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We study parity-even and parity-odd polarization observables for the process pp → l± X , where the
lepton comes from the decay of a W -boson. By using the collinear twist-3 factorization approach, we
consider the case when one proton is transversely polarized, while the other is either unpolarized or
longitudinally polarized. These observables give access to two particular quark–gluon–quark correlation
functions, which have a direct relation to transverse momentum dependent parton distributions. We
present numerical estimates for RHIC kinematics. Measuring, for instance, the parity-even transverse sin-
gle spin correlation would provide a crucial test of our current understanding of single spin asymmetries
in the framework of QCD.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

It has long been recognized that production of W -bosons in
hadronic collisions can provide new insights into the partonic
structure of hadrons, with polarization observables being of par-
ticular interest. In this context the parity-odd longitudinal single
spin asymmetry (SSA) in proton–proton scattering plays a very
important role, both for leptonic as well as hadronic final states
(see [1–14] and references therein). A major aim of looking into
this observable is to get new and complementary information on
the quark helicity distributions inside the proton.

In the meantime, also a few theoretical studies for W -pro-
duction with transversely polarized protons are available [15–18].
These papers mainly focus on a particular parity-even transverse
single spin effect in pp → W ± X (with a subsequent decay of the
W ± into a lepton pair) that is related to the transverse momen-
tum dependent Sivers function f ⊥

1T [19] in the polarized proton.
Such an observable could, in principle, be measured at the Rela-
tivistic Heavy Ion Collider (RHIC) in Brookhaven. In order to have
clean access to transverse momentum dependent parton distri-
butions (TMDs) like the Sivers function, one has to reconstruct
the W -boson in the experiment. However, what one measures is
pp → l± X , and the detectors at RHIC do not allow to fully deter-
mine the momentum of the W .

The kinematics for inclusive production of a single lepton in
proton–proton collisions coincides with the one for inclusive pro-
duction of a jet or a hadron, for which mostly collinear factoriza-
tion is used in the literature. In this Letter, we compute transverse
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spin observables for pp → l± X in the collinear twist-3 formalism
at the level of Born diagrams. The machinery of collinear twist-3
factorization was pioneered already in the early 1980s [20,21], and
in the meantime frequently applied to transverse spin effects in
hard semi-inclusive reactions (see [22–25] and references therein).

If one of the protons in pp → l± X is transversely polarized, and
the other is either unpolarized or longitudinally polarized, one can
identify two parity-even and two parity-odd spin observables. We
will discuss below that, in the collinear twist-3 approach, these
four observables contain two specific twist-3 quark–gluon–quark
correlation functions. One is the so-called ETQS (Efremov–Teryaev–
Qiu–Sterman) matrix element [20,22,23], which is related to a
particular moment of the transverse momentum dependent Sivers
function as shown in [26,27]. The second is related to the TMD
g1T [25,28], where we use the TMD-notation of Refs. [29–32].

In addition to the analytical results, we provide numerical es-
timates for typical RHIC kinematics (

√
s = 500 GeV). All the ob-

servables are peaked around lT ≈ MW /2, with lT representing the
transverse momentum of the lepton and MW the W -boson mass.
In each case we predict clearly measurable effects. For the parity-
even transverse SSA Ae

T U our numerical results are very close to
those obtained in Ref. [17] on the basis of factorization in terms of
transverse momentum dependent parton correlators.

Before presenting our results we emphasize that measuring
Ae

T U would provide a crucial test of our present understanding of
transverse SSAs in QCD. In particular, this means that such a mea-
surement would test the same physics—the gluon exchange be-
tween the remnants of the hadrons and the active partons—which
underlies the famous process-dependence of the Sivers function
and of related time-reversal odd parton distributions [33]. In other
words, experimental results for Ae

T U in pp → l± X , even if ana-
lyzed in terms of collinear parton correlators, would check a crucial
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Fig. 1. Diagram (a): parton model representation for pp → l± X , where the lepton is produced in the decay of a W -boson. The final state (anti-)neutrino goes unobserved.
Diagram (b): contribution from quark–gluon–quark correlation. This diagram, together with its Hermitian conjugate which is not displayed, needs to be taken into account
when computing twist-3 observables.
ingredient of TMD-factorization [34–36]. Such a check, in essence,
can be considered to be as fundamental as measuring the sign of
the Sivers asymmetry in the Drell–Yan process.

