

Linear Algebra and its Applications 318 (2000) 79–86

LINEAR ALGEBRA AND ITS APPLICATIONS

www.elsevier.com/locate/laa

On two questions about quaternion matrices

Liping Huang $¹$ </sup>

Institute of Mathematics, Xiangtan Polytechnic University, Xiangtan 411201, People's Republic of China Received 10 December 1999; accepted 27 April 2000

Submitted by R.A. Brualdi

Abstract

This paper answers two questions proposed in [Fuzhen Zhang, Linear Algebra Appl. 251 (1997) 21–57], showing that there exists a 2×2 quaternion matrix with only two non-similar left eigenvalues that is not diagonalizable, and giving some necessary and sufficient conditions for

$$
\begin{vmatrix} \frac{A}{-B} & \frac{B}{A} \end{vmatrix} = 0.
$$

© 2000 Elsevier Science Inc. All rights reserved.

AMS classification: 15A33

Keywords: Quaternion matrix; Complex representation matrix; Left eigenvalue

1. Introduction

The aim of this paper is to answer two of the questions proposed in [1].

Let *R* be the real number field, $C = R \oplus Ri$ be the complex number field, and $H = C \oplus Cj = R \oplus Ri \oplus Rj \oplus Rk$ be the quaternion division ring over *R*, where $k := ij = -ji$, $i^2 = j^2 = k^2 = -1$. If $\alpha = a_1 + a_2i + a_3j + a_4k \in H$, where $a_i \in H$ *R*, then let $\overline{\alpha} = a_1 - a_2i - a_3j - a_4k$ be the conjugate of α , $|\alpha| = \sqrt{\overline{\alpha}}\alpha =$ $\sqrt{a_1^2 + a_2^2 + a_3^2 + a_4^2}$. Let $M_{m \times n}(\Omega)$ be the set of all $m \times n$ matrices over a ring Ω with identity, and $M_n(\Omega) = M_{n \times n}(\Omega)$, $\Omega^n = M_{n \times 1}(\Omega)$. Suppose $A = (a_{ij}) \in$

E-mail address: hangp@mail.xt.hn.cn (L. Huang).

 $¹$ Supported by the National Natural Science Foundation of China and the Natural Science Foundation</sup> of Hunan Province.

 $M_{n\times n}(H)$. Let A^T be the transpose matrix of *A*, \overline{A} be the conjugate matrix of *A*, and $A^* = (\overline{a}_{ij})^T$ be the transpose conjugate matrix of *A*. Let $N(A) = \{X \in H^n \mid AX = \emptyset\}$ 0} be the null space of *A*. We write *A* ∼ *B* if *A* is similar to *B*. For *A(λ), B(λ)* ∈ *M_n*($H[\lambda]$), we write $A(\lambda) \cong B(\lambda)$ if $A(\lambda)$ is congruence to $B(\lambda)$, i.e., there exist unimodular matrices $P(\lambda), Q(\lambda) \in M_n(H[\lambda])$ such that $P(\lambda)A(\lambda)Q(\lambda) = B(\lambda)$.

Let $A \in M_n(H)$, $\lambda \in H$. If there exists $0 \neq X \in H^n$ such that

$$
AX = \lambda X \quad \text{(or } AX = X\lambda),\tag{1}
$$

then λ is said to be a left (or right) eigenvalue of A, and X is said to be an eigenvector of *A* corresponding to the left (right) eigenvalue *λ*. The set of left (or right) eigenvalues of *A* is called the left (or right) spectrum, denoted by $\sigma_l(A)$ (or $\sigma_r(A)$). Let

ρl(*A*) = sup{ $|\lambda|$ | $\lambda \in \sigma_l(A)$ }

be the right spectral radius, and

ρ_r(*A*) = sup{ $|\lambda|$ | $\lambda \in \sigma_r(A)$ }

be the left (left) spectral radius.

If $A = A_1 + A_2 j \in M_{n \times n}(H)$, where $A_1, A_2 \in M_{n \times n}(C)$, then the complex representation matrix (or adjoint matrix [1]) of *A* is defined by

$$
\chi_A = \begin{pmatrix} A_1 & A_2 \\ -A_2 & A_1 \end{pmatrix} . \tag{2}
$$

A *g*-inverse of *A* ∈ $M_{m \times n}(C)$ will be denoted by A^- ∈ $M_{n \times m}(C)$ and understood as a complex matrix for which $AA^{-}A = A$. A Moore–Penrose inverse of $A \in M_{m \times n}(C)$ will be denoted by $A^+ \in M_{n \times m}(C)$ and understood as the unique complex matrix for which $AA^+A = A$, $A^+AA^+ = A^+$, $AA^+ = (AA^+)^*$ and $A^+A = (A^+A)^*$.

We shall study two questions, Questions 7.1 and 5.4 in [1], which are cited, respectively as:

Question 1. Suppose $A \in M_n(H)$ has *n* distinct left eigenvalues, any two of which are not similar. Is *A* diagonalizable?

