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C. elegans MOM-5/Frizzled Functions
in MOM-2/Wnt-Independent Cell Polarity and
Is Localized Asymmetrically prior to Cell Division

and embryonic expression (see Experimental Proce-
dures). The transgene encoding MOM-5::GFP was intro-
duced into worms as either the extrachromosomal array
zuEx123 or the chromosomally integrated array zuIs145.
To test whether MOM-5::GFP could provide MOM-5(�)
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Molecular and Cellular Biology Program activity, both transgenes were crossed into a null mom-

5(ne12) mutant strain. As described previously, mom-and Department of Biology
University of Washington 5(ne12) mutant embryos do not undergo appreciable

tissue morphogenesis or body elongation and insteadSeattle, Washington 98195
Howard Hughes Medical Institute arrest as twitching masses of disorganized tissues (Fig-

ure 1A) [4]. In contrast, about 30% (n � 100) of the mom-Seattle, Washington 98109
5(ne12); zuEx123 and mom-5(ne12); zuIs145 embryos
appeared to develop normally through the first half of
embryogenesis (Figure 1B); these embryos began tissueSummary
morphogenesis but usually ruptured along the ventral
midline as the body elongated. We next asked whetherC. elegans embryonic cells have a common anterior/
MOM-5::GFP could contribute to POP-1 asymmetry. Forposterior (a/p) polarity that is apparent in the localiza-
convenience, we describe cell stages by the number oftion of the transcription factor POP-1 [1, 2]. The level
descendants of the AB blastomere, the anterior blasto-of nuclear POP-1 remains high in the anterior daugh-
mere of the 2 cell embryo. Previous studies have shownters of dividing cells but is lowered in the posterior
that mom-5(ne12); mom-2(RNAi) mutant embryos scoreddaughters [2, 3]. To generate POP-1 asymmetry, most
at the AB32 stage lack POP-1 asymmetry; divisions pro-early embryonic cells require contact with signaling
duce daughter cells that have equal, high levels of nu-cells that express the ligand MOM-2/Wnt [4, 5]; the
clear POP-1 [7]. In contrast, we found that daughterpoint of cell contact specifies the daughter with low
cells in mom-5(ne12); mom-2(RNAi); zuEx123 embryosnuclear POP-1 [6, 7]. In contrast, slightly older embry-
showed the wild-type pattern of high/low POP-1 asym-onic cells that have no apparent prior exposure to Wnt
metry in 46% of cell divisions scored at the AB32 stagesignaling can generate POP-1 asymmetry, provided
(n � 24). Interestingly, in many cases where POP-1these cells express MOM-5/Frizzled [7]. We show here
asymmetry was not apparent, both daughter cells hadthat MOM-5::GFP is enriched at the posterior pole of
equal, low levels of nuclear POP-1 rather than equal,cells prior to division and that a similar asymmetry
high levels (see below).is observed in cultured cells with no apparent prior

When the transgenes were crossed into otherwiseexposure to Wnt signaling. While depleting these latter
wild-type embryos, only faint, or no, expression of MOM-cells of MOM-5/Frizzled causes both daughter cells
5::GFP was detectable before the AB32 stage by fluores-to have high levels of POP-1 [7], we show that both
cence microscopy or by staining with an antiserum fordaughter cells have low levels of POP-1 in embryos
GFP (data not shown). When visible, MOM-5::GFP ap-with atypically high levels of MOM-5::GFP. These re-
peared dispersed throughout the cytoplasm and wassults suggest that MOM-5/Frizzled asymmetry leads
not noticeably associated with the cell membrane orto POP-1 asymmetry. In later embryogenesis, we find
cortex. The low level of MOM-5::GFP may mean thatthat MOM-5::GFP localizes to the leading edges of
the protein is expressed but unstable in early embryosepidermal cells during ventral enclosure. These local-
or that high levels of early expression were selectedization patterns suggest a parallel between MOM-5/
against in the initial generation of transgenic animals.Frizzled and the roles of Drosophila Frizzled in planar
The level of MOM-5::GFP increased markedly in mostpolarity and dorsal enclosure.
cells beginning at the AB32 stage and persisted until
late in embryogenesis (Figures 1C, 1D, and 2A). Within