2. Analytical results

We start by fixing the kinematical variables for the process
pp → l± X , and assign 4-momenta to the particles according to

p(Pa) + p(Pb) → l±(l) + X . (1)

By means of these momenta we specify a coordinate system
through êz = P̂a = − P̂b , êx = l̂T (with �lT representing the trans-
verse momentum of the jet), and ê y = êz × êx . Mandelstam vari-
ables are defined by

s = (Pa + Pb)
2, t = (Pa − l)2, u = (Pb − l)2, (2)

while on the partonic level one has

ŝ = (ka + kb)
2 = xaxbs, t̂ = (ka − l)2 = xat,

û = (kb − l)2 = xbu, (3)

where ka and kb denote the momentum of the active quark/anti-
quark in the protons; see also Fig. 1(a). The momentum fraction xa

characterizes the (large) plus-momentum of the quark/antiquark in
the proton moving along êz through k+

a = xa P+
a .1 Likewise, one has

k−
b = xb P−

b . The relation ŝ + t̂ + û = 0 implies

xa = − xbu

xbs + t
= xb

√
s lT eη

xbs − √
s lT e−η

. (4)

In the second step in (4) we express xa , for a given
√

s, through
lT = |�lT | and the pseudo-rapidity η = − ln tan(ϑ/2) of the lepton,
since transverse momenta and (pseudo-)rapidities are commonly
used to describe the kinematics of a final state particle in proton–
proton collisions.

Next, we turn to the polarization observables for pp → l± X ,
which we compute in the collinear factorization framework. As al-
ready mentioned, we focus on the situation when one proton is
transversely polarized, while the other is either unpolarized or lon-
gitudinally polarized. One finds the following expression for the
cross section2:

1 For a generic 4-vector v , we define light-cone coordinates according to v± =
(v0 ± v3)/

√
2 and �v T = (v1, v2).

2 Polarization degrees are suppressed in the cross section formula (5).
l0
d3σ

d3l

= α2
em

12s sin4 ϑw

∑
a,b

|Vab|2
1∫

xmin
b

dxb

xaxb

1

xbs + t

{
Hab f a

1 (xa) f b
1 (xb)

+ 2π Mε
i j
T li

T S j
aT H̃ab

[(
T a

F (xa, xa) − xa
d

dxa
T a

F (xa, xa)

)

+ K (ŝ)T a
F (xa, xa)

]
f b

1 (xb)

+ 2M�lT · �SaT H̃ab
[(

g̃a(xa) − xa
d

dxa
g̃a(xa)

)

+ K (ŝ)g̃a(xa) + 2xa ga
T (xa)

]
f b

1 (xb)

− 2π Mλbε
i j
T li

T S j
aT H̃ab

[(
T a

F (xa, xa) − xa
d

dxa
T a

F (xa, xa)

)

+ K (ŝ)T a
F (xa, xa)

]
gb

1(xb)

− 2Mλb
�lT · �SaT H̃ab

[(
g̃a(xa) − xa

d

dxa
g̃a(xa)

)

+ K (ŝ)g̃a(xa) + 2xa ga
T (xa)

]
gb

1(xb) + · · ·
}
, (5)

with K (ŝ) = 2M2
W (ŝ − M2

W − Γ 2
W )

(ŝ − M2
W )2 + M2

W Γ 2
W

.

In Eq. (5), ϑw is the weak mixing angle, Vab is a CKM matrix el-
ement, M is the proton mass, MW is the W -mass and ΓW its
decay width. We also use ε

i j
T ≡ ε−+i j with ε0123 = 1. The trans-

verse spin vector of the proton moving along êz is denoted by �SaT ,
whereas λb represents the helicity of the second proton. The lower
limit of the xb-integration is given by xmin

b = −t/(s + u). One can
project out the four spin-dependent components of the cross sec-
tion in (5), in order, through

σ e
T U = 1

4

([
σ(↑y,+) − σ(↓y,+)

] + [
σ(↑y,−) − σ(↓y,−)

])
,

(6)

σ o
T U = 1

4

([
σ(↑x,+) − σ(↓x,+)

] + [
σ(↑x,−) − σ(↓x,−)

])
,

(7)

σ o
T L = 1

4

([
σ(↑y,+) − σ(↓y,+)

] − [
σ(↑y,−) − σ(↓y,−)

])
,

(8)
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σ e
T L = 1

4

([
σ(↑x,+) − σ(↓x,+)

] − [
σ(↑x,−) − σ(↓x,−)

])
.

(9)

In these formulas, ‘↑x/y ’ (‘↓x/y ’) denotes transverse polarization
along êx/y (−êx/y) for the proton moving in the êz-direction,
whereas ‘+’ and ‘−’ represent the helicities of the second proton.

