
An Overview of MANETs Simulation

Luc Hogie, Pascal Bouvry 1 ,2 ,4

Université du Luxembourg
Luxembourg

Frédéric Guinand 3

Laboratoire d’Informatique
Université du Havre

France

Abstract

Mobile Ad hoc NETworks (MANETs) are dynamic networks populated by mobile stations. Sta-
tions in MANETs are usually laptops, PDAs or mobile phones. These devices feature Bluetooth
and/or IEEE 802.11 (WiFi) network interfaces and communicate in a decentralized manner. Mo-
bility is a key feature of MANETs. Because of their high cost and their lack of flexibility of
such networks, experimentation is mostly achievable through simulation. Numerous tools exist for
MANETs simulation, including ns-2 and GloMoSim which are the two most popular ones. This
paper provides a State of the Art of MANETs simulators and associated simulation techniques.
First it gives an overview of the domain. Then it provides a map of the main characteristics that
MANETs simulation tools should feature and the current support of these. Finally, a description
for each simulator is provided, including an explanation of what make them appealing solutions.

Keywords: Mobile ad hoc networks, MANETs, simulation.

1 Introduction

Mobile ad hoc networks (MANETs) are networks composed of a set of commu-
nicating devices able to spontaneously interconnect without any pre-existing

1 Email: luc.hogie@uni.lu
2 Email: pascal.bouvry@uni.lu
3 Email: frederic.guinand@univ-lehavre.fr
4 Thanks to Steffen Rothkugel. Email: steffen.rothkugel@uni.lu

Electronic Notes in Theoretical Computer Science 150 (2006) 81–101

1571-0661 © 2006 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.025
Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82082188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


infrastructure. Devices in range can communicate in a point-to-point fashion.
In addition to that, these devices are generally mobile.

More and more people are interested in ad hoc networks. Not only their im-
portance in military applications is growing, but also their impact on business
is increasing. The wide spread of lightweight and low-cost mobile devices—we
are talking about mobile phones, PDAs, Pocket PCs, etc—which now embed
Bluetooth and IEEE802.11 (WiFi) network adapters enable the spontaneous
creation of city-wide MANETs. These networks could then constitute the
infrastructure of numerous applications such as emergency and health-care
systems [44], groupware [18], gaming [61][31][57], advertisements, customer-
to-customer applications (like the UbiBay project [30]), etc.

Investigating MANETs is achievable by resorting either to software-based
simulators or to experimentation networks (testbeds). Most researchers favour
simulators as the expense of testbeds. What prevents (or at least hinders) the
use of real-size testbeds is their cost and their inherent lack of flexibility.
This becomes particularly impeding as the size of the experimented network
grows. Software-based simulation then turns out to be a viable alternative
and a widely used solution. This article surveys MANETs simulators. It is
organized as follows: In section 2 testbeds solutions are overviewed, although
they do not constitute the focus of this paper. Next in section 3, crucial
aspects of MANETs simulation are exposed. The techniques employed to
implement them are described. Then in section 4, a list of the documented
simulators is provided. Finally, section 5 gives some hints on which simulator
to use for what needs and section 6 concludes by summarizing the current
trends in MANETs simulation and by foreseeing its future directions.

Please note that this paper does not survey wired network simulators [5]
and sensor network simulators [62][54]. The reason is that wired and sensor
networks considerably diverge from MANETs in terms of structure, technolo-
gies, applications, etc. Thus they are considered to be out of the topic tackled
herein.

2 Testbeds

Testbeds are in-lab networks built and used by researchers. They aim at en-
abling the experimentation of protocols and applications. A survey of existing
testbeds is proposed by De and al. [25]. Among all existing testbeds, let us
highlight the following ones:

• The APE project [48] experimented routing on 37 IEEE802.11 nodes. Nu-
merous participants were involved—particularly for moving the devices—
which impacted the high costs and difficulty of the experiments.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–10182



• The RoofNet project (MIT) [24], conducted over the city of Cambridge
(UK), uses 40 IEEE802.11 nodes. It primarily aims at studying mesh
networks but it is also employed at investigating multi-hop routing on
MANETs. Citizens can connect to the Internet through the research net-
work. The RoofNet project uses static nodes. It hence does not deal with
mobility issues.

• Focusing on multi-hop routing, Douglas and Raichle [42] used a MANET
testbed made of 8 IEEE802.11 nodes.

• Ritter and al. [61] built a Bluetooth network for experimenting gaming and
home automation. In order to have a global view of the network—which
makes monitoring it a lot easier—they used 300m-range EWM adapters.

• The Ad Hoc City project [40] uses an mixed approach: both wired and
wireless stations are used. By covering in time and space the whole city
of Seattle, real information of nodes’ movements could be gathered. This
testifies the current trend towards realistic mobility models.

Testbeds suffer from several drawbacks. More precisely, the cost of the
hardware (one node is several hundred euros) coupled with the difficulty of
managing applications—in terms of deployment, monitoring, etc—over such
testbeds makes that only a few testbeds could be built up to now. In order
to overcome these limitations of real-scale testbeds, assorted solutions were
proposed. Among them:

• the EWANT project [63] reduces the dimensions of the network to make it
fit on a table-top. The downscaling of the radio links is achieved by the use
of two-way attenuators.

• Zhang and Li [75] emulate the IEEE802.11b communication links by eth-
ernet cables. The impact of mobility is replicated by altering the routing
tables.

These techniques simplify the use of testbeds, but they in no way improve
their scalability. In other words, they do not permit the construction of bigger
networks. In the analysed literature no testbed of more than 50 nodes were
proposed. The fact that no large testbed is currently available or could eas-
ily be built is a major problem for validating new concepts/applications for
MANETs. Indeed many studies drastically require the use of large networks,
as explained by Riley and Ammar [58].

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101 83



3 MANETs simulation techniques

None of the previously mentioned defects of testbeds (see section 2) is ap-
plicable to simulators. More precisely, as simulators allow the network to be
handled as a whole, they are way more handy to use and they make the mon-
itoring easy. Moreover, as experimentations are described as scenarios files,
they are reproducible. Besides, the size of the simulated network is upper-
bounded only by the computational power available (we will see that only a
few of the simulators can address large scale problems).