Results and Discussion expressing cells, MOM-5::GFP was present in a diffuse
distribution throughout the cytoplasm and was enriched

Previously, we showed that isolated embryonic cells on or near the cell plasma membrane (Figures 1C, 1D,
that appeared to have no prior exposure to Wnt signaling and 2A). In addition, MOM-5::GFP often was enriched
were, nevertheless, able to generate POP-1 asymmetry in prominent cytoplasmic puncta (Figures 1D and 2A).
after a few rounds of division [7]. To examine how these Costaining experiments showed that these puncta were
cells generate POP-1 asymmetry, we asked whether closely associated with, but distinct from, centrosomes
MOM-5/Frizzled might be localized asymmetrically. A (short arrows in Figure 2A). These puncta may corre-
reporter was constructed that encodes a full-length spond to large secretory vesicles; however, their posi-
MOM-5 protein fused at its C terminus to Green Fluores- tions are noteworthy because MOM-5 has an essential
cent Protein (GFP). For these studies we used a heterolo- role in determining centrosome position/spindle axis for
gous promoter and 3�UTR that provide strong maternal certain embryonic blastomeres [4, 5, 8]. Most cells

showed comparable levels of membrane-associated
MOM-5::GFP, with the following exceptions. First, the*Correspondence: jpriess@fred.fhcrc.org
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descendants of the embryonic “founder” blastomeres
called E and C reproducibly showed less MOM-5::GFP
expression than other cells (arrows in Figure 1C). Sec-
ond, postmitotic epidermal cells (ventral hypodermal
cells) that spread across and enclose the ventral surface
of the embryo showed a transient enrichment of MOM-
5::GFP at their actin-rich leading edges (arrow, Figure
1D). Finally, several embryos contained small groups of
cells of variable identity with exceptionally high levels
of MOM-5::GFP (data not shown); because similar levels
of expression were not observed in the same cells in
other embryos at the same stage, we consider this a
likely artifact of transgene expression. Several embryos
that were costained for both GFP and POP-1 also
showed exceptionally high levels of MOM-5::GFP ex-
pression in one or more groups of cells of variable iden-
tity (Figure 2B). Interestingly, cells within these groups
had low, relatively uniform levels of nuclear POP-1 (red
nuclei in Figure 2B). In contrast, cells in the same embryo
with lower levels of MOM-5::GFP showed the wild-type
pattern of high/low POP-1 asymmetry in daughter cells
(red nuclei in Figure 2C). These observations suggest
that abnormally high levels of MOM-5::GFP might inap-
propriately trigger the nuclear export of POP-1 from
anterior daughter cells.

Although MOM-5::GFP appeared to be distributed
uniformly along the membranes of most cells throughout
the cell cycle, we observed that cells in prophase occa-
sionally showed a slight enrichment of MOM-5::GFP to-
ward the posterior pole (arrow, Figure 3A). In an effort
to enhance visualization of MOM-5::GFP, we asked
whether its distribution might be limited by competition
with endogenous MOM-5. Because the mom-5::gfp
transgene was constructed with a heterologous 3�UTR,
we used dsRNA corresponding to the 3�UTR of endoge-
nous mom-5 in an effort to deplete endogenous MOM-5
specifically (Experimental Procedures). We found that
wild-type worms exposed to this dsRNA produced only
a small percentage of embryos resembling mom-5 mu-
tant embryos, suggesting that this treatment only par-
tially depleted MOM-5. Nevertheless, zuIs145 and
zuEx123 worms exposed to the dsRNA showed mark-
edly enhanced membrane-localization of MOM-5::GFP