The dots in Eq. (5) indicate longitudinal single spin and double
spin observables, as well as four possible correlations for dou-
ble transverse polarization. In collinear factorization, the latter are
at least twist-4 effects in the Standard Model. Note that double
transverse polarization observables for W -production were also
discussed in connection with potential physics beyond the Stan-
dard Model (see [37,38] and references therein).

We computed the (twist-2) unpolarized cross section in the first
line of (5) on the basis of diagram (a) in Fig. 1 by applying the
collinear approximation to the momenta ka and kb of the active
partons. The result contains the ordinary unpolarized quark distri-
bution f a

1 for a quark flavor a. The hard scattering coefficients Hab

and H̃ab in Eq. (5), expressed through the partonic Mandelstam
variables in (3), read

Hab = û2

(ŝ − M2
W )2 + M2

W Γ 2
W

,

H̃ab = 1

û
Hab, for ab = dū, sū, d̄u, s̄u. (10)

In Eq. (10), one has to replace û by t̂ for ab = ūd, ūs, ud̄, us̄.
The four cross sections in (6)–(9) represent twist-3 observables.

Calculational details for such observables in collinear factorization
can be found in various papers; see, e.g., Refs. [23–25,39–41]. We
merely mention that one has to expand the hard scattering con-
tributions around vanishing transverse parton momenta. While for
twist-2 effects only the leading term of that expansion matters,
in the case of twist-3 the second term is also relevant. In addition,
the contribution from quark–gluon–quark correlations, as displayed
in diagram (b) in Fig. 1, needs to be taken into consideration. The
sum of all the terms can be written in a color gauge invariant form,
which provides a consistency check of the calculation.

The quark–gluon–quark correlator showing up in σ e
T U and

σ o
T L is the aforementioned ETQS matrix element T a

F (x, x) [20,22,
23]. The peculiar feature of this object is the vanishing gluon
momentum—that’s why it is also called “soft gluon pole matrix
element”. If the gluon momentum becomes soft one can hit the
pole of a quark propagator in the hard part of the process, pro-
viding an imaginary part (nontrivial phase) which, quite generally,
can lead to single spin effects [20,22,23]. Note also that in our
lowest order calculation no so-called soft fermion pole contribu-
tion (see [42] and references therein) emerges. For σ o

T U and σ e
T L

another quark–gluon–quark matrix element—denoted as g̃a; see,
in particular, Refs. [25,28,43]—appears, together with the familiar
twist-3 quark–quark correlator ga

T (and, in the case of σ o
T L , to-

gether with the quark helicity distribution ga
1).

We use the common definitions for f1, g1, and gT . The quark–
gluon–quark correlators T F and g̃ are specified according to3

−iεi j
T S j

T T F (x, x)

= 1

2M

∫
dξ− dζ−

(2π)2
eixP+ξ−〈P , ST |ψ̄(0)γ +ig F +i(ζ−)

ψ
(
ξ−)

× |P , ST 〉, (11)

3 Note that in the literature different conventions for T F exist.
Si
T g̃(x)

= 1

2M

∫
dξ−

2π
eixP+ξ−〈P , ST |ψ̄(0)γ5γ

+

×
(

iDi
T − ig

∞∫
0

dζ− F +i(ζ−))
ψ

(
ξ−)|P , ST 〉, (12)

with F μν representing the gluon field strength tensor, and Dμ =
∂μ − ig Aμ the covariant derivative. Eqs. (11) and (12) hold in the
light-cone gauge A+ = 0, while in a general gauge Wilson lines
need to be inserted between the field operators.

It is important that T F and g̃ are related to moments of TMDs.
To be explicit, one has [25–28]

π T F (x, x) = −
∫

d2kT

�k2
T

2M2
f ⊥

1T

(
x, �k2

T

)∣∣∣
DIS

, (13)

g̃(x) =
∫

d2kT

�k2
T

2M2
g1T

(
x, �k2

T

)
, (14)

where we use the conventions of Refs. [29–32] for the TMDs f ⊥
1T

and g1T . In Eq. (13) we take into account that the Sivers function
f ⊥
1T depends on the process in which it is probed [33,44]. In order

to make numerical estimates we will exploit the relations in (13),
(14).

Finally, note that, due to the pure vector–axialvector coupling
of the W -boson, no chiral-odd parton correlator shows up in any
of the four spin correlations in (5), which makes those observables
rather clean. The situation is different if one considers single lep-
ton production from the decay of a virtual photon or of a Z -boson.