Because of the complex nature of the MANETs, their simulation is a very
challenging issue. Simulators rely on various techniques for improving their
accuracy, speed, scalability, usability, etc. This section gives an overview of
the challenges faced and of the strategies employed.

3.1 The accuracy of MANETs simulators

There have been some studies [58][32][21] focusing on the accuracy of sim-
ulations. Some of them have pointed out that there exist some significant
variations in the way simulators operate. One cannot state that these varia-
tions can be expressed in terms of accuracy. Formally speaking, no network
simulator is accurate. At best a simulator can be said to be dependable and
realistic. Researchers who drastically need accuracy will want to conduct their
experiments on the real devices, using testbeds. When this is not possible they
will have to resort to simulation and hence to content with a certain level of
imprecision. Imprecision has various causes, explained in the following.

3.1.1 The impact of granularity

Software architects know that building a computerized model that include
all details of the targeted domain is merely impossible: computerized models
of the real-world are necessarily designed with a certain granularity. Indeed,
modelling everything—up to the electrons and atoms—is not achievable. In
the specific case of MANETs modelling, if software layers are relatively easy
to re-implement within simulators, modelling the hardware inevitably leads
to severe compromises.

Unfortunately, as studied by Heidemann and al. [32], neglecting details has
in some cases a serious impact on the result obtained. Ideally the granularity
of the model used should be defined according to the needs of the simulated
application.

Table 1 gives some elements of the dependability for each simulator. Con-
cerning table 1, as no metrics is available for characterizing the level of granu-
larity, we define finest < finer < fine < medium < application-level.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–10184



Name Granularity Metropolitan mobility

ns-2 Finest Support

DIANEmu Application-level No

Glomosim Fine Support

GTNets Fine No

J-Sim Fine Support

Jane Application-level Native

NAB Medium Native

OMNet++ Medium No

OPNet Fine Support

QualNet Finer Support

SWANS Medium -

Table 1
Elements of dependability: ganularity and mobility.

3.1.2 Mobility models

So far, most studies have made fairly unrealistic assumptions concerning node
mobility. More precisely, they generally rely on randomized mobility mod-
els [13][71][41][52], especially on the Random Waypoint mobility model [72].
Thanks to several studies focusing on the wallop of randomized mobility
[72][14][65], researchers are now aware of their harmful impact. Since then an
effort towards more realistic mobility models can be observed through papers
and projects like the Group Mobility Model [35], the Graph-based Mobility
Model [67], the Obstacle Mobility Model [39][38], the UDEL model [15][16]
and the GEMM project [56]. Mobility models have been surveyed by Camp
and al. [19] and Ray and Suprio [56].

3.1.3 Radio propagation models

Radio waves propagation constitutes another important aspect of dependabil-
ity. Up to now, most studies have considered the free path loss propagation
model, often coupled with randomized mobility patterns. Radio wave propa-
gation is generally associated to mobility because both are constrained by the
same environmental elements. Particularly, radio waves are subject to diffrac-
tion, refraction, and scattering. Up to now, no simulator implement these

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101 85



three properties of radio propagation. Current implementations rely either on
statistical models [20] or on partial models of refraction. For instance, the
UDel project [15][16] as well as Dricot and De Doncker [27] model radio waves
by using ray-tracing and Markov-chains. Unfortunately these time-consuming
techniques dramatically decelerate simulations (up to 100 times, as stated in
[27]).

3.1.4 Simulation size

Riley and Ammar [58] explained that there exists a threshold of the number
of stations in the network for which the results obtained no longer vary as
the number of stations increases. This threshold depends on the simulated
application. Because of the lack of scalability of most simulators, this impor-
tant aspect of protocol validation is generally neglected. Scalable simulators
[37][73] and runtime improvements techniques [60][70][50] should overcome
this problem.

3.2 Simulation acceleration techniques

Simulation can be either continuous or discrete. Continuous simulation makes
use of analytic models. Because of the intrinsic complexity of the MANETs,
analytic models can hardly be applied. Discrete simulation proves to be more
practicable. In the case of MANETs simulation, discrete simulation can ben-
efit from specific optimization techniques. This section gives an overview of
general and such MANETs-specific techniques implemented within simulators.

Table 2 details the runtime properties for each simulator.

3.2.1 Parallelism and distribution

One the one hand, parallelism refers to the simultaneous execution of dif-
ferent instructions of the same program. It is used to quicken simulations.
Parallelism is a relevant technology for simulating wired networks. One the
other hand, Distribution refers to the repartition of program data or code (or
both) on distinct computers. It is primarily used to bring scalability and/or
to enable parallelism. Parallelism and distribution can be coupled or used
independently. The improvement in terms of quickness/scalability depends
on the number of processors/nodes involved. When distribution is not used,
parallelism is typically applied on shared memory architectures (SMP). This
technique allows simulators to model networks made of tens of thousands sta-
tions. It is implemented by GloMoSim [73]. Distribution benefits from the
recent interest in beowulf clusters (local computational grids made of numer-
ous low-cost workstations, typically PC/Linux boxes). pdns relies on this
technique which allow it to simulate hundreds of thousands stations.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–10186



Let us point out the COMPASS [2] project at GeorgiaTech, which makes an
extensive use of distribution by building heterogeneous distributed simulations
consisting of instances of ns-2 and GloMoSim operating together.

Name Parallelism Interface

ns-2 No C++/OTCL

DIANEmu No Java

Glomosim SMP/beowulf Parsec (C-based)

GTNets SMP/beowulf C++

J-Sim RMI-based Java

Jane No Java

NAB No OCaml

OMNet++ MPI/PVM C++

OPNet Yes C

pdns beowulf C++/OTCL

QualNet SMP/beowulf Parsec (C-based)

SWANS No Java

Table 2
How simulators are parallelized and how they can be programmed.