Figure 1. MOM-5::GFP Provides Partial Phenotypic Rescue of
mom-5 Mutant Embryos

(A) Nomarski photomicrograph of a terminal stage mom-5(ne12)
embryo.
(B and C) Lateral views through the middle of a mom-5(ne12) mutant
embryo expressing MOM-5::GFP. In (C), MOM-5::GFP is visible in
cells throughout the head (left), in anterior dorsal epidermal cells
(top left), and in ventral neural precursors (bottom). The posterior
dorsal epidermal cells (descendants of the C blastomere, short
arrow) and intestinal cells (long arrow) have relatively low levels of
MOM-5::GFP.
(D) Ventral view of embryo at the start of ventral enclosure. Asterisks
indicate three epidermal cells on the left side of the body that have
flattened and begun to move toward the ventral midline, spreading
across neural precursors. Note concentration of MOM-5::GFP at
the leading edges (arrow) of these cells. An example of a large
cytoplasmic punctum of MOM-5::GFP in visible below the third as-
terisk. All embryos oriented with anterior to left. Scale bar: 10 �m.
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Figure 3. MOM-5::GFP Asymmetry in A/P-Dividing Blastomeres

High magnification, confocal fluorescence images of MOM-5::GFP
in embryonic cells either without depletion of endogenous MOM-5
(A) or after depletion (B–H). Embryos are oriented with anterior to
the left, and arrows indicate the posterior poles of cells. Cells in
(A) and (B) are just prior to division; in (B), the cell is flanked by

Figure 2. MOM-5::GFP Levels and POP-1 Asymmetry nonexpressing cells on its lateral and posterior sides. (C and D) Cell
division. (E–H) Cell divisions of adjacent cells, numbered 1 and 2;(A) Confocal image of cells in an embryo fixed and immunostained
elapsed time is shown at the bottom right of each panel in minutes.for MOM-5::GFP (green) and for centrosomes (red dots, indicated
Cell 1 is ABarpaaaa and cell 2 is ABarpaaap. The latter cell dividesby short arrows). Long arrows point to large puncta of MOM-5::GFP
unequally to produce a small, posterior daughter [2p in (H)] thatin the cytoplasm.
undergoes programmed cell death in normal development. We ob-(B–C) Different regions of the same embryo photographed at the
served a similar, posterior localization of MOM-5::GFP prior to thesame exposure after immunostaining for MOM-5::GFP [green in (B)
unequal division of ABalapapa, where the anterior daughter is smalland (C)] and POP-1 [red in (B) and (C)]; the right half of each panel
and undergoes programmed cell death (data not shown). Scale bar:shows the DAPI-stained cells (blue). Sister cells were identified by
5 �m.costaining with an additional antiserum that recognizes midbodies

(not shown, [7]). In (C), the level of nuclear POP-1 in each of the
anterior daughters (left nucleus in each sister pair) is comparable not shown). All of the results described below incorpo-
to wild-type. rate one of these strategies to reduce endogenous
(D) Cluster of cells derived from a single, sequentially isolated AB32

MOM-5 (Experimental Procedures).cell that was allowed to divide 2–3 times before fixation and immuno-
We found that cells in late prophase showed a smallstaining for MOM-5::GFP (green); the DAPI-stained image is super-

but consistent enrichment of MOM-5::GFP toward theirimposed in blue. The nucleus of the cell on the right has the asym-
metric bar-shape typical of early metaphase nuclei. The orientation posterior pole. This posterior enrichment was particu-
of this metaphase figure indicates that the cell will divide perpendic- larly evident in mosaic embryos where expressing cells
ular to the cluster, with the contact-free pole indicated by an arrow. were partially surrounded by nonexpressing cells (Fig-
All images are of zuIs145; mom-5 3�UTR (RNAi) embryos. Scale

ures 3B and 3C). In regions of the embryo where all cellsbars: 5 �m.
expressed MOM-5::GFP equally, asymmetry was most
apparent when cells did not divide synchronously with
their neighbors (Figures 3E–H; Supplemental Movie S1).(compare Figures 3A and 3C). We observed a similar

enhancement of MOM-5::GFP localization in mom-5(ne12); When divisions were synchronous, we presume that
high posterior MOM-5::GFP in one cell masked the lowzuIs145 and mom-5(ne12); zuEx123 mutant embryos (data
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anterior level in the neighboring cell. Cell cycles in the MOM-2/Wnt-Signaling and WRM-1/�-Catenin Are
Not Essential for MOM-5::GFP Asymmetryembryo range between about 15 and 25 min, and MOM-