3. Numerical results

Now we move on to discuss numerical results for the polariza-
tion observables by limiting ourselves to the transverse single spin
effects. This means, we consider the two spin asymmetries Ae

T U
and Ao

T U ,

Ae
T U = σ e

T U

σU U
, Ao

T U = σ o
T U

σU U
, (15)

with σ e
T U and σ o

T U from Eqs. (6) and (7), respectively, and σU U

denoting the unpolarized cross section. Note that the definition of
Ae

T U corresponds to the one of the transverse SSA AN , which has
been extensively studied in one-particle inclusive production for
hadron–hadron collisions; see [45–47] for recent experimental re-
sults from RHIC.

To compute σU U we use the unpolarized parton densities from
the CTEQ6-parameterization [48]. For the ETQS matrix element we
use the relation (13) between T F and the Sivers function, and take
f ⊥
1T from the recent fit provided in Ref. [49] on the basis of data

from semi-inclusive DIS. (For experimental studies of the Sivers ef-
fect we refer to [50,51], while extractions of the Sivers function
from data can be found in [49,52–56].) In the case of Ao

T U one
needs input for gT and g̃ . For gT we resort to the frequently used
Wandzura–Wilczek approximation [57] (see [58] for a recent study
of the quality of this approximation)

gT (x) ≈
1∫

x

dy

y
g1(y), (16)

whereas for g̃ we use (14) and a Wandzura–Wilczek-type approx-
imation for the particular kT -moment of g1T in (14) [59], leading
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Fig. 2. Ae
T U for pp → l− X as a function of η (left) and lT (right) for

√
s = 500 GeV. The solid line represents the central value, while the error is indicated by the dashed

lines (see also text).

Fig. 3. Ae
T U for pp → l+ X as a function of η (left) and lT (right) for

√
s = 500 GeV. The solid line represents the central value, while the error is indicated by the dashed

lines (see also text).
to

g̃(x) ≈ x

1∫
x

dy

y
g1(y). (17)

We mention that (17) and a corresponding relation between chiral-
odd parton distributions were used in [60,61] in order to estimate
certain spin asymmetries in semi-inclusive DIS. The comparison to
data discussed in [61] looks promising, though more experimental
information is needed for a thorough test of approximate relations
like the one in (17). Measuring the SSA Ao

T U could provide such a
test. The helicity distributions ga

1 in (16) and (17) are taken from
the DSSV-parameterization [62]. The transverse momentum of the
lepton lT serves as the scale for the parton distributions.

The numerical estimates are for typical RHIC kinematics, i.e.,√
s = 500 GeV. We present the asymmetries either as function of

η for fixed lT or vice versa.
We start by discussing the parity-even asymmetry Ae

T U . As
shown in the right plot in Figs. 2 and 3, this observable is peaked
around lT ≈ MW /2—a feature that does not depend on the value
of η. To be more precise, the peak is at lT = 41 GeV, i.e., slightly
above MW /2. The peak in the polarized cross section σ e

T U gets
enhanced in the asymmetry, because the unpolarized cross sec-
tion drops rather fast when going beyond lT = MW /2. (As a side-
remark we point out that the asymmetry in the peak region is
completely dominated by the term in the 4th line in (5) contain-
ing the factor K (ŝ).) Nevertheless, in this kinematical region we
expect Ae

T U to be measurable. As discussed in the introduction, in
this context it is important to recall that information on the sign of
the asymmetry is already sufficient for a crucial test of our current
understanding of transverse SSAs.

In particular in the peak region, the asymmetry is larger for
l−-production (W −-production) than for l+-production, which is
partly due to the rather large Sivers function for d-quarks obtained
in the fit of Ref. [49]. The l−-asymmetry and l+-asymmetry come
with opposite sign because the Sivers functions for u-quarks and
d-quarks have an opposite sign. Note also that both asymmetries
change sign as function of lT . Therefore, whether the sign of the
asymmetry can be measured unambiguously may critically depend
on the lT -resolution in the experiment.

The plots also show the error of our estimate, where we merely
took into account the uncertainty due to the Sivers function. In
order to estimate the error we followed the method outlined in
the Appendix of Ref. [49].

As the η-dependence of Ae
T U in left plot in Fig. 2 shows, the

l−-asymmetry is maximal in the positive η-range, when a large-x
parton from the polarized proton participates in the hard scat-
tering. Obviously, by integrating over a suitable η-range one may
optimize between magnitude of the asymmetry on the one hand
and the size of the statistical error bars on the other. Moreover,
it is worthwhile to mention that the contributions from the anti-
quark Sivers functions are not negligible in the backward region.
(Here we refer to a corresponding discussion on the Sivers asym-
metry in the Drell–Yan process for proton–proton collisions in [63],
where the strong sensitivity to the Sivers function for antiquarks
was already pointed out.)