3.2.2 Staged simulation

Staged simulation is described by Walsh and Sirer [70]. It is a general tech-
nique which improves the performance of discrete-event simulators by identify-
ing and eliminating redundant computations. It consists of three parts: func-
tion caching, event-restructuring, and time-shifting. Function caching avoids
redundant computations by placing into a memory cache the arguments and
results of function calls. Event-restructuring improves on function caching
by exposing low-level events that otherwise would have not been treated by
function caching. Time-shifting reorders the events into a sequence that is
better suited to the computer architecture that executes the simulator. It also
enables a sequence of small, consecutive events to be computed altogether
by a single, more efficient algorithm. The SNS project [70] applies staged
simulation to ns-2 and boasts a runtime 30 times faster than the original one.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101 87



3.2.3 Bining

Bining makes good use of the spatial localization of network nodes in the
MANETs—it is actually practicable and widely employed in all systems made
of spatially located objects. It consists in the division of the simulation area
into a list-based (applicable on 1-dimensional simulation space), grid-based
(also referred to as flat bining, applicable on 2D spaces) or tree-based (also
referred to as flat bining, applicable on 3D spaces) structure. Bining dramat-
ically improves the determination of the communication links in the network.
For example, applying flat bining reduces the complexity of this process from
O(n2) to O(n) (n being the number of stations in the network). This technique
is described by Naoumov and Gross [50], who applied it to ns-2.

3.2.4 Hybrid simulations

The principle of hybrid simulations is to mix analytic models and discrete
ones. Although pure analytic models [64] do not suit MANETs simulation,
mixing them with discrete model leads to good results. Hybrid simulation is
being investigated and applied to MANETs simulation by Lu and Schormans
[47].

3.3 Simulation languages and frameworks

Several simulators like GloMoSim [73] and SWANS [10] have been developed
using languages, libraries and frameworks dedicated to discrete-event simula-
tion. These middleware technologies typically focus on performance, concur-
rency and distribution. As detailed by Barr and al. [11], one approach has
been to create new simulation languages that are closely related to popular
existing languages, with extensions for message dispatch, synchronization and
time management. Csim [66], Yaddes [55], Maisie [7], and Parsec [8], for exam-
ple, are derivatives of C and C++. Others, such as Apostle [17] and TeD [53]
have taken a more domain-specific language approach. Finally, projects like
Moose [69], Sim++ [6], JIST [10], J-Sim [22] and Pool [4] investigated various
object-oriented (OO) possibilities for check-pointing, inheritance, concurrency
and synchronization in the context of simulation. Currently, the most popular
development language/platform for MANETs simulation is Java McNab and
Howell [49] discusses the pros and cons of Java for discrete-event simulation.

3.4 Visualization and debugging facilities

It has been recognized that distributed programming is inherently difficult. In
addition to being distributed, “Ad hoc applications” (a cutting-edge applica-
tion class which define the application running on ad hoc networks) are typi-

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–10188



cally decentralized. Worse, the highly dynamic nature of mobile ad hoc net-
works makes the development of protocols and applications extremely error-
prone. It is then of a chief importance that the user is provided with efficient
debugging and visualization mechanisms.

There exist two techniques which provide feedback on what happens within
the simulation. Discrete-event simulation encourages the generation of a trace
file containing a description a each event that occurred. This general technique
reports all events to the user. Unfortunately because of the huge size of the
generated trace, this technique consumes a lot of CPU resource and thus
significantly slows down the simulation process. Finally, the user needs to
write text-processing scripts (called filters in the Unix world) in order to retain
only what he is interested in and to generate GNUPlot files. The alternative
consists in dynamically interacting with the simulation engine by resorting to
the observer design pattern. The measurement system is then event-driven.
More precisely, the user initially announces the classes of events he is interested
in. He will then be dynamically notified of such events as the simulation
process progresses. DIANEmu [43] and GloMoSim [73] use such a technique.
This saves a lot of CPU resource. Besides, it permits the construction of
interactive graphical interfaces, which proves to be of a prime importance for
debugging and monitoring purposes.

4 MANET simulators currently in use

The literature mentions less than twenty MANETs simulators currently in
use. Note that wired network simulators [5] and sensor network simulators
[62][54] are not taken into consideration.

Since the wireless extension for ns-2 which constitutes the first MANETs
simulator, numerous tools have been made available to the community. Some
of them have even considerably broken through and are now massively used.
Because of the variable needs of research projects, many researchers do not
wish to use these simulators. Indeed not all research project focus on the lowest
layers of the network stack. More and more people are looking at the highest
layers, i.e. at developing new concepts and applications for MANETs (ser-
vice discovery, customer-to-customer applications, gaming, etc). For example,
Hellbrück and Fischer developed ANSim [33], an interactive MANETs simula-
tor, in order to analyze the structural properties of the MANETs. Görgen and
al. [31] work on ad hoc gaming, using the Jane simulator [29][46]. Working
on advanced broadcasting protocols and messaging applications, Hogie and al.
wrote Madhoc [34] because none of the simulators available both featured an
interactive mode making debugging of broadcasting protocols easy and per-

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101 89



mitted the simulation of large networks. In order to define the Group Mobility
Model, Hong and al. [35] had recourse to the Maisie language [7] in order to
develop their custom simulator. More custom simulators are described in the
following.

The simulators described in this section are either commercial solutions or
lab-tools that broke through thanks to their qualities.

Table 3 provides an estimation of the popularity of the simulator and on
the license they use. As there is no statistics available on simulators users, we
consider the number of web-pages that refer to each simulator. This gives an
order of magnitude of their popularity.