5::GFP appeared to localize to the posterior pole ap- MOM-2/Wnt is thought to act through WRM-1/�-catenin
[4]. In the absence of WRM-1, embryonic cells are unableproximately 3–5 min before cell division (Figures 3E–H;

Supplemental Movie S1). This transient asymmetry re- to generate POP-1 asymmetry after division; nuclear
POP-1 levels remain high in the posterior daughter cellssulted in the posterior daughter inheriting slightly more

MOM-5::GFP than the anterior daughter (Figures 3D and [3, 4, 7]. Experimental studies have shown that MOM-
2/Wnt signaling polarizes cells before they divide [6];3H). The a/p asymmetry in MOM-5::GFP distribution was

reiterated in daughter cells monitored through succes- however, it is not known whether WRM-1/�-catenin
functions in polarizing the parental cell itself or functionssive cell divisions (data not shown). MOM-5::GFP asym-

metry was most apparent in dividing cells on the surface solely to transduce the polarity of the posterior daughter.
In the latter role, WRM-1/�-catenin has been shown toof the embryo, but could also be detected in internal

cells such as those forming the pharyngeal primordium bind the kinase LIT-1/Nemo and to stimulate its ability
to phosphorylate POP-1 [13], presumably promoting the(data not shown). MOM-5::GFP asymmetry was visible in

the divisions of about 80% of the surface cells analyzed export of POP-1 from the nucleus of posterior daughter
cells [3]. We examined wrm-1(RNAi); mom-5(ne12);(n�152), and in all cases MOM-5::GFP was enriched

toward the posterior pole. Although MOM-5::GFP often zuEx123 embryos and observed MOM-5::GFP expres-
sion similar to that of mom-5(ne12); zuEx123 embryos;was distributed across the entire posterior surface of a

dividing cell, in many cases it appeared to be concen- about 83% (n � 37) of the dividing cells scored at and
after the AB32 stage showed MOM-5::GFP asymmetry,trated into a distinct posterior focus prior to division

(see Supplemental Movie S1). It is possible that some with each of these showing posterior enrichment. These
results are consistent with the view that MOM-5 func-of these posterior foci are associated with midbody rem-

nants from earlier cell divisions; however, in many cases tions upstream of WRM-1/�-catenin for POP-1 asym-
metry.the foci were present between distantly related cells.

Individual cells at or before the AB8 stage do not divide
into daughters with POP-1 asymmetry unless they con-MOM-5::GFP Is Localized Asymmetrically

in Dividing Larval Cells tact a signaling cell that expresses MOM-2/Wnt [7]. Be-
ginning at the AB16 stage, however, cells show an abilityPOP-1 asymmetry has been observed in several a/p cell

divisions that occur during larval development [2, 9, 10]. to generate POP-1 asymmetry that does not require
MOM-2/Wnt and that appears to be independent of WntWe observed variable MOM-5::GFP expression from the

zuIs145 transgene in many larval cells, including cells signaling in general. For example, AB16 and later cells
in mom-2; mom-1 double mutant embryos are able toof the gonad, vulva, tail, nervous system, and hypoder-

mis. At about 5 hr after hatching, MOM-5::GFP was generate POP-1 asymmetry [7]; mom-1 encodes the
only C. elegans protein closely related to Porcupine, aprominent in lateral skin cells called V1 through V6 and