Question 2. For $A, B \in M_n(C)$, what conditions can be imposed on *A* and *B* when

$$
\left| \frac{A}{-B} \frac{B}{A} \right| = 0
$$
\n⁽³⁾

2. The answer to Question 1 is negative

Lemma 1. *Let*

$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(H).
$$

If
$$
c \neq 0
$$
, then $\lambda \in \sigma_l(A)$ if and only if
\n $(\lambda - a)c^{-1}(\lambda - d) - b = 0.$ (4)

Proof. $\lambda \in \sigma_l(A)$ if and only if $\lambda I - A$ is a singular matrix. Since

$$
\lambda I - A = \begin{pmatrix} \lambda - a & -b \\ -c & \lambda - d \end{pmatrix} \cong \begin{pmatrix} 0 & (\lambda - a)c^{-1}(\lambda - d) - b \\ -c & \lambda - d \end{pmatrix},
$$
(5)

if $c \neq 0$, then it is clear that $\lambda \in \sigma_l(A)$ if and only if $(\lambda - a)c^{-1}(\lambda - d) - b = 0$. \Box

The counterexample for Question 1 is as follows:

Let

$$
A = \begin{pmatrix} -i & -j & 1 - 2k \\ 1 & -i & j \end{pmatrix}.
$$
 (6)

Then *A* has only two distinct left eigenvalues

$$
\lambda_1 = \sqrt{\frac{\sqrt{5}-1}{2}} + \frac{\sqrt{5}-3}{2}i - \left(\frac{\sqrt{5}-1}{2}\right)^{3/2}k,\tag{7}
$$

$$
\lambda_2 = -\sqrt{\frac{\sqrt{5}-1}{2}} + \frac{\sqrt{5}-3}{2}i + \left(\frac{\sqrt{5}-1}{2}\right)^{3/2}k.
$$
 (8)

We show that λ_1 and λ_2 are not similar and *A* is not diagonalizable.

Since

$$
A = \begin{pmatrix} 1 & -j \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -i & 0 \\ 1 & -i \end{pmatrix} \begin{pmatrix} 1 & -j \\ 0 & 1 \end{pmatrix}^{-1}, \tag{9}
$$

by the Jordan canonical form of quaternion matrix (cf. [1, Theorem 6.4]), it is clear that *A* is not diagonalizable.

Since Re $\lambda_1 \neq$ Re λ_2 , by Theorem 2.2 of [1], λ_1 and λ_2 are not similar. We now prove that *A* has only two left eigenvalues λ_1 and λ_2 .

By Lemma 1, *λ* is a left eigenvalue of *A* if and only if

$$
(\lambda + i + j)(\lambda + i - j) - (1 - 2k) = 0.
$$
\n(10)

Write $\lambda = x - i$. Then $\lambda = x - i \in \sigma_l(A)$ if and only if

$$
x^2 - xj + jx + 2k = 0.
$$
 (11)

Let $x = \lambda + i = y_1 + y_2i + y_3j + y_4k$, where $y_i \in R$. Then (11) can be written as

$$
y_1^2 - y_2^2 - y_3^2 - y_4^2 + 2(y_1y_2 + y_4)i
$$

+ 2y_1y_3j + 2(y_1y_4 - y_2 + 1)k = 0. (12)

Thus, $\lambda = y_1 + (y_2 - 1)i + y_3j + y_4k \in \sigma_l(A)$ if and only if

82 *L. Huang / Linear Algebra and its Applications 318 (2000) 79–86*

$$
y_1^2 - y_2^2 - y_3^2 - y_4^2 = 0,
$$

\n
$$
y_1 y_2 + y_4 = 0,
$$

\n
$$
y_1 y_3 = 0,
$$

\n
$$
y_1 y_4 - y_2 + 1 = 0.
$$
\n(13)

By *y*₁*y*₃ = 0, it is easy to see that *y*₃ = 0 and *y*₁ \neq 0. Thus, any $λ ∈ σ_l(A)$ can be written as

$$
\lambda = y_1 + (y_2 - 1)i - y_1 y_2 k,\tag{14}
$$

where

$$
y_1^2 - y_2^2 - y_1^2 y_2^2 = 0,
$$

$$
y_1^2 y_2 + y_2 - 1 = 0.
$$
 (15)

Since $y_2 = 1/(y_1^2 + 1) > 0$, it is easy to see that Eqs. (15) have only two solutions

$$
(y_1, y_2) = \left(\sqrt{\frac{\sqrt{5}-1}{2}}, \frac{\sqrt{5}-1}{2}\right)
$$
 or $\left(-\sqrt{\frac{\sqrt{5}-1}{2}}, \frac{\sqrt{5}-1}{2}\right)$. (16)

Thus *A* has only two left eigenvalues λ_1 , λ_2 . We further have

$$
\sigma_r(A) = \{q^{-1}iq \mid 0 \neq q \in H\},\tag{17}
$$

$$
\rho_r(A) = \rho_l(A) = 1. \tag{18}
$$

3. Invertibility of the complex representation matrix

By Lemmas 5 and 6 of [4], clearly we have:

Lemma 2. *Let* $A \in M_{m \times n}(C)$, $D \in M_{m \times q}(C)$ *. Then the following statements are equivalent*:

- *(i) The matrix equation* $AX = D$ *has a solution* $X \in M_{n \times q}(C)$;
- (iii) rank (A, D) = rank (A) ;
- (iii) $AA^-D = D$.