Name Popularity Licence

ns-2 88.8% Open source

GloMoSim 4% Open source

OPNet 2.61% Commercial

QualNet 2.49% Commercial

OMNet++ 1.04% Free for academic and educational use

NAB 0.48% Open source

J-Sim 0.45 Open source

SWANS 0.3% Open source

GTNets 0.13 Open source

pdns < 0.1% Open source

DIANEmu < 0.1% Free

Jane < 0.1% Free

Table 3

DIANEmu

[43] is a discrete-event simulator developed at Karlsruhe University (Ger-
many). It aims to enable the simulation of ad hoc applications in realistic
contexts. So far, most simulators have been designed to permit simulations at
a protocol-level. DIANEmu’s approach is different: it assumes that the lowest
network layers (up to the fourth one) are available. DIANEmu then focuses on

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–10190



the application model. DIANEmu belongs to a new class of simulators which
allow the large-scale simulation of high-level applications such as gaming and
e-business.

DIANEmu provides a complete environment for application design. Its
simulation engine is closely coupled to its graphical interface. Attesting of
its modern design, its measurement system is event-driven. More precisely it
defines that to each event class is associated to a given handler (referred to
as a gauge). This handler is then dynamically invoked when the events of the
specified class occur. This technique is detailed in section 3.4. DIANEmu is
written in Java and is free.

GloMoSim

[73] is developed at UCLA (California, USA). It is the second most popular
wireless network simulator. GloMoSim is written in Parsec [8] and hence
benefits from the latter’s ability to run on shared-memory symmetric processor
(SMP) computers. New protocols and modules for GloMoSim must be written
in Parsec too. GloMoSim respects the OSI standard.

The parallelization technique used by GloMoSim is the same than pdns ’s
one; that is the network is split in different subnetworks, each of them being
simulated by distinct processors. The network is partitioned in such a way
that the number of nodes simulated by each partition is homogeneous.

GloMoSim uses a message-based approach to discrete-event simulation.
More presicely, network layers are represented as objects called entities. Events
are represented as time-stamped messages handled by entities. GloMoSim’s
network model does not define every network nodes as entities because this
would lead to too numerous objects. Instead, GloMoSim uses entities to model
network layers. Messages—which represent network events—then cross the
layer stack by being interchanged by the entities. GloMoSim can simulate
networks made of tens of thousands devices.

Just like ns-2, realistic simulation have been made possible by extensions
such as the Obstacle mobility model [39][38] and the GEMM project [56]. A
java-based visualization tool is provided.

The qualities of GloMoSim permitted it to be chosen as the core of the
commercial QualNet simulator (detailed hereinafter). Although it is a good
tool for MANETs simulation, GloMoSim suffers from a lack of a good and
in-depth documentation.

GTNets

GTNets [59] is developed at GeorgiaTech institute (Atlanta, USA). Ac-
cording to its authors, the design philosophy of GTNetS is to create a simula-

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101 91



tion environment that is structured much like actual networks are structured.
More precisely, in GTNetS, there is clear and distinct separation of protocol
stack layers and the network programming interface used by applications use
function calls similar to the ubiquitous POSIX standard. The parallelization
ability of GTNetS makes it possible to distribute a single simulation over ei-
ther a network of loosely coupled workstations, a shared-memory symmetric
multiprocessing system (SMP), or a combination of both. This endows GT-
NetS with good scalability and then allows the simulation of large networks.
Concerning the support of protocols, IEEE802.11 as well as Bluetooth [74]
are implemented. Another benefit of GTNets is that the simulator gathers
statistics regarding its own performance. The graphical user interface pro-
vided with GTNetS supports the graphical representation of the simulation
topology, with selective enabling and disabling of display for specified nodes
and links. It is open source.

J-Sim

[22] (formerly known as JavaSim) is developed at Ohio and Illinois Univer-
sities (USA). It is a component-based, compositional simulation environment.
Initially designed for wired network simulation, its Wireless Extension pro-
poses an implementation of the IEEE802.11 MAC—which is the only MAC
supported so far. This extension turns J-Sim to a viable MANETs simulator.
J-Sim also features a set of components which facilitates basic studies of wire-
less/mobile networks, including three distinct radio propagation models and
two stochastic mobility models. J-Sim is written in Java and is open source.

Jane

[29][46] is developed at Trier University (Germany). It consists of both a
simulation environment and an execution platform. Its main interestingness
is that it allows the simulation code to be migrated to the real devices with-
out any modification. Jane also features an emulation mode that allows real
devices to participate to simulations. In addition to that, Jane features high-
level concepts (such as the notions of service, message, etc) that are suitable
to the simulation of applications-level services. It also makes use of GPS infor-
mation, what turns it to an appealing tool for the simulation location-based
services. Jane is written in Java and is open source.

NAB

[37] (Network in A Box) is a discrete event simulator developed at EPFL
(Lausanne, Switzerland). NAB is dedicated to MANETs simulation. By fo-
cusing on scalability and visualization and by featuring a very realistic mo-

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–10192



bility model (a constrained waypoint based on city maps), it meets the needs
of cutting-edge applications. According to its author, Nab was born out of
the inability to simulate large ad hoc networks with existing tools, and some
impatience in dealing with their internal complexity, which tended to make
implementing new functionality a lengthy and bug-ridden task. NAB’s design
is node-oriented (and object-oriented); that is each node is represented by an
object. It is written in OCaml and is actually the only simulator written in a
language whose syntax is not derived from C. It is open source.

ns-2

[3] is the de facto standard for network simulation. Its behavior is highly
trusted within the networking community. Its is developed at ISI, California,
and is supported by the DARPA and NSF. ns-2 is a discrete-event simulator
organized according to the OSI model and primarily designed to simulate
wired networks.

The support for wireless networking had been brought by several exten-
sions. The Monarch CMU projects [1] made available an implementation of
the IEEE802.11 layers (WiFi). The BlueHoc [45] and BlueWare [9] projects
provided the Bluetooth layers.

ns-2 provides a set a randomized mobility models, including random way-
point. Advanced node mobility had been make available by the Graph Mo-
bility project [68], the GEMM project [56], and the Obstacle Mobility [39][38]
model. These constitute a progress towards realistic simulation.

