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a b s t r a c t

We consider 2-local geometries and other subgroup complexes for sporadic simple groups.
For six groups, the fixed point set of a noncentral involution is shown to be equivariantly
homotopy equivalent to a standard geometry for the component of the centralizer. For odd
primes, fixed point sets are computed for sporadic groups having an extraspecial Sylow
p-subgroup of order p3, acting on the complex of those p-radical subgroups containing a
p-central element in their centers. Vertices for summands of the associated reduced
Lefschetz modules are described.

Published by Elsevier B.V.

1. Introduction

In this paper we study various subgroup complexes of the sporadic simple groups, including 2-local geometries, the
distinguished Bouc complex and the complex of p-centric and p-radical subgroups. We find information on the structure
of the associated reduced Lefschetz modules, such as vertices and their distribution into the blocks of the group ring.
Robinson [27] applied a theorem of Burry–Carlson [9] and Puig [25] to relate the indecomposable summands with given
vertex of the reduced Lefschetzmodule to the indecomposable summandswith the same vertex of a corresponding Lefschetz
module for the subcomplex fixed by the action of the vertex group. Therefore the nature of the fixed point sets is essential
for the understanding of the properties of the reduced Lefschetz modules. Our approach will combine this theorem with
standard results from modular representation theory.
The best known example of a Lefschetz module is the Steinberg module of a Lie group G in defining characteristic p.

This module is irreducible and projective and it is the homology module of the associated building. For finite groups in
general, the Brown complex of inclusion chains of nontrivial p-subgroups (as well as any complex which is G-homotopy
equivalent to it) has projective reduced Lefschetz module; see [26, Corollary 4.3]. For a Lie group in defining characteristic,
the Brown complex is G-homotopy equivalent to the building [26, Theorem 3.1], and thus its Lefschetz module is equal to
the corresponding Steinberg module.
Ryba, Smith and Yoshiara [31] proved projectivity for Lefschetz modules of 18 sporadic geometries. The characters of

these projective modules (where available) and the decomposition into projective covers of irreducibles are also given.
Smith and Yoshiara [35] approached the study of projective Lefschetz modules in a more systematic way. The projectivity
results are obtained via homotopy equivalencewith theQuillen complex of nontrivial elementary abelian p-subgroups. Their
results show that the 2-local geometries for the sporadic groups of local characteristic 2 have projective Lefschetz modules.
The collection of nontrivial p-centric and p-radical subgroups (see Section 3 for precise definitions) is relevant to both

modular representation theory as well as mod-p cohomology of the underlying group. Sawabe [32, Section 4] showed that
its reduced Lefschetz module is projective relative to the collection of p-subgroups which are p-radical but not p-centric.
In Section 2,we assume p = 2 anddiscuss six sporadic simple groups:M12, J2,HS, Ru, Suz and Co3. Each has two classes of

involutions; the 2-central involutions are closed under commuting products. The fixed point sets of the 2-central involutions
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are contractible; we determine the structure of the fixed point sets of the noncentral involutions and we relate these fixed
point sets to sporadic geometries and buildings associated to a component of the centralizer of the noncentral involution.We
also determine the vertices and the distribution of the nonprojective indecomposable summands of the Lefschetz module
into the 2-blocks of the group ring. These results are contained in Theorems 2.1 and 2.11.
We will refer to a p-group as being distinguished if it contains a p-central element in its center; see the paper [21] for

further information on distinguished collections. For odd primes, we analyze in detail the distinguished p-radical complexes
for those sporadic simple groups which have a Sylow p-subgroup of order p3. Themain results are given in Theorem 3.1. The
homotopy type of the fixed point sets of the subgroups of order p are determined, and information on the structure of the
corresponding Lefschetzmodules is given. Our computations provide several examples of reduced Lefschetzmodules which
are acyclic and contain nonprojective indecomposable summands in the principal block of the group ring; these examples
are obtained for p = 3 (He andM24), p = 7 and Fi′24 and for p = 13 andM , the Monster group.
In the second part of Section 3wedetermine the properties of the reduced Lefschetzmodules associated to the complex of

p-centric and p-radical subgroups. The groups discussed are those sporadic groups with the extraspecial Sylow p-subgroup
and which do not have parabolic characteristic p; the groups J2,M24 and He, with p = 3 fall into this category.
We use the standard notation for finite groups as in the Atlas [11]. If p is a prime, then pn denotes an elementary abelian

p-group of rank n and p a cyclic group of order p. For p odd, p1+2+ stands for the extraspecial group of order p3 and exponent
p. Also H.K denotes an extension of the group H by a group K and H : K denotes a split extension. Regarding the conjugacy
classes of elements of order p we follow the Atlas [11] notation. The simplified notation of the form 5A2 stands for an
elementary abelian group 52 whose 24 nontrivial elements are all of type 5A. The notation of the form 7AB stands for a
group of order 7 which contains elements from both classes 7A and 7B. A great deal of information on the p-local structure
of the sporadic simple groups used in Section 3 can be found in [15, Section 5.3]. In order to determine if certain classes of
p-elements are closed under taking commuting products we compute the class multiplication coefficient denoted by
ξ(x, y, z) using the built-in function in GAP [14].
For both characters and Brauer characters, we use the notation from theModular Atlas Homepage [24], where φi denotes

the Brauer character of a simple module in characteristic p and χi is the character of a simple module in characteristic zero,
also given in [11]. Then PG(φi) denotes the projective cover of φi.

2. Sporadic groups which satisfy the closure property for p = 2

2.1. Fixed point sets

Let Co3 be the third Conway group, one of the 26 sporadic simple groups. There is a 2-local geometry∆ of Co3, described
by Ronan and Stroth [29], with three types of objects having isotropy groups equal to three of themaximal 2-local subgroups,
2.Sp6(2), 22+6.3.(S3×S3), and 24.A8. The authors have shown in [20, Proposition 6.1] that the fixed point set∆z of a 2-central
involution z is contractible. However, the fixed point set ∆t of a noncentral involution t is not contractible (this is related
to the fact that the mod-2 reduced Lefschetz module of ∆ is not projective). The centralizer of a noncentral involution is
CCo3(t) = 2×M12, so that the Mathieu groupM12 acts on the fixed point set∆

t . AlsoM12 has its own 2-local geometry, with
two types of objects, stabilized by 21+4+ .S3 and 42 : (2× S3); see for example [7, Section 7.2].
In the thesis of Grizzard [16], the character of the Lefschetz module is computed for Co3 and seven other sporadic groups.

This yields the Euler characteristics of the fixed point sets. Grizzard noticed that the fixed point set ∆t and the 2-local
geometry forM12 have the same Euler characteristic, and conjectured that they are homotopy equivalent. With equal Euler
characteristics as evidence, Grizzard conjectures that for six of the eight sporadic groups he investigated, the fixed point set
for a noncentral involution is homotopy equivalent to a standard 2-local geometry for the component of the centralizer of
the noncentral involution. The purpose of this section is to prove this conjecture.

Theorem 2.1. Let G be one of the following six sporadic simple groups: the Mathieu group M12, the Halli–Janko–Wales group
J2, the Higman–Sims group HS, the third Conway group Co3, the Rudvalis group Ru, or the Suzuki group Suz. Let H ≤ G be the
component of the centralizer CG(t) of a noncentral involution t ∈ G. Then H and G have standard 2-local geometries such that
the geometry for H is equivariantly homotopy equivalent to the fixed point set for the involution t acting on the geometry for G.