It is also interesting that for both l+-production and l−-
production the overall magnitude of Ae

T U is very similar to the
predictions presented in Ref. [17], where TMD-factorization was
used.

The fact that, in an experiment, a single lepton can origi-
nate from various background processes poses a challenge for the
extraction of the desired signal. In the region of the large lep-
ton transverse momenta, required in the present case, essentially
leptons from Z -boson decay are relevant. (See Refs. [12–14] for
a detailed discussion in the case of the parity-odd longitudinal
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Fig. 4. Ae
T U for pp → l± X as a function of η and integrated over the indicated lT -

range for
√

s = 500 GeV. The solid line is for l−-production, and the dashed line is
for l+-production.

SSA.) Since the number of produced Z -bosons at RHIC is smaller
than the one for W -bosons one may expect that this background
will not strongly modify the asymmetry. On the other hand, it is
known that leptons originating from Z -boson decays cannot be ne-
glected [12]. In the case of the transverse SSA, however, one may
exploit that the asymmetry has this very pronounced lT behavior.
Potential contributions from Z -boson decay should be negligible
around lT = 41 GeV. Fig. 4 shows how the asymmetry as a func-
tion of η looks like for a specific lT bin. A complete calculation
of the asymmetry originating from Z -decays not only includes the
Sivers effect but also, as mentioned earlier, a second contribution
involving chiral-odd correlators.

Let us now turn to the parity-odd transverse SSA Ao
T U , which

is displayed in Fig. 5. Again, this asymmetry has a pronounced
peak at lT = 41 GeV, and it is largest for l+-production (up to
about 8%). As outlined above, our prediction for Ao

T U is based on
the Wandzura–Wilczek-type approximation leading to (17), which
probably represents the most uncertain part of our calculation. At
present, it is difficult to assign a quantitative error to this ob-
servable. However, from the study given in [61], in which the
chiral-odd counterpart of (17) was used, we consider ±50% as a
conservative error estimate. Like in the case of the parity-even SSA,
also Ao

T U is almost entirely determined by the K (ŝ)-term in the
6th line in (5). This implies that, due to the relation (14), it gives
rather clean access to the TMD g1T , which so far is experimen-
tally unconstrained. Therefore, in any case, a measurement of Ao

T U
would provide very interesting new information.

4. Summary

We have studied transverse spin asymmetries for the process
pp → l± X , where the lepton is produced in the decay of a W -
boson. If one of the protons is transversely polarized, and the other
is either unpolarized or longitudinally polarized, there exist two
parity-even and two parity-odd spin asymmetries. We computed
these asymmetries in collinear twist-3 factorization at the level
of Born diagrams. Moreover, for the two transverse single spin
asymmetries Ae

T U and Ao
T U —defined through Eqs. (15) and (6),

(7)—we made numerical estimates for typical kinematics at RHIC
(
√

s = 500 GeV). In the following we summarize our main re-
sults:

• The analytical results for all four spin-dependent cross sec-
tions are given by two particular quark–gluon–quark correla-
tors, which have a direct relation to transverse momentum
dependent parton distributions: the Sivers function f ⊥

1T and
the TMD g1T ; see Eqs. (13), (14). Measuring these observ-
ables could therefore provide new information on the struc-
ture of the proton that goes beyond the collinear parton
model.

• The parity-even SSA Ae
T U is largest for l−-production (up to

about 8%), and it is peaked for transverse momenta lT of the
lepton slightly above MW /2. (Actually, all the asymmetries
studied in this Letter are significant only in a relatively nar-
row region around lT ≈ MW /2.) Measuring the sign of this
asymmetry can, in essence, provide an as crucial test as mea-
suring the sign of the Sivers asymmetry in Drell–Yan would
do: it can test our present understanding of the underlying
dynamics of transverse SSAs and at the same time check an
important ingredient of TMD-factorization, namely the influ-
ence of the Wilson-line which is generated by the interaction
between the active partons and the remnants of the protons.
(For related work we refer to [17,33,44,52,64–66].)

• To the best of our knowledge the parity-odd SSA Ao
T U was

never before explored in the literature. We find Ao
T U to be

largest for l+-production (also up to about 8%, like Ae
T U for

l−-production). This observable is directly related to (a mo-
ment of) the TMD g1T , for which at this time no experimental
information exists.

In general, we believe that W -physics for polarized proton–proton
collisions is very promising not only in the case of longitudinally
polarized protons, but has also a considerable discovery potential
for transverse polarization.
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Fig. 5. Ao
T U for pp → l± X as a function of η (left) and lT (right) for

√
s = 500 GeV. The solid line is for l−-production, and the dashed line is for l+-production.
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