The core of ns-2 is a monolithic piece of C++ code. It is extendable by
adding C++ modules. The configuration relies on OTCL (a dialect of TCL
by MIT) scripts. ns-2 then appears to the user as an OTCL interpreter. More
precisely, it reads scenarios files written in OTCL and produces a trace file in
its own format. This trace needs to be processed by user scripts or converted
and rendered using the NAM tool.

Thanks to its open source licence and its popularity, new extensions are
sporadically proposed. For example, Dricot and De Doncker [27] proposed
a highly accurate physical model based on ray tracing and Markov chains.
This extension, which can be very useful for MANETs simulation, makes the
simulator to be about 100 times slower.

ns-2 is a sound solution to MANET simulation. Unfortunately it suffers
for its lack of modularity and its inherent complexity (ns-2 was candidate to
be the basis for the Qualnet [51] simulator but got finally rejected). Indeed,
adding components/protocols or modifying existing ones is not as straight-
forward as it should be. For a long time, ns-2 has been said to have few
good documentation. The situation recently changed, as several users have

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101 93



put online their experience in the form of tutorials or example-driven docu-
mentations.

Another well-known weakness of ns-2 is its high consumption of computa-
tional resources. A harmful consequence is that ns-2 lacks scalability, which
impedes the simulation of large networks (ns-2 is typically used for simulations
consisting of no more than a few hundreds nodes).

Several projects have aimed at improving ns-2 ’s runtime. For example,
staged simulation [70] (see section 3.2.2) and parallelism (see section 3.2.1
and next item) have turned out to be efficient solutions.

pdns

[60] is developed at Gorgia Tech institute, California. The Parallel/Distri-
buted Network Simulator aims at overcoming the limitation of ns-2 regarding
its scalability. pdns boosts ns-2 processes by distributed the simulation over a
network of closely coupled workstations (a common TCP/IP is usable). More
precisely, it achieves an efficient parallelization of the simulation process by
making distinct instances of ns-2 simulating distinct sub-networks. pdns can
simulate networks consisting of up to hundreds of thousands nodes.

OMNet++

[36] is a well-designed simulation package written in C++. OMNET++ is
actually a general-purpose simulator capable of simulating any system com-
posed of devices interacting with each others. It can then perfectly be used for
MANETs simulation. The mobility extension for OMNeT++ [28] is intended
to support wireless and mobile simulations within OMNeT++. This support
is said to be fairly incomplete. OMNet++ is for academic and educational
use.

OPNet

[26] (Optimized Network Engineering Tools) is a discrete-event network
simulator first proposed by MIT in 1986. It is a well-established and profes-
sional commercial suite for network simulation. It is actually the most widely
used commercial simulation environment. OPNET Modeler features an inter-
active development environment allowing the design and study of networks,
devices, protocols, and applications. For this, an extensive list of protocols
are supported. Particularly, MAC protocols include IEEE802.11a/b/g and
Bluetooth ones. One of the most interesting features of OPNet is its ability
to execute and monitor several scenarios in a concurrent manner. In spite
of its wide adoption, some doubts remain regarding the dependability of its
MANETs simulation engine. More precisely, Cavin and al. [21] simulated a

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–10194



broadcasting process on the OPNet, ns-2 and GloMoSim simulators (each of
them is detailed in this section). It came that the results obtained using OP-
Net were barely comparable to those harvested out of ns-2 and GloMoSim,
which exhibited similar behaviors. The divergences were quantitative but also
qualitative (not the same general behavior). OPNet is written in C++.

QualNet

[51] is a commercial ad hoc network simulator based on the GloMoSim
core. It extends the GloMoSim offer by bringing support, a decent docu-
mentation, a complete set of user-friendly tools for building scenarios and
analyzing simulation output. QualNet also largely extends the set of models
and protocols supported by the initial GloMoSim distribution. As it is built
on top of GloMoSim, QualNet is written in Parsec [8].

SWANS

[10], developed at Cornell university, is a Java-based wireless network sim-
ulator built atop the JiST discrete event platform. SWANS boasts a highly
efficient sequential simulation engine and has been compared to GloMoSiM,
in terms of quality. JiST relies on the concept of virtual-machine simulation.
The way SWANS implements simulated time is singular: the simulated time
is not managed by some shared clock. Instead, each entity (referred to as
a TimeFull entity) is in charge of determining the time needed to its execu-
tion. By invoking each TimeFull entities in a sequence, SWANS gets able to
determine the current simulated time. SWANS appears to the user as a frame-
work. It must be programmed in plain Java, using some specific programming
interface. SWANS is developed in Java and is open source.

5 Which simulator for what need?

MANETs simulators exhibit different features and models. The choice of a
simulator should be driven by the requirements.

Determining the level of details required is key. If high-precision PHY
layers are needed, then ns-2 (coupled with the highly-accurate PHY [27]) is
clearly the wisest choice. On the contrary, if the wireless technology has not
impact on the targeted protocol, recent simulators (like NAB or Jane) which
propose high-level abstractions and polished object-oriented designs will be
more adapted.

The number of nodes targeted also determines the choice of the simulation
tool. Sequential simulators should not be expected to run more that 1,000
nodes. If larger scales are needed, then parallel simulators are a wise choice.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101 95



You may also consider highly optimized simulators like ns-2 coupled with
stage simulation.

Finally, most non-commercial simulators suffer from a lack of good docu-
mentation and support. Using a commercial one might help in case of troubles.
Moreover, commercial simulators usually feature extensive lists of supported
protocols, while open source solutions give full empowerment.

6 Perspectives and conclusion

Since the availability of the IEEE802.11 (WiFi) standard, researchers investi-
gate mobile ad hoc networks (MANETs). Since then, many simulators were
proposed, less than twenty are still active projects. Some are dedicated to
MANETs simulation [37][29][10] and some others consist in extensions of wired
network simulators [3][73] and general-purpose discrete-event simulation en-
gines [8][7]. As the needs of researchers continue to evolve, it is likely that
existing simulators will integrate new functionalities and concepts as well as
fresh simulators will be developed.