A 2-local geometry for G is a simplicial complex whose vertex stabilizers are maximal 2-local subgroups of G. If G is one of
the six sporadic groups mentioned in Theorem 2.1, the term standard indicates the fact that we are working with the 2-local
geometries considered in Benson and Smith [7]. If G is a Lie group in defining characteristic, then the standard geometry is
the corresponding Tits building.
The six groups in Theorem 2.1 have several important similarities. There are two conjugacy classes of involutions; one

class consists of the 2-central involutions, those lying in the center of a Sylow 2-subgroup. The collection of 2-central
involutions is closed, in the sense that the product of two distinct commuting 2-central involutions is always an involution
of central type. The centralizer of a noncentral involution has a single component H , which in these cases is a simple group,
normal in the centralizer. Table 2.1 describes the centralizer CG(t) of a noncentral involution t ∈ G, and its component H .
The Quillen complex of G is the complex of proper inclusion chains of nontrivial elementary abelian p-subgroups of G.

The Benson complex is a subcomplex of the Quillen complex; its vertices are elementary abelian p-subgroups of G whose
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Table 2.1
Centralizers of noncentral involutions and their components

G CG(t) H

M12 2× S5 A5
J2 22 × A5 A5
HS 2× Aut(A6) A6
Co3 2×M12 M12
Ru 22 × Sz(8) Sz(8)
Suz (22 × L3(4)).2 L3(4)

elements of order p lie in certain conjugacy classes, generated under commuting products by the p-central elements (those
elements of order pwhich lie in the center of a Sylow p-subgroup of G). This complex was introduced by Benson [6] in order
to study the mod-2 cohomology of Co3.

Lemma 2.2 (Benson and Smith [7]). For the six groups in Theorem 2.1, the standard 2-local geometry for G is equivariantly
homotopy equivalent to the Benson complex.

Proof. This result is proved case by case in the book of Benson and Smith [7, Chapters 7 and 8]. �

For the remainder of this section, let∆ denote the Benson complex for G, where G is one of the six groups in Theorem 2.1.
Since the collection of 2-central involutions is closed, the simplices of ∆ are chains of elementary abelian 2-subgroups of
purely central type (every involution is 2-central).

Lemma 2.3. Let t be a noncentral involution in G, and let H be the component of the centralizer CG(t). Let H = H except in
the case G = HS, where H = S6 ≤ Aut(A6). Then the 2-central involutions of G which lie in CG(t) actually lie in H. These are
precisely the 2-central involutions of H.

Proof. For G = HS, this result is Lemma 1.7 of Aschbacher [5, p. 24]. For G = Suz, see the paragraph on p. 456 before
Lemma 1 of Yoshiara [40]. For the other cases, this result follows from information in the Atlas [11]; for example, the square
of an element of order 4 is 2-central. Observe that A5, Sz(8) and L3(4) have only one conjugacy class of involutions, and in
S6 every involution is 2-central. �

Lemma 2.4. The standard 2-local geometry for H is equivariantly homotopy equivalent to the Benson complex for H.

Proof. For M12, this was stated in Lemma 2.2. The Benson complex equals the Quillen complex for A5 ' L2(4), S6 '
Sp4(2), Sz(8) and L3(4). For a group of Lie type in defining characteristic, the Quillen complex is homotopy equivalent to
the Tits building; see [26, Theorem 3.1]. �

Definition 2.5. Let ∆t0 denote the subcomplex of the Benson complex ∆ for G which consists of chains of purely 2-central
elementary abelian 2-subgroups A satisfying t ∈ CG(A) or equivalently A ≤ CG(t).

By Lemma 2.3, ∆t0 equals the Benson complex for H , and so ∆
t
0 is equivariantly homotopy equivalent to the standard

2-local geometry for H . Note that∆t0 is a subcomplex of the fixed point set∆
t , which consists of those chains of elementary

abelian 2-subgroups A of purely central type satisfying t ∈ NG(A).

Lemma 2.6. The subcomplex∆t0 is equivariantly homotopy equivalent to∆
t .

Proof. Define a map f : ∆t → ∆t by f (A) = A ∩ CG(t), where A is a purely 2-central elementary abelian 2-subgroup of
G with t ∈ NG(A). Observe that the action of t on A must fix at least one nonidentity element, so that f (A) 6= {e}. Thus
f (A) ∈ ∆, which is closed under passing to nontrivial subgroups. Clearly f (A) ∈ ∆t0 ⊆ ∆

t . The map f is a CG(t)-equivariant
poset map satisfying f (A) ≤ A and therefore∆t is CG(t)-homotopy equivalent to∆t0, the image of f ; see [17, 2.2(3)]. �

We end the section with a summary of the arguments used to prove the theorem:

Proof of Theorem 2.1. Let G denote one of the six groups in Theorem 2.1. Each of these groups has a standard 2-local
geometry which is equivariantly homotopy equivalent to the Benson complex∆ of G (Lemma 2.2). By Lemma 2.6, the fixed
point set ∆t of a noncentral involution t in G is equivariantly homotopy equivalent with ∆t0, which is the Benson complex
of the component H of CG(t), by Lemma 2.3 and Definition 2.5. Finally, according to Lemma 2.4, the Benson complex of H is
equivariantly homotopy equivalent to the standard 2-local geometry for H . This concludes the proof of the theorem.
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2.2. Reduced Lefschetz modules

Information on the fixed point sets leads to more details on the reduced Lefschetz module:

L̃G(∆; Fp) =
dim∆∑
i=−1

(−1)iCi(∆; Fp)

of the augmented chain complex of ∆; here Fp denotes a field of characteristic p, which is a splitting field for G and all its
subgroups. The reduced Lefschetz module can also be written in terms of induced modules:

L̃G(∆; Fp) =
∑
σ∈∆

(−1)dim σ IndGGσ (Fp)− Fp.

A theorem due to Burry and Carlson [9, Theorem 5] and Puig [25] was applied by Robinson [27, in the proof of
Corollary 3.2] to Lefschetz modules to obtain the following result; also see [33, Lemma 1]:

Theorem 2.7 (Robinson [27]). The number of indecomposable summands of L̃G(∆; Fp) with vertex Q is equal to the number of
indecomposable summands of L̃NG(Q )(∆

Q
; Fp) with the same vertex Q .

The proof of this result uses the Green correspondence, and the relationship to the Brauer correspondence permits a
conclusion regarding the blocks in which the summands lie.
In what follows we will use this theorem in order to determine the vertices of the reduced Lefschetz module L̃G(∆; F2)

for the Benson complex for each of the six sporadic simple groups discussed in Section 2.1. We start with a more general
result regarding the nature of the fixed point sets under the action of p-central elements:

Proposition 2.8. Let ∆ denote the Benson complex for a group G, and let P be any group in the Benson collection. Then the fixed
point set ∆P is contractible. Further, the vertices of the indecomposable summands of L̃G(∆; Fp) do not contain any p-central
elements.

Proof. A collection C is a G-poset which is closed under the conjugation action of G. The order complex ∆(C) of C is the
simplicial complex with vertex set C and simplices proper inclusion chains in C. In what follows, C will denote the Benson
collection; this is the set of p-subgroups of Gwhich correspond to vertices in the Benson complex.
Let CP0 = {Q ∈ C | P ≤ CG(Q )}, a subposet of CP = {Q ∈ C | P ≤ NG(Q )}. Define a poset map F : CP → CP by

F(Q ) = Q ∩ CG(P), a nontrivial group since it equals the set of elements of the p-group Q fixed under the action of the
p-group P . Since F(Q ) ≤ Q , we have homotopy equivalence between ∆(CP) and the corresponding image under F , which
equals ∆(CP0 ); see [17, 2.2(3)]. If P ≤ CG(Q ), then PQ is also a group in the Benson collection. Then ∆(C

P
0 ) is conically

contractible via Q ≤ PQ ≥ P; see [26, 1.5]. These two stages of the proof can be combined in the string, representing
equivariant poset maps: Q ≥ CQ (P) ≤ P · CQ (P) ≥ P.
Let z be a p-central element in G, then 〈z〉 belongs to the Benson collection. The contractibility of ∆z implies that ∆Q is

mod-p acyclic for any p-groupQ containing z (by Smith theory), and thus the reduced Lefschetzmodule L̃NG(Q )(∆
Q
; Fp) = 0.

