0)=
x1 > 0 andx2(0)= x2 > 0. Then

lim inf
t→∞

∣∣x1(t)− x2(t)
∣∣= 0.
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Proof. By Theorem 3.1, the solutions of system (1.1), (1.2) with positive initial value
uniformly ultimately upper bounded. As a consequence, each solution of (1.1), (1.2
positive initial value is bounded. LetM > 0 such thatx1(t)�M, x2(t)�M, t ∈R. Thus

|x1(t)− x2(t)|
M2

� |x1(t)− x2(t)|
x1(t)x2(t)

= ∣∣z1(t)− z2(t)
∣∣,

wherez1(t), z2(t) are the solutions of (2.1) withz1(0) = 1/x1, z2(0) = 1/x2, respec-
tively. We need only to prove lim inft→∞ |z1(t) − z2(t)| = 0. By (2.2),|z1(t) − z2(t)| =
W(t,0)|z1(0)− z2(0)|. It is sufficient to prove that lim inft→∞W(t,0)= 0.

By Lemma 3.2, letpn, qn ∈N andpn, qn are relatively prime such that

pnT = qnω+ θn, 0< θn <
1

n
,

and

lim
n→∞

pn

qn
= γ. (3.8)

Without loss of generality, we may assume that limn→∞ qn = ∞. Let δ > 0 such that
µ+ δ < 1. By (2.4) and (3.8), there existsN1 > 0 such that

µn =
l∏

k=1

(
1

1+ bk

)pn/qn
e− ∫ ω0 r(τ ) dτ < (µ+ δ), for n >N1.

Hence, forn >N1,

W(pnT ,0)=
∏

0<tk<pnT

1

1+ bk
e− ∫ pnT0 r(τ ) dτ

=
l∏

k=1

(
1

1+ bk

)pn
e−qn

∫ ω
0 r(τ ) dτe− ∫ θn0 r(τ ) dτ � (µ+ δ)qn.

Therefore, limn→∞ W(pnT ,0)= 0. Then lim inft→∞W(t,0)= 0, since

0 � lim inf
t→∞ W(t,0)� lim

n→∞W(pnT ,0)= 0.

The proof is complete. ✷
Similarly, we have the following result.

Theorem 3.6. Let (1.3)–(1.6)hold. Supposeγ is irrational and(2.5)is satisfied. Letx(t)=
x(t, x0) be any solution of system(1.1), (1.2)with x(0)= x0 > 0. Then

lim inf
t→∞ x(t)= 0.

Theorems 3.5 and 3.6 show that the positive solutions of system (1.1), (1.2) tend t
other or tend to zero in the sense of lower limit. There are some difficulties in proving
positive solution or the zero solution of system (1.1), (1.2) to be globally asymptot
stable under conditions (2.4) and (2.5), respectively. We will discuss it in the last se
However, under some other conditions, the results could be possible.
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Theorem 3.7. Let (1.3)–(1.6)hold. Letr = inft∈[0,ω] r(t) > 0. If

u′ =
l∏

k=1

1

1+ bk
e−rT < 1,

then each positive solution of system(1.1), (1.2)is global asymptotically stable.

Proof. Let x1(t) = x1(t, x1), x2(t) = x2(t, x2) be any two solutions of system (1.1), (1.
with x1(0)= x1 > 0 andx2(0)= x2 > 0. We shall prove that limt→∞ |x1(t)− x2(t)| = 0.
Similarly to Theorem 3.5, it is sufficient to prove that limt→∞W(t,0)= 0. Let

W1(t,0)=
∏

0<tk<t

1

1+ bk
e−rt .

Obviously, 0<W(t,0) � W1(t,0) and it is easy to verify that limt→∞W1(t,0)= 0 as in
Theorem 2.1. Thus limt→∞W(t,0)= 0. The proof is complete.✷

Similarly, the following result is clear.

Theorem 3.8. Let (1.3)–(1.6)hold. If

u′′ =
l∏

k=1

1

1+ bk
e−r̄T > 1,

wherer̄ = supt∈[0,ω] r(t), thenlimt→∞ x(t) = 0, wherex(t) = x(t, x0) is any solution of
system(1.1), (1.2)with x(0)= x0 > 0.

4. An example

Consider the following system:{
x ′(t)= x(t)((r + e1 sin(t))− (a + e2 cos(t))x(t)), t �= tk, k ∈N,

∆x(tk)= bkx(tk), k ∈N.