By looking at the current status of MANETs simulation and networking
technologies, we envision that the following trends will drive the future devel-
opments.
First, the success of beowulf clusters and grid-computing has an impact on
parallel/distributed simulators. Initially designed to run on SMP comput-
ers, simulators should now benefit from the huge distributed computational
power offered by grid-computing facilities. The recent progress done in the
field of multi-agent platform (MAPs) should also have a significant impact
on distributed simulation. More precisely, new efficient algorithms for load-
balancing and in distributed systems [12] turn the MAPs to appealing distri-
bution frameworks.
Second, too few simulators facilitate the migration of the simulation code to
real devices [29][46]. The code then needs to be written twice. Either com-
mon APIs for “ad hoc programming” should be strictly followed or simulators
should also provide execution environments allowing the simulation code to
be directly executable on devices.
Third, it is very likely that MANETs will be deployed within the metropolitan
environment [23]. Project proposing constrained mobility models [56][67][38]
were a first step towards realistic models. New generation simulators [37][29]
natively integrate some of the properties of metropolitan mobility. It is very
likely that coming simulators/extensions will integrate recent studies on radio
propagation in the metropolitan environment [16] and will hence constitute
the first generation of “metropolitan MANETs simulators”.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–10196



References

[1] The CMU Monarch Project’s Wireless and Mobility Extensions to NS.
http://www.monarch.cs.cmu.edu/.

[2] The COMPASS project. http://www.cc.gatech.edu/computing/compass/.

[3] The network simulator. ns-2. http://www.isi.edu/nsnam/ns.

[4] Pierre America and Frank van der Linden. A parallel object-oriented language with inheritance
and subtyping. In OOPSLA/ECOOP, pages 161–168, 1990.

[5] M. Arlitt, Y. Chen, R. J. Gurski, and C. L. Williamson. Traffic modeling in the ATM-TN
telesim project: Design, implementation, and performance evaluation. Technical Report DR-
95-6, 26, 1995.

[6] D. Baezner and al. Sim++: The transition to distributed simulation. In Proceedings of the
SCS Multiconference on Distributed Simulation, pages 211–218, 1990.

[7] Rajive Bagrodia and Wen-Toh Liao. Maisie: A language for the design of efficient discrete-event
simulations. IEEE Tranactions in Software Engineering, 20(4):225–238, 1994.

[8] Rajive Bagrodia, Richard Meyer, Mineo Takai, Yu an Chen, Xiang Zeng, Jay Martin, and
Ha Yoon Song. Parsec: A parallel simulation environment for complex systems. Computer,
31(10):77–85, 1998.

[9] Rimon Barr. Blueware: Bluetooth simulator for ns. Technical report, MIT, Cambridge, 2002.

[10] Rimon Barr. An efficient, unifying approach to simulation using virtual machines. In PhD
thesis, May 2004.

[11] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. Jist: Embedding simulation time
into a virtual machine. In EuroSim Congress on Modelling and Simulation, Sep 2004.

[12] Cyrille Bertelle, Antoine Dutot, Frédéric Guinand, and Damien Olivier. Dynamic placement
using ants for object based simulations. In CoopIS/DOA/ODBASE, pages 1263–1274, 2003.

[13] Christian Bettstetter. Smooth is better than sharp: a random mobility model for simulation
of wireless networks. In MSWIM ’01: Proceedings of the 4th ACM international workshop on
Modeling, analysis and simulation of wireless and mobile systems, pages 19–27. ACM Press,
2001.

[14] Christian Bettstetter, Giovanni Resta, and Paolo Santi. The node distribution of the random
waypoint mobility model for wireless ad hoc networks. IEEE Transactions on Mobile
Computing, 2(3):257–269, 2003.

[15] Stephan Bohacek and Vinay Sridhara. The graph properties of manets in urban environments.
In (In Submission), 2004.

[16] Stephan Bohacek and Vinay Sridhara. The udel models - manet mobility and path loss in an
urban. In (In Submission), 2004.

[17] C. J. M. Booth and D. I. Bruce. Stack-free process-oriented simulation. In PADS ’97:
Proceedings of the eleventh workshop on Parallel and distributed simulation, pages 182–185.
IEEE Computer Society, 1997.

[18] Dominik Buszko, Wei-Hsing (Dan) Lee, and Abdelsalam (Sumi) Helal. Decentralized ad-hoc
groupware api and framework for mobile collaboration. In GROUP’01: Proceedings of the
International ACM SIGGROUP Conference on Supporting Group Work, pages 5–14. ACM
Press, 2001.

[19] T. Camp, J. Boleng, and V. Davies. A Survey of Mobility Models for Ad Hoc Network Research.
Wireless Communications & Mobile Computing (WCMC): Special issue on Mobile Ad Hoc
Networking: Research, Trends and Applications, 2(5):483–502, 2002.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101 97

http://www.monarch.cs.cmu.edu/
http://www.cc.gatech.edu/computing/compass/
http://www.isi.edu/nsnam/ns


[20] Manuel F. Catedra and Jesus Perez. Cell Planning for Wireless Communications. Artech
House, Inc, 1999.

[21] David Cavin, Yoav Sasson, and André Schiper. On the accuracy of manet simulators. In
POMC ’02: Proceedings of the second ACM international workshop on Principles of mobile
computing, pages 38–43. ACM Press, 2002.

[22] Newcastle University Computing Laboratory. JavaSim’s Users Guide.
http://javasim.ncl.ac.uk.

[23] Marco Conti, Silvia Giordano, Gaia Maselli, and Giovanni Turi. Mobileman: Mobile
metropolitan ad hoc networks. In Proceedings of the 8th International IFIP-TC6 Conference,
Lecture Notes in Computer Science LNCS 2775, pages 194–205, September 2003.

[24] Douglas S. J. De Couto, Daniel Aguayo, Benjamin A. Chambers, and Robert Morris.
Performance of multihop wireless networks: shortest path is not enough. SIGCOMM Computer
Communications Rev., 33(1):83–88, 2003.

[25] Pradipta De, Ashish Raniwalaand Srikant Sharmaand, and Tzi cker Chiueh. Design
considerations for a multi-hop wireless network testbed. In Submission.