Apply Theorem 2.7 to conclude that the vertices of the indecomposable summands of L̃G(∆; Fp) do not contain any p-central
elements. �

Corollary 2.9. With G one of the sporadic simple groups M12, J2,HS, Co3, Ru, Suz, the vertices of the indecomposable summands
of L̃G(∆; F2) do not contain any 2-central involutions.

Remark 2.10. For G = Co3, the result was proved in [20, Theorem 2] using a different approach.

In what follows, we need only to consider those 2-groups Q which are purely noncentral. For five of the six groups
discussed in this section (M12, J2,HS, Ru and Co3) the square of any element of order 4 is a 2-central involution.
Therefore the purely noncentral 2-groups are the purely noncentral elementary abelian 2-groups. These are classified in
[1, Theorems 1.3 and 1.4], [13, Lemmas 3.3 and 3.4], [23, Table 2], [39, Section 2.6] and [12, Lemma 5.10].
We need information on the Suzuki group G = Suz provided in [38]. There are two classes of involutions, denoted 2A

(2-central) and 2B (noncentral). The centralizer of a noncentral involution t0 = 2B is CG(t0) = (22 × L3(4)) : 2, and every
involution in L3(4) is 2-central in G. There are four classes of elements of order 4; only the class 4D has its square equal to
a noncentral involution 2B. The maximal purely noncentral elementary abelian 2-subgroups have order four, and there are
3 classes of such subgroups, denoted V1, V2 and V3 in [38]. Their centralizers are CG(V1) = 22 × L3(4), CG(V2) = 22 × 22+4,
and CG(V3) = 22 × 32 : Q8; each centralizer is of the form CG(Vi) = Vi × A with A ⊆ L3(4). Denoting V1 = 〈t0, t1〉, we
have V2 = 〈t0, t1y〉 with y an involution in L3(4), and V3 = 〈t0, z〉 for z an involution in CG(t0) \ CG(V1). Acting as an outer
automorphism on L3(4), z centralizes PSU3(2) = 32 : Q8. The element t1z is of type 4D, and D8 = 〈t0, t1, z〉 is the dihedral
group of order 8.
In order to determine the purely noncentral 2-groups, let Q ≤ G be such a group, and denote E = Ω1(Z(Q )). Thus E is

a purely noncentral elementary abelian 2-group and Q ≤ CG(E). If E ' 22 has order four, then Q = E since if Q contains
an element not in E then Q contains an involution of L3(4). Now assume E = 2 = 〈t0〉. It follows that Q ∩ CG(V1) equals
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Table 2.2
Fixed point sets and vertices of L̃G(∆; F2)

G Q NG(Q ) ∆Q up to homotopy Vertex of L̃NG(Q )(∆
Q
; F2)

M12 2 2× S5 5 points= L2(4) building 22

22 A4 × S3 3 points= L2(2) building 22 = Q

J2 2 22 × A5 5 points= L2(4) building 22

22 A4 × A5 5 points= L2(4) building 22 = Q
22 24 : 3 Contractible

HS 2 2× A6.22 Sp4(2) building 22

22 22 × 5 : 4 Sz(2) building 22 = Q

Ru 2 22 × Sz(8) 65 points= Sz(8) building 22

22 (22 × Sz(8)) : 3 65 points= Sz(8) building 22 = Q

Co3 2 2×M12 Geometry forM12 23and 2 = Q
22 A4 × S5 5 points= L2(4) building 23

23 (23 × S3).(7 : 3) 3 points= L2(2) building 23 = Q

Suz 2 (22 × L3(4)).2 L3(4) building D8
22 (A4 × L3(4)).2 L3(4) building D8
22 22 × 22+4 Contractible
22 D8 × 32 : Q8 9 points= PSU3(2) building D8
4 D8 × 32 : Q8 9 points= PSU3(2) building D8
D8 D8 × 32 : Q8 9 points= PSU3(2) building D8 = Q
D∗8 D∗8 × 2 Contractible

either E, V1, or V2(up to conjugation) since if CQ (V1) contains an element not in E, then it must contain an element of the
form t1y with y ∈ L3(4) (note that Q contains no nontrivial elements of L3(4)). But (t1y)2 = y2 ∈ L3(4), so either y is the
identity (and Q = V1) or y is an involution and CQ (V1) is conjugate to V2. If Q ≤ CG(V1) then we must have Q = E = 2. If
Q 6= CQ (V1) then Q is isomorphic to some extension of the form 2.2 or 22.2. If Q = 2.2, we must have Q = 4 = 〈4D〉. For
the second extension Q is dihedral since there are no purely noncentral 23, and Ω1(Z(2 × 4)) = 22. Up to conjugacy, the
dihedral group contains V3 = 〈t0, z〉, and either Q = D8 = 〈t0, t1, z〉 or Q = D∗8 = 〈t0, t1y, z〉.
The chart in Table 2.2 lists the conjugacy classes of purely noncentral 2-subgroups in each of the six sporadic groups

(second column) together with their normalizers (third column). The fixed point sets (given in the fourth column) are
computed using ∆Q = (∆t)Q for t an involution in Z(Q ). In most cases ∆Q is homotopy equivalent to a building and
the reduced Lefschetz module is the associated Steinberg module, or an ‘‘extended’’ Steinberg module; see [34]. The case of
2×M12 ≤ Co3 will require more discussion, and we need to know the projective summands of the corresponding reduced
Lefschetz module forM12.

Theorem 2.11. (a) Let G be either M12, J2, HS, or Ru. Then the reduced Lefschetz module L̃G(∆; F2) has precisely one
nonprojective summand, and that summand has vertex 22 and lies in a block with defect group 22.

(b) Let G = Suz. Then L̃G(∆; F2) has precisely one nonprojective summand, and that summand has vertex D8 and lies in a block
with defect group D8.

(c) Let G = Co3. Then L̃G(∆; F2) has either two or three nonprojective summands, all lying in a block with defect group 23. One
summand has vertex 23. There is either one or two summands with vertex 2.

Proof. The results for part (a) and part (b) follow from Theorem 2.7 and the information gathered in Table 2.2. The only
case that requires further discussion is the summands with vertex 2 for G = Co3 in part (c); this case follows from the next
Proposition 2.12 concerning projective summands of the reduced Lefschetz module forM12. �

Proposition 2.12. For the sporadic simple groupM12, the reduced Lefschetzmodule L̃M12(∆; F2) associated to the Benson complex
has either one or two projective summands.

Proof. Recall that, by Lemma 2.2 the Benson complex and the 2-local geometry of M12 are equivariantly homotopy
equivalent; therefore they have equal Lefschetz modules. The geometry ∆ for M12 is a graph with two orbits of vertices,
stabilized by P1 = 21+4+ : S3 and P2 = 42 : D12. An edge is stabilized by a Sylow 2-subgroup P of G, a group of order 64. Then

L̃M12(∆; F2) = Ind
M12
P1
(1)+ IndM12P2 (1)− Ind

M12
P (1)− 1.

We will apply three results on projective summands of induced modules.
The following result is due to Robinson [28, Theorem 3] and Webb [36, Proposition 5.3]:

Lemma 2.13 (Robinson, Webb). The number of summands in IndGH(1) isomorphic to the projective cover PG(S) of a simple
FpG-module S equals the number of summands in ResGH(S) isomorphic to PH(1).
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If PG(S) is a summand of IndGH(1), then dim(S) must at least be the cardinality of a Sylow p-subgroup of H . The simple
F2M12-modules have dimensions 1, 10, 16, 16, 44 and 144. Therefore the only possible projective summand of L̃M12(∆; F2)
is the projective cover of ϕ6 = 144. Note that Ind

M12
P (1) contains at most two summands isomorphic to PM12(ϕ6).

The next lemma, due to Robinson [28, Proposition 6], will give an upper bound on the number of projective summands
of L̃M12(∆; F2).