T, and in a neuroblast called QL. Each of these cells protein required for Wingless/Wnt secretion in Drosoph-
ila [4]. In functional assays for Wnt signaling, neither anundergoes an a/p division to produce daughters that

differ in fate; POP-1 asymmetry has been observed be- isolated AB blastomere nor its descendants are able to
substitute for embryonic cells that express MOM-2/Wnttween the daughters of the lateral cells [2], and POP-1

function has been shown to be required for the proper [6, 7]. Nevertheless, if the AB blastomere is isolated and
its descendants are separated sequentially after eachdevelopment of the QL descendants [9]. In each of these

cells, MOM-5::GFP was present as apparently random of the first five divisions (equivalent to the AB32 stage
in intact embryos), the resulting cells can divide intopuncta on, or near, the cell surface (V5 in Figure 4A) and

in the cytoplasm (V6 in Figure 4A). In contrast to the daughters with POP-1 asymmetry [7]. We therefore
wanted to determine whether MOM-5::GFP asymmetryrapid embryonic cell divisions, the larval cell cycles can

occupy several hours. Approximately 30 min prior to cell showed a similar, apparent independence from Wnt sig-
naling. Individual AB32 cells were isolated by sequentiallydivision, MOM-5::GFP appeared to accumulate toward

the posterior pole of the cell (arrow in Figure 4B; Figure separating parental cells as above, then allowed to un-
dergo two to three additional divisions. The resulting4D) and in cytoplasmic puncta near the centrosomes

(arrowheads in Figures 4B, 4E, and 4F). Upon cleavage, small clusters of cells were fixed and stained with an
antiserum that recognizes GFP and with DAPI to visual-the posterior daughter contained a greater quantity of

MOM-5::GFP than did the anterior daughter (Figures 4C ize DNA (n � 22). Similar to our observations on intact,
living embryos, we found that MOM-5::GFP appeared toand 4F). Because MOM-5::GFP expression is driven by

a heterologous promoter, we do not yet know whether be distributed uniformly in interphase cells, but localized
asymmetrically during late prophase and metaphase toMOM-5 normally is expressed in these cells; mom-5 is

one of four frizzled-related genes in C. elegans, and one of the two poles (Figure 2D; 27/28 cases).
With cell divisions polarized by Wnt signaling, theother family members have been shown to function

postembryonically (for review, see [11]). At least one daughter cell proximal to the signaling cell always has
low POP-1 (see above). Although isolated clusters of ABfamily member, LIN-17/Frizzled, does not appear to be

localized asymmetrically in larval cells [12]. Neverthe- descendants do not exhibit Wnt signaling, cell contacts
within the cluster appear to provide an alternative polar-less, our results demonstrate that larval cells, like em-

bryonic cells, have the ability to localize a Frizzled- ity cue [7]. This latter cue orients POP-1 asymmetry in
the opposite direction to Wnt signaling; when cells di-related receptor prior to cell division.
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Figure 4. MOM-5::GFP Asymmetry in Larval
Cells

(A–C) MOM-5::GFP localization in skin (hypo-
dermal) cells called V5 and V6; elapsed time
in minutes is indicated at bottom right. In the
larva shown, expression in V5 is much higher
than in V6. The focal plane in (A) is at the
surface of V5 and through the interior of V6;
all other images show the interior of both V5
and V6.

(D–F) MOM-5::GFP expression in the QL neu-
roblast before (D), during (E), and after (F)
division. Arrowheads in (B), (E), and (F) indi-
cate centrosome-associated, cytoplasmic
puncta of MOM-5::GFP. Scale bar: 5�m.