(4.1)
(4.2)

We fix the parameters thatr = 1, e1 = 0.01, a = 1, e2 = 0.02, t1 = 1/3, t2 = 0.75, b1 =
0.05, tk+2 = tk + T , bk+2 = bk, k ∈ N , T > 0.75. Obviously, the right hand side of (4.1
is 2π -periodic and (4.1) has a unique positive periodic solution which is a global attr
when there are no impulsive effects (Fig. 1).

For the impulsive system (4.1), (4.2), clearly (1.3)–(1.6) hold. We allow the param
T and b2 be free so thatγ andµ can vary. Firstly, letT = π/2. Then γ = ω/T = 4
is rational. Letp2 = −0.05, thenµ = 0.001886234459< 1. By Theorem 2.2, system
(4.1), (4.2) has a unique positive 2π -periodic solution which is globally asymptotical
stable (Figs. 2(a)–(c)). Letp2 = −0.81, thenµ = 1.178896537> 1. By Theorem 2.3
limt→∞ x(t)= 0, wherex(t) is any solution of (4.1), (4.2) withx(0)= x0 > 0 (Fig. 2(d)).

Next, let T = 1. Then γ = ω/T = 2π , which is irrational. By Theorem 3.3
system (4.1), (4.2) has no periodic solutions. However, letp = −0.05, then µ =
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Fig. 1. Time series illustrating the global attractor of positive periodic solution for the corresponding cont
system (1.1) withx0 = 0.85.

Fig. 2. Time series illustrating the asymptotical behaviors of system (1.1), (1.2) withT = π/2, γ = 4. For
b2 = −0.05, µ < 1, each positive solution tends to a unique positive 2π -periodic solution. Two positive solu
tions are shown in (a)x0 = 0.2 and (b)x0 = 1.5. (c) captures the positive periodic solution fort ∈ [45,80].
(d) Whenb2 = −0.81,µ> 1, positive solution tends to zero (x0 = 0.2).

0.001897045359< 1 andµ′ = 0.3725079609< 1. By Theorem 3.7, (4.1), (4.2) still has
global attractor (Figs. 3(a)–(c)). Fig. 3(c) shows clearly it is not a periodic solution.
if p = −0.7, thenµ = 2.65127665> 1 andµ′′ = 1.156250729> 1. Fig. 3(d) shows tha
system (4.1), (4.2) will go extinct.
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Fig. 3. Time series illustrating the asymptotical behaviors of system (1.1), (1.2) withT = 1, γ = 2π. For
b2 = −0.05, µ,µ′ < 1, each positive solution tends to a positive global attractor: (a)x0 = 0.2, (b) x0 = 1.5.
(c) captures the global attractor fort ∈ [18,50] and shows it is not periodic. (d) Whenb2 = −0.7, µ,µ′′ > 1,
positive solution tends to zero (x0 = 0.2).

5. Concluding remark

In this paper, we study the periodic logistic system (1.1) coupled with periodic
pulsive perturbations (1.2). These two periods are generally distinct from each othe
continuous logistic system (1.1) has a global attractor of a unique positive periodic
tion. We show that if the two periods are rationally dependent, the impulsive system
(1.2) exhibit the same behavior as the continuous one or go extinct. However, whe
are rationally independent, system (1.1), (1.2) has no positive periodic solutions. Th
tive solutions will tend to each other or tend to zero in the sense of lower limit. And we
give sufficient conditions for positive solutions to be globally asymptotically stable o
extinct. If the former one hold, then system (1.1), (1.2) has a positive global attracto
an interesting problem how is the structure of the attractor like? Our numeric results
that it may be a quasi-periodic solution. The global dynamics of system (1.1), (1.2
somehow similar to some well known results of the flows on the circleS1 or the torusT 2.
Based on numeric results and analogy, we give some conjectures to end this paper.

Conjecture 1. Let (1.3)–(1.6) hold. If (2.4) is satisfied, then each positive solution of
tem (1.1), (1.2) is global asymptotically stable.
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Conjecture 2. Let (1.3)–(1.6) hold. If (2.5) is revised, then limt→∞ x(t)= 0, wherex(t)=
x(t, x0) is any solution of system (1.1), (1.2) withx(0)= x0 > 0.

Conjecture 3. Let (1.3)–(1.6) hold. If (2.4) is satisfied, then system (1.1), (1.2) has a g
attractor which is a positive quasi-periodic solution or at least almost periodic solut
system (1.1), (1.2).
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