Lemma 2.14 (Robinson). Let H ≤ G, g ∈ G and let {Si : 1 ≤ i ≤ t} be a full set of isomorphism types of simple FpG-modules.
The number of double cosets HgH for which p does not divide |H ∩ Hg | is at least

∑t
i,j=1 cijmimj, where (cij) is the Cartan matrix

of FpG, and mi denotes the multiplicity of PG(Si) as a summand of IndGH(1).
With H = P1 or H = P2, there are eleven double cosets HgH in M12, but for all of them |H ∩ Hg | is even (GAP [14]

computation). Therefore IndM12P1 (1) and Ind
M12
P2
(1) contain no projective summands. For H = P ∈ Syl2(M12), there are 44

double cosets PgP , and 12 of them satisfy |P ∩ Pg | = 1. This implies that 2m2 ≤ 12, where m is the multiplicity of the
projective cover PM12(ϕ6) as a summand of Ind

M12
P (1). Therefore L̃M12(∆; F2) contains at most two projective summands.

The third result used in this proof is due to Landrock [19, Theorem 2.3]; this will give a lower bound on the number of
projective summands of L̃M12(∆; F2).

Lemma 2.15 (Landrock). Let P ∈ Sylp(G). Then IndGP (1) is projective-free if and only if for every element g ∈ Gwith |P∩P
g
| = 1

and for every p′-section C (the set of elements of G whose p′-part lies in some fixed p-regular conjugacy class), the number of
P-orbits of elements in C ∩ (PgP) is a multiple of p.

Applied to G = M12, we find that Ind
M12
P (1) is not projective-free. A computation using GAP [14] provides an example of

such a double coset and conjugacy class (of elements of order 11) with five P-orbits.
Thus we have shown that the reduced Lefschetzmodule forM12 has either one or two projective summands. This implies

that the reduced Lefschetz module for Co3 has either one or two summands with vertex 2. �

Remark 2.16. In a private communication, Klaus Lux has shown that the reduced Lefschetz module L̃M12(∆; F2) has
precisely two projective summands. This implies that the reduced Lefschetz module for Co3 has two summands with vertex
2. Applying Lemma 2.13 for G = M12, H ∈ Syl2(M12), and S the simple F2M12-module of dimension 144, we want to
compute the number of projective summands in ResM12H (S). Observe that the only projective indecomposable F2H-module
is the regular representation PH(1) = F2H . The element e =

∑
h∈H h lies in the socle of the group ring F2H , which acts

trivially on any nonprojective indecomposable F2H-module. For the regular representation, each h ∈ H corresponds to a
permutation matrix and e acts as a matrix with every entry equal to one. Therefore the rank of e acting on an F2H-module
equals the number of projective summands. Using GAP, Lux computes the rank of e acting on ResM12H (S) to be two.
Using other techniques involving GAP and MeatAxe, Lux also shows that

L̃M12(∆; F2) = S − 2PM12(S),

where S has Brauer character ϕ6 = 144.

3. Sporadic simple groups with small Sylow p-subgroups. Case p odd

In this section we are concerned with the sporadic simple groups Gwhich have a Sylow p-subgroup of order p3, for p an
odd prime. In all these cases the Sylow p-subgroup is p1+2+ , extraspecial of exponent p. A concise treatment of these groups
can be found in the paper of Ruiz and Viruel [30] on fusion and linking systems.

3.1. The distinguished Bouc complex

A p-subgroup Q is p-radical if it is the largest normal p-subgroup in its normalizer NG(Q ). In addition, Q is called
distinguished if it contains p-central elements in its center. The distinguished Bouc collection B̂p(G) contains the distinguished
p-radical subgroups of G. We shall denote by |B̂p(G)| the distinguished Bouc complex.
We determine the nonprojective indecomposable summands, as well as their distribution into the blocks of the group

ring FpG, of the reduced Lefschetz modules L̃G(|B̂p(G)|; Fp) = L̃G(B̂p) of these sporadic simple groups. For a p-element
t of noncentral type we first find the fixed point set ∆t and then we apply Theorem 2.7 (Robinson’s application of the
Burry–Carlson Theorem).
The groups Ru and J4 (with p = 3) and Th (with p = 5) have one class of elements of order p each. The groupsMcL (with

p = 5) and O′N (with p = 7) have local characteristic p; all the p-local subgroups H satisfy the condition CH(Op(H)) ≤
Op(H). In all these cases, the distinguished Bouc collection equals the whole Bouc collection and therefore the reduced
Lefschetz modules are projective. For a proof of the equality of the two collections in a group of local characteristic p see
[21, Lemma 4.8]. Information on the p-radical subgroups for odd primes, for G one of the sporadic simple groups, is given
in [41, Table 1].
The remaining sporadic groups with Sylow p-subgroups of order p3 are discussed below.
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Theorem 3.1. Let t ∈ G be an element of order p of noncentral type.

(a) Let G be either M12 or J2, and let p = 3. Then the fixed point set |B̂3(G)|t consists of four contractible components, and so
is homotopy equivalent to the building for L2(3). The reduced Lefschetz module L̃G(B̂3) contains precisely one nonprojective
summand, which has vertex 3 = 〈t〉 and lies in a block with the same group as defect group.

L̃M12(B̂3) = PM12(φ2)− PM12(φ3)− PM12(φ6)+ PM12(φ8)− PM12(φ9)− φ7 − φ11.

These projective covers all lie in the principal block; χ14 = φ7 + φ11 is not projective and lies in the block with defect group
〈3B〉 = 〈t〉. This formula is valid in the Grothendieck ring of characters.

L̃J2(B̂3) = PJ2(φ10)+ φ9.

This formula is valid in the Green ring of virtual modules.
(b) Let G be Ru,HS, Co3 or Co2, and let p = 5. The group HS has two classes of noncentral elements, denoted 5B and 5C. When
G = HS, let t be a noncentral element of type 5B; the fixed point set |B̂5(HS)|5C is contractible. Then the fixed point set
|B̂5(G)|t consists of six contractible components, and so is homotopy equivalent to the building for L2(5). The reduced Lefschetz
module L̃G(B̂5) contains precisely one nonprojective summand, which has vertex 5 = 〈t〉 and lies in a block with the same
group as defect group.

(c) Let G be He and let p = 7. The simple group of Held has five conjugacy classes of elements of order 7, which generate three
classes of groups, denoted 7AB, 7C (of central type), and 7DE. The fixed point set of the last group 7DE is contractible. Let t
denote an element of type 7A or 7B. Then the fixed point set |B̂7(He)|t consists of eight contractible components, and so is
homotopy equivalent to the building for L2(7). The virtual module L̃He(B̂7) contains precisely one nonprojective summand,
which has vertex 7AB = 〈t〉 and lies in a block with the same group as defect group.

(d) Let G be either He or M24, and let p = 3. Then the fixed point set |B̂3(G)|t consists of 28 contractible components, which
is equivalent to the set of Sylow subgroups Syl3(L3(2)). L̃G(B̂3) contains three nonprojective summands, all having vertex
3 = 〈t〉. Two of these summands lie in one block, with the same group as defect group, but the third summand lies in the
principal block.

(e) Let G be Fi′24 and let p = 7. Then the fixed point set |B̂7(Fi
′

24)|
t consists of 120 contractible components, which is equivalent

to the set of Sylow subgroups Syl7(A7). The reduced Lefschetz module L̃Fi′24(B̂7) contains five nonprojective summands, all
having vertex 7 = 〈t〉. These five summands lie in four blocks; four lie in blocks with the same group 7 = 〈t〉 as defect group,
but the fifth summand lies in the principal block.

(f) Let G be the Monster M and let p = 13. Then the fixed point set |B̂13(M)|t consists of 144 contractible components, which is
equivalent to the set of Sylow subgroups Syl13(L3(3)). The virtual module L̃M(B̂13) contains three nonprojective summands,
all having vertex 13 = 〈t〉. These three summands lie in three different blocks; two lie in blocks with the same group 13 = 〈t〉
as defect group, but the third summand lies in the principal block.