[26] F. Desbrandes, S. Bertolotti, and L. Dunand. Opnet 2.4: An environment for communication
network modeling and simulation. In Proceedings of European Simulation Symposium. Society
for Computer Simulation, pages 64–74, 1993.

[27] J.-M. Dricot and Ph. De Doncker. High-accuracy physical layer model for wireless network
simulations in ns-2. In IWWAN’04: Proceedings of the International Workshop on Wireless
Ad-hoc Networks, Oulu, Finland, May–June 2004.

[28] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and H. Karl. A mobility framework for
omnet++. In 3rd International OMNeT++ Workshop, at Budapest University of Technology
and Economics, Department of Telecommunications Budapest, Hungary, january 2003.

[29] Hannes Frey, Daniel Görgen, Johannes K. Lehnert, and Peter Sturm. A java-based uniform
workbench for simulating and executing distributed mobile applications. Scientific Engineering
of Distributed Java Applications, november 2003.

[30] Hannes Frey, Johannes K. Lehnert, and Peter Sturm. Ubibay: An auction system for mobile
multihop ad-hoc networks. In Workshop on Ad hoc Communications and Collaboration in
Ubiquitous Computing Environments, 2002.

[31] D. Görgen, H. Frey, and C. Hutter. Information dissemination based on the en-passant
communication pattern. KiVS: Fachtagung Kommunikation in Verteilten Systemen, 2005.

[32] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat, K. Lan, Y. Xu, W. Ye, D. Estrin, ,
and R. Govindan. Effects of detail in wireless network simulation. In Proceedings of the SCS
Multiconference on Distributed Simulation, pages 3–11, 2001.

[33] Horst Hellbrück and Stefan Fischer. Towards analysis and simulation of ad-hoc networks. In
ICWN02: Proceedings of the International Conference on Wireless Networks, pages 69–75, Las
Vegas, Nevada, USA, June 2002.

[34] L. Hogie, P. Bouvry, and F. Guinand. The Madhoc simulator
http://www-lih.univ-lehavre.fr/∼hogie/madhoc/.

[35] Xiaoyan Hong, Mario Gerla, Guangyu Pei, and Ching-Chuan Chiang. A group mobility model
for ad hoc wireless networks. In MSWiM ’99: Proceedings of the 2nd ACM international
workshop on Modeling, analysis and simulation of wireless and mobile systems, pages 53–60.
ACM Press, 1999.

[36] S Imre, Keszei, Horváth, Hollós, Barta, and Kujbus. Simulation environment for ad-hoc
networks in omnet++. In IST Mobile Summit 2001, pages 135–140, 2001.

[37] EPFL Information Sciences Institute. The nab (network in a box) wireless network simulator.
In http://nab.epfl.ch, 2004.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–10198

http://javasim.ncl.ac.uk
http://www-lih.univ-lehavre.fr/~hogie/madhoc/
http://nab.epfl.ch


[38] Amit Jardosh, Elizabeth M. Belding-Royer, Kevin C. Almeroth, , and Subhash Suri. Real world
environment models for mobile ad hoc networks. Journal on Special Areas in Communications
- Special Issue on Wireless Ad hoc Networks, 14(2), January 2005.

[39] Amit Jardosh, Elizabeth M. Belding-Royer, Kevin C. Almeroth, and Subhash Suri. Towards
realistic mobility models for mobile ad hoc networks. In MobiCom ’03: Proceedings of the 9th
annual international conference on Mobile computing and networking, pages 217–229. ACM
Press, 2003.

[40] Jorjeta Jetcheva, Yih-Chun Hu, Santashil PalChaudhuri, Amit Kumar Saha, and David B.
Johnson. Design and evaluation of a metropolitan area multitier wireless ad hoc network
architecture. In WMCSA, pages 32–43, 2003.

[41] Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Mielczarek, and Mikael Degermark.
Scenario-based performance analysis of routing protocols for mobile ad-hoc networks. In
MobiCom ’99: Proceedings of the 5th annual ACM/IEEE international conference on Mobile
computing and networking, pages 195–206. ACM Press, 1999.

[42] James T. Kaba and Douglas R. Raichle. Testbed on a desktop: strategies and techniques to
support multi-hop manet routing protocol development. In MobiHoc ’01: Proceedings of the
2nd ACM international symposium on Mobile ad hoc networking & computing, pages 164–172.
ACM Press, 2001.

[43] M. Klein. Dianemu: A java based generic simulation environment for distributed protocols. In
Technical Report. Universitat Karlsruhe, Faculty of Informatic, 2003.

[44] C. Kunze, U. Grossmann, W. Storka, and KD. Muller-Glaser. Application of ubiquitous
computing in personal health monitoring systems. In DGBMT: Jahrestagung der Deutschen
Gesellschaft Für Biomedizinische Technik, pages 360–362, 2002.

[45] IBM India Research Lab. BlueHoc.

[46] Johannes K. Lehnert, Daniel Görgen, Hannes Frey, and Peter Sturm. A scalable workbench for
implementing and evaluating distributed applications in mobile ad hoc networks. In WMC’04:
Western Simulation MultiConference, pages 154–161, 2004.

[47] Shaowen Lu and John A. Schormans. Simulation acceleration techniques for mobile ad hoc
networks. In London Communications Symposium. IEEE UK/RI Communications, 2003.

[48] Henrik Lundgren, David Lundberg, Johan Nielsen, Erik Nordstr”om, and Christian Tschudin.
A large-scale testbed for reproducible ad hoc protocol evaluations. In WCNC: 3rd annual IEEE
Wireless Communications and Networking Conference, pages 412–418. IEEE, March 2002.

[49] R. McNab and F. Howell. Using java for discrete event simulation. In UKPEW: 20th UK
Computer and Telecommunication Performance Engineering Workshop, pages 219–228.

[50] Valeri Naoumov and Thomas Gross. Simulation of large ad hoc networks. In MSWIM ’03:
Proceedings of the 6th ACM international workshop on Modeling analysis and simulation of
wireless and mobile systems, pages 50–57. ACM Press, 2003.