vide perpendicular to the cluster, the daughter proximal posteriorly localized MOM-5/Frizzled might be activated
independent of ligand or activated by a uniformly distrib-to the cluster always has high POP-1, while the contact-

free daughter has low POP-1 [7]. In our present experi- uted ligand. Why might early and older embryonic cells
have different mechanisms for generating an asymmetryments on isolated AB descendants, MOM-5::GFP invari-

ably was enriched at the contact-free pole of cells that in MOM-5/Frizzled activity? It is likely that early signaling
has a role in defining the a/p axis that orients subsequentdivided perpendicular to the cluster (Figure 2D; 27/27

cases). Thus, in both cultured cells and in intact em- MOM-5 asymmetry, since embryos depleted of MOM-2/
Wnt contain some cells with reversed POP-1 asymmetrybryos, an asymmetrical high level of MOM-5::GFP is

correlated with the daughter that has low POP-1. [7]. In addition, if the asymmetric localization of MOM-5
requires transport to the posterior pole, such transportWe have not been able to detect an asymmetry in

the distribution of MOM-5::GFP in cells before the AB32 might be difficult in the early embryonic cells. The early,
but not later, cells show a pronounced flow or “capping”stage, and these cells normally are polarized by direct

contact with posteriorly localized, MOM-2/Wnt-expressing of their cortical actomyosin cytoskeleton toward their
apical surfaces ([14] and E. Munro, personal communi-cells. Thus, it is possible that MOM-5 and/or other Friz-

zled proteins are not localized asymmetrically in these cation). In most of the early cells, this flow is oriented
either opposite or perpendicular to the posterior pole.early cells and that an asymmetry in Frizzled activity

is achieved solely by the asymmetrical presentation of MOM-5/Frizzled is the first component of the POP-1
asymmetry pathway that has been shown to localizeMOM-2/Wnt. In older cells at and after the AB32 stage,
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containing food and collected at various time points. Prior to analy-asymmetrically prior to cell division. In addition, we have
sis (30 min), larvae were placed in a solution of 0.1% Tricaine andshown that MOM-5::GFP localizes to the leading edges
0.01% Levamisole in M9. After 20 min, the anaesthetized larvaeof epidermal cells during ventral enclosure. These asym-
were mounted on agar pads with an additional 20 �L of the anesthe-

metries suggest a possible molecular parallel to Dro- tic solution.
sophila Frizzled and the Planar Cell Polarity (PCP) path-
way. Frizzled is localized asymmetrically in the wing Immunostaining and Cell Isolations

Embryos and cultured blastomeres were fixed and stained forepithelium [15] and is localized to the leading edges of
POP-1, DAPI, and midbodies as described previously [7]. Culturedepidermal cells during dorsal enclosure [16]. However,
blastomeres were stained overnight at room temperature for GFPwe have not yet been able to demonstrate by RNAi
(1:1000 dilution rabbit anti-GFP, Abcam ab6556). Embryos were

experiments that C. elegans homologs of core compo- prepared for centrosome immunostaining by freeze-cracking [20]
nents of the PCP pathway, such as Prickle or Flamingo/ followed by 5 min in ice-cold DMF (N,N-Dimethylformamide, Sigma-
Starry Night, have roles in polarity, and a presumptive Aldrich); a 1:10 dilution of mouse monoclonal IFA primary antibodies

[21] was used.null mutation in the only apparent homolog of Van Gogh/
Strabismus is homozygous viable (B0410.2; S. Mitani,

dsRNA-Mediated Interference (RNAi)personal communication). Anterior/posterior MOM-5::GFP
Standard techniques were used to synthesize double-stranded RNAasymmetry is present in C. elegans cells that have very
(dsRNA) for mom-2 and wrm-1 as described [7]. For dsRNA of the

short cell cycle times, between 15 and 25 min, and that mom-5 3�UTR, a 570 base sequence was chosen beginning 120
are not organized into distinct epithelia; these cells lack bases downstream of the stop codon. L3 or L4 hermaphrodites were
adherens junctions and many change their neighbors soaked overnight with dsRNA and 3 mM spermidine [22].

markedly as they move over the surface of the embryo
Supplemental Dataor enter the interior during gastrulation. In contrast, the
A supplemental movie is available with this article online at http://asymmetrical accumulation of PCP proteins in Drosoph-
www.current-biology.com/cgi/content/full/14/24/2252/DC1/.

ila wing cells occurs over several hours, and many of
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