Proof. As mentioned above these sporadic groups, with the given prime, have Sylow p-subgroups equal to the extraspecial
group of order p3 and exponent p. Except for Held at p = 7 and HS at p = 5, they have two conjugacy classes of elements of
order p (usually type A are p-central and type B are noncentral, although this notation is reversed for Fi′24 at p = 7 andM at
p = 13). The set of p-central elements is closed under taking products of commuting elements. Thus the distinguished Bouc
collection B̂p(G) is homotopy equivalent to the Benson collection, which consists of nontrivial purely p-central elementary
abelian subgroups [21, Theorems 3.1 and 4.4]. By Proposition 2.8, the fixed point set |B̂p(G)|z of a p-central element z is
contractible and L̃G(B̂p) has no summands with a vertex containing a p-central element. We only need to consider purely
noncentral p-subgroups, and for these Sylow p-subgroups p1+2+ this implies that the only possible nontrivial vertex is a group
of order p of noncentral type.
Usually, the first step in computing the fixed point set |B̂p(G)|t is to find the number of Sylow p-subgroups Swhich satisfy

t ∈ NG(S). In most of these cases, NG(S) is equal to NG(Z), where Z = Z(S) is a group of order p of central type. But t ∈ NG(Z)
iff t ∈ CG(Z) iff Z ⊆ CG(t). So we want to identify the p-central elements of G that lie in CG(t).
Let E = p2 be a purely p-central elementary abelian p-subgroup of rank 2 in a finite group G having Sylow p-subgroup

the extraspecial p-group p1+2+ . Let t ∈ NG(E) be an element of order p of noncentral type. Then by considering its order, the
group S = 〈t, E〉 must be a Sylow subgroup, and the chain E ⊂ S represents a 1-simplex in the fixed point set |B̂p(G)|t .
Clearly t ∈ NG(S) iff t ∈ S, and so S is the unique t-invariant Sylow p-subgroup of G which contains E. In most of the cases
below (where |B̂p(G)| is a graph) this will imply that each component of the fixed point set |B̂p(G)|t is contractible, being a
star on the vertex corresponding to the unique Sylow p-subgroup of that component.
(a)M12 and p = 3
A 3-local geometry for M12, originally due to Glauberman, appears in papers by Ronan and Stroth [29, Section 3] and

Buekenhout [8, Section 9] and B̂3(M12) is its barycentric subdivision. The 3-radical subgroups of M12 form four conjugacy
classes [3, Section 2], given by 3 = 〈t〉, two conjugacy classes 3A2I and 3A

2
II of purely 3-central elementary abelian

3-subgroups of rank 2, and the Sylow 3-subgroup 31+2+ . The last three are distinguished; thus |B̂3(M12)| is a graph with
three types of vertices. Given a Sylow 3-subgroup S, let Z = Z(S) be its center. Then NM12(S) = NM12(Z) = 3

1+2
+ .22 and

CM12(Z) = 3
1+2
+ .2. Then S ∈ |B̂3(M12)|t iff t ∈ NM12(S) iff t ∈ CM12(Z) iff Z ≤ CM12(t). But CM12(t) ' 3 × A4 contains
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four 3-central subgroups of order 3 (eight elements of type 3A) [37, Section 3], and so |B̂3(M12)|t contains four vertices of
type 31+2+ . The element t will also normalize each 3A2 ≤ 31+2+ (the Sylow group contains two purely 3-central 3A2), but two
‘‘adjacent’’ Sylows will have an intersection S1 ∩ S2 = 3A2 containing no elements of type 3B. If 3A2 ∈ |B̂3(M12)|t then
t ∈ NM12(3A

2) and 〈t, 3A2〉 = 31+2+ ∈ |B̂3(M12)|t . Thus |B̂3(M12)|t has four components, each component equal to a star
with 2 edges and 3 vertices.
The normalizer NM12(〈t〉) ' S3 × A4 acts on the fixed point set |B̂3(M12)|

t with the S3 acting trivially and so that the
action of A4 is equivalent to the action of L2(3) on its building. Thus L̃A4(|B̂3(M12)|

t) is the Steinberg module (projective and
irreducible), and L̃S3×A4(|B̂3(M12)|

t) is indecomposablewith vertex 3 = 〈t〉. This implies that the Lefschetzmodule L̃M12(B̂3)
contains one indecomposable summand with vertex of type 〈3B〉, and it lies in a block with the same group 〈3B〉 as defect
group.
Let H1 and H2 denote the two conjugacy classes of 32 : GL2(3) in M12 (the normalizers of the two classes of subgroups

3A2I and 3A
2
II ), with intersection H1 ∩ H2 = H12 = 3

1+2
+ : 22. Then the reduced Lefschetz module is:

L̃M12(B̂3) = Ind
M12
H1
(1a)+ IndM12H2 (1a)− Ind

M12
H12
(1a)− 1a.

The characters for the first two terms are described in the Atlas; the third was computed with GAP, using

IndM12H1 Ind
H1
H12
(1a) = IndM12H1 (1a+ 3b).

The character formula given above in Theorem 3.1(a) was obtained. Observe that the part of this formula that lies in the
principal block, being projective, is valid in the Green ring of virtual modules. There are only six indecomposable modules
lying in the block with the cyclic defect group 〈3B〉: the two simple modules φ7 and φ11; their projective covers, which
are uniserial, PM12(φ7) = 〈φ7, φ11, φ7〉 and PM12(φ11) = 〈φ11, φ7, φ11〉; and two other modules M1 = 〈φ7, φ11〉 and
M2 = 〈φ11, φ7〉. Unfortunately, M1 and M2 have the same factors and the same character. One of these must be the
nonprojective indecomposable summand of the reduced Lefschetz module.
J2 and p = 3
The Hall–Janko–Wales group J2 has two conjugacy classes of elements of order 3, denoted 3A and 3B. Their normalizers

are NJ2(〈3A〉) = 3.PGL2(9) = 3.A6.2 and NJ2(〈3B〉) = S3 × A4. The Sylow subgroup contains two elements of type 3A
(the center) and 24 elements of type 3B. The collection of elements of type 3A is closed (a GAP computation gives that the
class multiplication coefficient ξ(3A, 3A, 3B) = 0) and thus the Benson complex∆ consists of a disjoint set of 280 vertices
corresponding to the groups of type 〈3A〉, and this Benson complex is equivariantly homotopy equivalent to |B̂3(J2)|. To show
that the fixed point set∆3B consists of four vertices, note that 3B ∈ NJ2(〈3A〉) iff 3B ∈ CJ2(3A) iff 3A ∈ CJ2(3B) = 3× A4. The
group 3× A4 contains four subgroups of type 〈3A〉, namely Syl3(A4). These computations imply that the reduced Lefschetz
module L̃J2(B̂3) has precisely one indecomposable summandwith vertex 3 = 〈3B〉which lies in a blockwith the same group
as defect group. Note that

L̃J2(B̂3) = Ind
J2
3.A6.2

(1a)− 1a = 63a+ 90a+ 126a = χ7 + χ10 + χ11 = φ9 + PJ2(φ10)

is an ordinary module (not a virtual module). The module which affords χ7 = φ9 is not projective, and lies in block 3 with
defect group 〈3B〉. The projective cover PJ2(φ10) = χ10+χ11 lies in block 2 with defect group 〈3A〉. Since 〈3A〉 is not a vertex,
as |B̂3(J2)|3A is contractible, the part of the reduced Lefschetz module lying in block 2must be projective. The entire formula
given for L̃J2(B̂3) is valid on the level of modules, not just characters.
(b) Ru and p = 5
The sporadic simple group of Rudvalis has two conjugacy classes of elements of order 5, the 5-central elements 5A and

the noncentral elements 5B. There are three conjugacy classes of radical 5-subgroups, 5 = 〈5B〉, a purely central 52 = 5A2,
and the Sylow 51+2+ ; see [4, Table 4]. Therefore |B̂5(Ru)| is a graph with two types of vertices. To compute the fixed point
set |B̂5(Ru)|5B, let S = 51+2+ ∈ |B̂5(Ru)|5B and denote by Z the center Z(S) = 〈5A〉. Then 5B ∈ NRu(S) = NRu(Z) ' 51+2+ :