[51] Scalable Networks. Qualnet user manual.
http://www.scalable-networks.com/products/qualnet.php.

[52] Guangyu Pei, Mario Gerla, Xiaoyan Hong, and Ching-Chuan Chiang. A wireless hierarchical
routing protocol with group mobility. In WCNC1999; IEEE Wireless Communications and
Networking Conference, number 1, pages 1538–1542. IEEE, IEEE, September 1999.

[53] Kalyan Perumalla, Richard Fujimoto, and Andrew Ogielski. Ted — a language for modeling
telecommunication networks. SIGMETRICS Perform. Eval. Rev., 25(4):4–11, 1998.

[54] Jonathan Polley, Dionysys Blazakis, Jonathan McGee, Dan Rusk, and John S. Baras. Atemu: A
fine-grained sensor network simulator. In SECON ’04: Proceedings of First IEEE International
Conference on Sensor and Ad Hoc Communication Networks, Santa Clara, CA, 2004.

[55] B. R. Preiss. The Yaddes distributed discrete event simulation specification language and
execution environments. Proceedings of the SCS Multiconference on Distributed Simulation,
21(2):139–144, March 1989.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101 99

http://www.scalable-networks.com/products/qualnet.php


[56] Ray and Suprio. Realistic mobility for manet simulation, December 2004.

[57] Sebastien Matas Riera, Oliver Wellnitz, and Lars Wolf. A zone-based gaming architecture
for ad-hoc networks. In NETGAMES ’03: Proceedings of the 2nd workshop on Network and
system support for games, pages 72–76. ACM Press, 2003.

[58] George Riley and Mostafa Ammar. Simulating large networks: How big is big enough?
In Proceedings of First International Conference on Grand Challenges for Modeling and
Simulation, Janurary 2002.

[59] George F. Riley. The georgia tech network simulator. In MoMeTools ’03: Proceedings of the
ACM SIGCOMM workshop on Models, methods and tools for reproducible network research,
pages 5–12. ACM Press, 2003.

[60] George F. Riley, Richard M. Fujimoto, and Mostafa H. Ammar. A generic framework for
parallelization of network simulations. In MASCOTS ’99: Proceedings of the 7th International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, page 128. IEEE Computer Society, 1999.

[61] Hartmut Ritter, Min Tian, Thiemo Voigt, and Jochen H. Schiller. A highly flexible testbed
for studies of ad-hoc network behaviour. In LCN, pages 746–752, 2003.

[62] A. Savvides S. Park and M. B. Srivastava. Sensorsim: a simulation framework for sensor
networks. In Proceedings of the 3rd ACM international workshop on Modeling, analysis and
simulation of wireless and mobile systems, pages 104–111, Boston, MA USA, 2000.

[63] Sagar Sanghani, Timothy X Brown, Shweta Bhandare, and Sheetalkumar Doshi. Ewant: The
emulated wireless ad hoc network testbed. In WCNC: IEEE Wireless Communications and
Networking Conference, March 2003.

[64] Matthias Scheidegger, Florian Baumgartner, and Torsten Braun. Simulating large-scale
networks with analytical models. In International Journal of Simulation Systems, Science
and Technology Special Issue on: Advances In Analytical And Stochastic Modelling, 2005.

[65] Christian Schindelhauer, Tamas Lukovszki, Stefan Ruhrup, and Klaus Volbert. Worst case
mobility in ad hoc networks. In SPAA ’03: Proceedings of the fifteenth annual ACM symposium
on Parallel algorithms and architectures, pages 230–239. ACM Press, 2003.

[66] Herb Schwetman. Csim18 — the simulation engine. In WSC ’96: Proceedings of the 28th
conference on Winter simulation, pages 517–521. ACM Press, 1996.

[67] Jing Tian, Jörg Hähner, Christian Becker, Illya Stepanov, and Kurt Rothermel. Graph-based
mobility model for mobile ad hoc network simulation. In Annual Simulation Symposium, pages
337–344, 2002.

[68] Jing Tian, Jörg Hähner, Christian Becker, Illya Stepanov, and Kurt Rothermel. Graph-based
mobility model for mobile ad hoc network simulation. In Annual Simulation Symposium, pages
337–344, 2002.

[69] Jerry Waldorf and Rajive Bagrodia. Moose: A concurrent object-oriented language for
simulation. Int. Journal in Computer Simulation, 4(2):235–257, 1994.

[70] Kevin Walsh and Emin G&#252;n Sirer. Staged simulation: A general technique for improving
simulation scale and performance. ACM Trans. Model. Comput. Simul., 14(2):170–195, 2004.

[71] B. Williams and T. Camp. Comparison of broadcasting techniques for mobile ad hoc
networks. In MOBIHOC: Proceedings of the ACM International Symposium on Mobile Ad
Hoc Networking and Computing, pages 194–205, 2002.

[72] Jungkeun Yoon, Mingyan Liu, and B. Noble. Random waypoint considered harmful.
In INFOCOM: Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies, pages 1312–1321, March 2003.

[73] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. Glomosim: A library for parallel simulation
of large-scale wireless networks. In Workshop on Parallel and Distributed Simulation, pages
154–161, 1998.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101100



[74] Xin Zhang and George F. Riley. Bluetooth simulations for wireless sensor networks using
gtnets. In MASCOTS, pages 375–382, 2004.

[75] Yongguang Zhang and Wei Li. An integrated environment for testing mobile ad-hoc networks.
In MobiHoc ’02: Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing, pages 104–111. ACM Press, 2002.

L. Hogie et al. / Electronic Notes in Theoretical Computer Science 150 (2006) 81–101 101


	Introduction
	Testbeds
	MANETs simulation techniques
	The accuracy of MANETs simulators
	Simulation acceleration techniques
	Simulation languages and frameworks
	Visualization and debugging facilities

	MANET simulators currently in use
	Which simulator for what need?
	Perspectives and conclusion
	References