((4× 4) : 2) iff Z = 〈5A〉 ≤ CRu(5B) ' 5× A5. The alternating group A5 contains six subgroups of order 5, all of type 〈5A〉.
Thus |B̂5(Ru)|5B contains the six vertices corresponding to six Sylow 5-subgroups of Ru. If 5B ∈ S, then 5B ∈ NRu(5A2) for
the two copies of 5A2 ≤ S. Conversely, if 5B ∈ NRu(5A2), then 〈5B, 5A2〉 is a Sylow 5-subgroup of Ru. Therefore |B̂5(Ru)|5B
consists of six components, each equal to a star with two edges and three vertices.
In the action of NRu(〈5B〉) ' (5 : 4) × A5 on |B̂5(Ru)|5B, the Frobenius group 5 : 4 acts trivially and the action of

A5 is equivalent to the action of L2(5) on its building. Thus the reduced Lefschetz module L̃A5(|B̂5(Ru)|
5B) is the projective

irreducible Steinbergmodule, and L̃NRu(〈5B〉)(|B̂5(Ru)|
5B) is indecomposablewith vertex 5 = 〈5B〉. Therefore L̃Ru(B̂5) contains

one indecomposable summand with vertex 〈5B〉, and it lies in a block with the same group as defect group.
G = HS, Co3, Co2 and p = 5
These three groups have only two conjugacy classes of radical 5-subgroups, 〈5B〉 and the Sylow 5-subgroup 51+2+ . Thus

|B̂5(G)| is a disjoint set, with vertices corresponding to Syl5(G). For G = HS or G = Co3, NG(〈5B〉) ' (5 : 4) × A5, but for
G = Co2 we have NG(〈5B〉) ' (5 : 4) × S5. The fixed point set |B̂5(G)|5B consists of six vertices, corresponding to those
groups S ∈ Syl5(G)with centers 〈5A〉 = Z(S) lying in the A5 (or S5) of NG(〈5B〉). Thus L̃NG(〈5B〉)(|B̂5(G)|

5B) is indecomposable
with vertex 5 = 〈5B〉. (Note that the Steinberg module for A5 extends in a natural way to the one for S5 [34], although S5



J. Maginnis, S. Onofrei / Journal of Pure and Applied Algebra 213 (2009) 901–912 909

has two projective modules which restrict to the Steinberg module for A5.) Therefore L̃G(B̂5) contains one indecomposable
summand with vertex 〈5B〉, lying in a block with the same group as defect group.
Observe thatHS has another class 5C of noncentral elements; the normalizerNHS(〈5C〉) = 52 : 4. The elementary abelian

52 contains a unique central subgroup 〈5A〉. This implies that the fixed point set |B̂5(HS)|5C is contractible, and 〈5C〉 is not
a vertex of the Lefschetz module.
(c) He and p = 7
The sporadic group of Held contains five conjugacy classes of elements of order 7, with 7C the 7-central elements; the 7B

are inverses of the 7A and the 7E are inverses of the 7D. The normalizers are NHe(7AB) = (7 : 3)× L2(7), NHe(7DE) = 72.6,
and NHe(〈7C〉) = NHe(71+2+ ) = 71+2+ : (S3 × 3). There is one class of purely central elementary abelian 7C2, as well as
two mixed classes of elementary abelian 72, each containing six 7-central elements; see [10, Section 2.4]. There are three
classes of 7-radical subgroups, 7AB, 7C2, and 71+2+ ; the last two are distinguished [2, Section 2]. Thus |B̂7(He)| is a graph
with two types of vertices. Each Sylow 7-subgroup contains three copies of 7C2, and each elementary abelian 7C2 lies in
eight Sylow subgroups. Note that 7AB ≤ NHe(71+2+ ) = NHe(〈7C〉) iff 7C ∈ CHe(7AB) = 7 × L2(7). Thus the fixed point set
|B̂7(He)|7AB contains eight vertices corresponding to Sylow subgroups of Held. Such a Sylowwill contain three copies of 7C2
also normalized by the 7AB. If 7AB ≤ NHe(7C2), then they generate a Sylow subgroup 71+2+ = 〈7AB, 7C2〉. The fixed point set
|B̂7(He)|7AB consists of eight contractible components, and L̃He(B̂7) has a summand with vertex 〈7AB〉, lying in a block with
the same group as the defect group.
If 7DE ≤ NHe(71+2+ ) = NHe(〈7C〉), then 7C ∈ CHe(7DE). But the latter contains only one copy of 〈7C〉. If 7DE ≤ NHe(7C2),

they generate a Sylow subgroup 71+2+ = 〈7DE, 7C2〉. Thus the fixed point set ∆7DE is contractible, consisting of the star
corresponding to one Sylow subgroup and its three copies of 7C2. L̃He(B̂7) does not contain any summand with vertex
〈7DE〉.
(d) He and p = 3
The sporadic group of Held contains two conjugacy classes of elements of order 3, denoted 3A and 3B. The Sylow

3-subgroups 31+2+ contain 14 elements of type 3A and 12 elements of type 3B. There are two conjugacy classes of elementary
abelian 3-subgroups of rank 2, one of type 3A2 (a pure group, with 8 elements of type 3A; note that 31+2+ contains two such
subgroups) and one mixed 32 = A1B3 (containing 2 elements of type 3A and 6 elements of type 3B; note that 31+2+ contains
two of these groups); see [10, Section 2.2]. The nontrivial 3-radical subgroups of Held [2, Section 2] are the conjugacy classes
of 〈3A〉, 〈3B〉, 3A2, and 31+2+ . Thus the distinguished Bouc complex |B̂3(He)| contains three types of vertices, corresponding
to 〈3A〉, 3A2, and 31+2+ ; note that |B̂3(He)| is a 2-dimensional complex with maximal simplices corresponding to chains
〈3A〉 ≤ 3A2 ≤ 31+2+ . We wish to compute the fixed point set |B̂3(He)|3B. Clearly 3B ∈ NHe(〈3A〉) iff 3B ∈ CHe(3A)
iff 3A ∈ CHe(3B) = 3 × L3(2). There are precisely 28 subgroups of type 〈3A〉 in this group, namely Syl3(L3(2)). Next,
3B ∈ NHe(31+2+ ) iff 3B ∈ 31+2+ ≤ CHe(3A) = 3.A7, where 3A = Z(31+2+ ). An element of type 3B lying in CHe(3A) has image in
A7 a permutation in the conjugacy class of (123)(456). Such a permutation is contained in a unique Sylow 3-subgroup of A7.
Thus there is a unique Sylow subgroup S = 31+2+ in Hewith center 〈3A〉 and containing 3B. So |B̂3(He)|3B contains 28 edges
connecting vertices of type 〈3A〉 to vertices of type 31+2+ . Clearly, if 3B ∈ 31+2+ , then 3B normalizes the two elementary abelian
subgroups of type 3A2 ≤ 31+2+ . But if 3B ∈ NHe(3A2), then they generate a Sylow, 〈3B, 3A2〉 = 31+2+ . Thus |B̂3(He)|3B contains
56 vertices of type 3A2, and consists of 28 components, each (contractible) component equal to two triangles sharing one
common edge.

Remark 3.2. Although themultiplication class coefficient ξ(3A, 3A, 3B) = 168 is nonzero, it is still true that if two elements
of type 3A commute with each other, then their product either equals the identity or is another element of type 3A. If the
two commuting elements generate an elementary abelian 32, then this 32 contains at least four elements of type 3A (the
given generators and their inverses). But this forces the 32 to be a pure 3A2. (The number 168 can be explained as follows:
in a fixed Sylow 31+2+ with a fixed element 3B ∈ 31+2+ , there are six ways to multiply two (noncommuting) elements of type
3A to obtain the given element 3B. Then each 3B is contained in 28 Sylow subgroups, and 168 = 6× 28.) Thus the Benson
complex∆(He) equals the subcomplex of the distinguished Bouc complex |B̂3(He)| consisting of those terms corresponding
to the groups of type 〈3A〉 and 3A2. The inclusion∆(He) ⊆ B̂3(He) induces an equivariant homotopy equivalence.

The action of L3(2) on its 28 Sylow 3-subgroups yields a 28-dimensional representation χ = χ1 + 2χ4 + χ5 + χ6 (using
the Atlas [11] notation, χ1 = 1a, χ4 = 6a, χ5 = 7a, and χ6 = 8a). Note that NL3(2)(3) = S3, so the elements of order 4 or
7 have no fixed points. The elements of order three fix precisely one subgroup 3, and each element of order two fixes four
groups of order 3. The Green correspondence implies that IndL3(2)S3

(1) is a direct sum of the trivial module and a projective
module. Therefore the reduced Lefschetz module L̃L3(2)(|B̂3(He)|

3B) is projective, with character 2χ4 + χ5 + χ6. Note that
χ4 = ϕ4 is projective, lying in a block of defect zero. But χ5 + χ6 is the projective cover PL3(2)(ϕ5), where χ5 = ϕ5 and
χ6 = ϕ1 + ϕ5, which lies in the principal block. Note that the S3 in NHe(〈3B〉) ' S3 × L3(2) acts trivially on |B̂3(He)|3B. It
follows that L̃NHe(〈3B〉)(|B̂3(He)|

3B) has three summands with vertex 〈3B〉. Therefore the reduced Lefschetz module L̃He(B̂3)
has precisely three nonprojective summands, all with vertex 3 = 〈3B〉. Two of these summands lie in the same block, with
defect group also equal to 〈3B〉, but the third summand lies in the principal block.
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M24 and p = 3
The situation forM24 is very similar to that ofHe, with the same Sylow 3-subgroup and fusion pattern. Also,NM24(〈3B〉) '

S3 × L3(2) acts on |B̂3(M24)|3B as L3(2) acts on its 28 Sylow 3-subgroups. Thus the reduced Lefschetz module L̃M24(B̂3)
contains three indecomposable summands with vertex 3 = 〈3B〉. Two of these summands lie in the same block, having
defect group 〈3B〉. The third summand lies in the principal block.

(e) Fi′24 and p = 7
The Fischer group Fi′24 has two classes of elements of order 7, type 7A and 7B (the latter are 7-central). The normalizers are

NG(〈7A〉) = (7 : 6)×A7 andNG(〈7B〉) = NG(71+2+ ) = 71+2+ : (S3×6). There are four conjugacy classes of 7-radical subgroups,
〈7A〉, 71+2+ , and two classes of purely central elementary abelian 7B2. The last three are distinguished. Thus |B̂7(Fi′24)| is
a graph with three types of vertices, corresponding to the Sylow subgroups and the two classes of elementary abelian
7B2. The fixed point set |B̂7(Fi′24)|

7A consists of 120 contractible components, each component a star corresponding to one
Sylow subgroup 71+2+ and its six purely central elementary abelian 7B2, three from each conjugacy class. These components
correspond to the 120 Sylow 7-subgroups of the alternating group A7. The action of A7 on Syl7(A7) yields the inducedmodule

IndA77:3(1a) = 1a+ 10ab+ 14bb+ 15a+ 21a+ 35a

(the character values are 120, 0, 0, 6, 0, 0, 0, 1, 1; the entry 6, for example, can be thought of in terms of the fact that
the permutation (123)(456) normalizes six different groups of order 7 in A7). The group ring of A7 has five blocks at the
prime p = 7, with defects 1, 0, 0, 0, 0. The module which affords χ6 = φ5 = 14b is projective and lies in block 3,
χ8 = φ6 = 21a is projective and lies in block 4, and χ9 = φ7 = 35a is projective and lies in block 5. The projective
cover PA7(φ3) = 10ab + 15a = χ3 + χ4 + χ7 lies in the principal block. This implies that the reduced Lefschetz module
L̃Fi′24(B̂7) contains five indecomposable summandswith vertex 7 = 〈7A〉. Four of these summands lie in three blocks, having
the same group as defect group (two summands are in the same block). The fifth summand lies in the principal block.

(f)M and p = 13
The Monster group M has two classes of elements of order 13, type 13A and 13B (the latter are 13-central). The

normalizers are NM(〈13A〉) = (13 : 6 × L3(3)).2 and NM(〈13B〉) = NM(131+2+ ) = 131+2+ : (3 × 4.S4). There is one class of
purely central elementary abelian 13B2. The groups 〈13A〉, 13B2, and 131+2+ are 13-radical, and the last two are distinguished.
Thus |B̂13(M)| is a graph with two types of vertices; each Sylow contains six copies of 13B2, and each elementary abelian
13B2 lies in 14 Sylow subgroups. Note that 13A ∈ NM(131+2+ ) = NM(〈13B〉) iff 13B ∈ CM(13A) = 13 × L3(3). Thus the
fixed point set |B̂13(M)|13A contains 144 vertices corresponding to Sylow subgroups ofM . For each such Sylow, the 13A also
normalizes its six elementary abelian 13B2, and if 13A ∈ NM(13B2), then they generate a Sylow 131+2+ = 〈13A, 13B2〉.
The group ring of L3(3) has six blocks at the prime 13, of defects 1, 0, 0, 0, 0, 0. The action of L3(3) on its Sylow

13-subgroups corresponds to the induced character

IndL3(3)13:3 (1a) = 1a+ 13a+ 16abcd+ 27a+ 39a.

Note that 13a is projective and lies in block two, and 39a is projective and lies in block six. The projective cover
PM(φ4) = 16abcd+ 27a lies in the principal block. This implies that the reduced Lefschetz module L̃M(B̂13) contains three
indecomposable summands with vertex 13 = 〈13A〉. Two of these summands lie in two blocks, having the same group as
defect group. The third summand lies in the principal block. �

3.2. The complex of p-centric and p-radical subgroups

A p-subgroup Q of G p-centric if the center Z(Q ) is a Sylow p-subgroup of CG(Q ). The collection of p-centric and p-radical
subgroupsBcenp (G) is a subcollection of the distinguished Bouc collection B̂p(G); see [22, Proposition 3.1].
A group has parabolic characteristic p if all p-local subgroupswhich contain a Sylow p-subgroup of G have characteristic p.

For the groups with this property, the two collections B̂p(G) andBcenp (G) are equal [22, Proposition 3.5]. All but three of the
sporadic groups discussed in Section 3.1 satisfy this condition. We now turn to the three cases above in which the complex
of p-radical p-centric subgroups is not equal to the complex of distinguished p-radical subgroups.

Theorem 3.3. Let ∆ = |Bcen3 (G)| and let L̃G(∆) be the mod-3 reduced Lefschetz module. Let z ∈ G be a 3-central element and
t ∈ G be an element of order 3 of noncentral type.

(a) Let G be J2. Then the fixed point set ∆z consists of ten vertices, equal to the building for PGL2(9), and the fixed point set ∆t
consists of four vertices, equal to the building for L2(3).
The module L̃J2(∆) contains two nonprojective summands. One summand has vertex 3 = 〈t〉 and lies in a block with the

same group as defect group. The second summand has vertex the 3-central group 〈z〉 and lies in a block with the same group
as defect group.
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(b) Let G be M24. Then the fixed point set ∆z consists of ten contractible components, equivalent to Syl3(S6), and the fixed point
set ∆t consists of 28 contractible components, equivalent to the set of Sylow 3-subgroups Syl3(L3(2)).
Themodule L̃M24(∆) contains four nonprojective summands. Three of these summands have vertex 3 = 〈t〉; two summands

lie in one block, with the same group as defect group, but the third summand lies in the principal block. The fourth summand
has vertex the 3-central group 〈z〉, and lies in a block with the same group as defect group.

(c) Let G be He. Then the fixed point set ∆z is connected and is homotopy equivalent to a subcomplex of the Quillen complex for the
symmetric group S7. The fixed point set ∆t consists of 28 contractible components, equivalent to the set of Sylow subgroups
Syl3(L3(2)).
The module L̃He(∆) contains four nonprojective summands. Three of these summands have vertex 3 = 〈t〉; two summands

lie in one block, with the same group as defect group, but the third summand lies in the principal block. The fourth summand
has vertex the 3-central group 〈z〉, and lies in a block with defect group the purely central elementary abelian group 3A2.

Proof. Since ∆ is a subcomplex of |B̂3(G)| we shall use some of the details given in the proof of Theorem 3.1(a, d). For
these three groups, the 3-central group 〈3A〉 is 3-radical but not 3-centric. For J2 the complex∆ is a discrete set of vertices,
corresponding to Syl3(J2). ForM24 and He, the complex∆ is a graph with two types of vertices, corresponding to the Sylow
3-subgroups and to the purely central elementary abelian groups 3A2. In all three cases, the fixed point set∆t is equivalent
to that described in the previous theorem, with the same explanation for the summands of the reduced Lefschetz module
which have vertex the group 〈t〉. In the previous theorem, the fixed point sets for the 3-central element z were contractible;
this is no longer true for the complex∆.
For G = J2, the fixed point set∆z consists of ten vertices corresponding to the ten Sylow 3-subgroups containing z. The

action of NJ2(〈z〉) = 3.PGL2(9) on these ten vertices is the action of PGL2(9) on its building, with reduced Lefschetz module
the Steinberg module. Then Theorem 2.7 implies that L̃J2(∆) has one summand with vertex 〈z〉 which lies in a block with
the same group as defect group. This concludes the proof of the statement in part (a) of the theorem.
For G equal to either M24 or He, note that the collection consisting of the Sylow 3-subgroups and the purely central

elementary abelian subgroups 3A2 is closedunder passage to 3-overgroups.Wehave an equivariant posetmap F1 : ∆z → ∆z

defined by F1(P) = 〈z〉 · P . Since this satisfies F1(P) ≥ P , there is an NG(〈z〉)-homotopy equivalence between ∆z and the
image of F1, the subcomplex∆z1 determined by those groups P which contain z; see [17, 2.2(3)]. Next, F2 : ∆

z
1 → ∆z1 defined

by F2(P) = P ∩ CG(z) is an equivariant poset map satisfying F2(P) ≤ P . Observe that if z ∈ P = 3A2 then P ≤ CG(z), and if
z ∈ P = 31+2+ then either z ∈ Z(P) and P ≤ CG(z), or z is contained in only one of the two purely central elementary abelian
3A2 in P . In this latter case, F2(P) = 3A2 does lie in∆z1. Therefore∆

z
1 is NG(〈z〉)-homotopy equivalent to the image of F2, the

subcomplex∆z2 determined by those groups P satisfying z ∈ P ≤ CG(z); of course P is either 3A
2 or 31+2+ .

The centralizers of the 3-central elements are CM24(z) = 3.A6 and CHe(z) = 3.A7. Let H denote A6 when G = M24 and
A7 when G = He. The quotient map π : 3.H → H induces an isomorphism of the complex ∆z2 with the subcomplex E3(H)
of the Quillen complex for H determined by the collection consisting of the Sylow 3-subgroups of H (elementary abelian of
rank 2) and the groups of order three generated by elements in the conjugacy class of the cycle (123). Since an element of
H in the conjugacy class of the product (123)(456) of two cycles lies in a unique Sylow 3-subgroup of H , the subcomplex
E3(H) is equivariantly homotopy equivalent to the entire Quillen complexA3(H). Recall that the reduced Lefschetz module
for the Quillen complex of any finite group is projective.
For G equal to either M24 or He, the normalizers of the 3-central elements are NM24(〈z〉) = 3.S6 and NHe(〈z〉) = 3.S7.

For S6, the Sylow 3-subgroups satisfy the trivial intersection property; in M24, each 3A2 lies in a unique S ∈ Syl3(M24). The
induced module

IndS6
32:D8

(1a)− 1a = 9a = ϕ5

yields a projective irreducible module lying in a defect zero block of F3S6. Consequently, the reduced Lefschetz module
L̃M24(∆) contains a summand with vertex 3 = 〈z〉. This proves part (b) of the theorem.
For the symmetric group S7 we have

IndS7S3×S4(1a)+ Ind
S7
(S3×S3):2

(1a)− IndS7S3×S3(1a)− 1a = −(21a+ 15a) = −(χ8 + χ12) = −PS7(ϕ2)

is projective and indecomposable and lies in a block of defect one. Thus L̃He(∆) has a summand with vertex 3 = 〈z〉, lying
in a block with defect group 32. This concludes the proof of part (c) of the theorem. �

3.3. One last example

We conclude with one further example; although the Sylow subgroup is not extraspecial, the complex of distinguished
3-radical subgroups is very simple (a disjoint collection of vertices).

Theorem 3.4. Let G = J3 and p = 3. Then the reduced Lefschetz module for the collection of distinguished 3-radical subgroups
has precisely one nonprojective summand with vertex a group of order 3 (of noncentral type) and lying in a block with the same
group as defect group.
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Proof. The third Janko group J3 has a Sylow3-subgroup S of order 35, and contains two conjugacy classes of elements of order
3, denoted 3A and 3B; the class 3B lies in the center of the Sylow subgroup S. The center Z(S) = 3B2 is an elementary abelian
3-group of rank 2 containing 8 elements of type 3B. The normalizers are NJ3(〈3A〉) = 3 : PGL2(9), with CJ3(3A) = 3 × A6,
and NJ3(S) = NJ3(3B

2) = 32.(3 × 32) : 8. The nontrivial 3-radical subgroups of J3 are the groups of type 〈3A〉 and the
Sylow 3-subgroups of J3; see [18]. Thus the distinguished Bouc complex |B̂3(J3)| consists only of the 24 · 5 · 17 · 19 vertices
corresponding to Syl3(J3). The fixed point set |B̂3(J3)|3A can be computed by noting that 3A ∈ NJ3(S) iff 3A ∈ S = CJ3(3B

2)

iff 3B2 ≤ CJ3(3A) = 3× A6. There are precisely ten groups of type 3B
2 in 3× A6, namely Syl3(A6). The action of PGL2(9) on

the ten vertices of |B̂3(J3)|3A is the action on the projective line F9 ∪ {∞}.
Thus L̃PGL2(9)(|B̂3(J3)|

3A) is the projective irreducible Steinberg module and L̃NJ3 (〈3A〉)(|B̂3(J3)|
3A) is indecomposable with

vertex 〈3A〉. The reduced Lefschetzmodule L̃J3(B̂3) contains one indecomposable summandwith vertex 〈3A〉, lying in a block
with the same group as defect group.
The 3-central elements in J3 are closed since the multiplication class coefficient ξ(3B, 3B, 3A) = 0, but the Benson

complex is slightly more complicated, containing 3B and 3B2. Since |B̂3(J3)| is homotopy equivalent to the Benson
complex [21, Theorems 3.1 and 4.4], |B̂3(J3)|3B is contractible. The reduced Lefschetzmodule L̃J3(B̂3) contains no summands
with a vertex containing a 3-central element. Since CJ3(3B) = 3 × A6 and all 3-elements in A6 are 3-central, the group
3 = 〈3A〉 is the only purely noncentral subgroup of J3. Thus L̃J3(B̂3) has only one nonprojective summand. �
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