Moreover, if matrix equation $AX = D$ *has a solution, then its general solution can be written as*

$$
X = A^{-}D + (I - A^{-}A)W,
$$
\n(19)

with arbitrary $W \in M_{n \times q}(C)$, where all g-inverses involved are arbitrary but fixed.

Theorem 1. *If A,* $B \in M_n(C)$ *, then the following statements are equivalent:* (i) $\left(\begin{array}{cc} A & B \\ \frac{B}{2} & \frac{B}{4} \end{array}\right)$ −*B A is invertible*;

 (iii) rank $(A, B) = n$ *and*

$$
rank[(A, B) - (BAT - ABT)(\overline{A}AT + \overline{B}BT)-1(-\overline{B}, \overline{A})] = n;
$$
 (20)

 (iii) $rank(A, B) = n$ *and* $\dim\{N[(A, B)^{-}(A, B)] \cap N(-\overline{B}, \overline{A})\} = 0;$ (21)

(iv)

$$
rank\{(A,B)[I_{2n}-(-\overline{B},\overline{A})^{-}(-\overline{B},\overline{A})]\}=n;\tag{22}
$$

(v)

$$
rank\{(-\overline{B}, \overline{A})[I_{2n} - (A, B)^{-}(A, B)]\} = n,
$$
\n(23)

*where all g-inverses are arbitrary but fixed. Moreover, if condition (*iv*) holds, letting* $S = I_{2n} - (-\overline{B}, \overline{A})^ (-\overline{B}, \overline{A})$, $D = S[(A, B)S]^-\ = (D_1 - \overline{D}_2)^T$, then

$$
\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}^{-1} = \begin{pmatrix} D_1 & D_2 \\ -\overline{D}_2 & \overline{D}_1 \end{pmatrix}.
$$
 (24)

Proof. "(i) \Longleftrightarrow (iv)": If

$$
\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}
$$

is invertible, then rank $(A, B) = n$. Let $Q = A + Bj \in M_n(H)$. Then

$$
\chi_A = \begin{pmatrix} \frac{A}{B} & \frac{B}{A} \end{pmatrix}.
$$

By Theorem 4.3 of [1], *Q* is invertible. Let $Q^{-1} = X_1 + X_2j$, where $X_1, X_2 \in$ $M_n(C)$. Then by Theorem 4.2 of [1], we have

$$
\chi_{Q}\chi_{Q^{-1}} = \begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix} \begin{pmatrix} X_1 & X_2 \\ -\overline{X}_2 & \overline{X}_1 \end{pmatrix} = I_{2n}.
$$
 (25)

Let

$$
Y = \left(\frac{X_1}{-X_2}\right).
$$

We have

$$
(A, B)Y = I \quad \text{and} \quad (-\overline{B}, \overline{A})Y = 0. \tag{26}
$$

Thus, the matrix equations

$$
(A, B)X = I \quad \text{and} \quad (-\overline{B}, \overline{A})X = 0 \tag{27}
$$

have a common solution $X = Y \in M_{2n \times n}(C)$.

Let

$$
S = I_{2n} - (-\overline{B}, \overline{A})^- (-\overline{B}, \overline{A}), \qquad (28)
$$

where the *g*-inverse $\left(-\overline{B}, \overline{A}\right)^{-}$ is arbitrary but fixed. By Lemma 2, the general solution of the matrix equation $\left(-\overline{B}, \overline{A}\right)X = 0$ can be written as

$$
X = SW,\tag{29}
$$

with arbitrary $W \in M_{2n \times n}(C)$. Thus, there exists W_0 such that $Y = SW_0$. Using it to replace *X* in the equation $(A, B)X = I$, we have

$$
(A, B)SW_0 = I_n. \tag{30}
$$

By (30)

$$
n \ge \text{rank}[(A, B)S] \ge \text{rank}I_n = n. \tag{31}
$$

Thus we have (22).

Conversely, if condition (22) holds, then by Lemma 2, the matrix equation

$$
((A, B)S)X = I_n \tag{32}
$$

has a solution $X = [(A, B)S]$ ⁻. Suppose

$$
D = S[(A, B)S]^{-} \in M_{2n \times n}(C).
$$
\n(33)

Then we have

$$
(A, B)D = I \quad \text{and} \quad (-\overline{B}, \overline{A})D = 0. \tag{34}
$$

Let

$$
D=\left(\begin{array}{c} D_1\\ -\overline{D}_2\end{array}\right).
$$

Then it is easy to see that

$$
\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix} \begin{pmatrix} D_1 & D_2 \\ -\overline{D}_2 & \overline{D}_1 \end{pmatrix} = I_{2n}.
$$
 (35)

Thus

$$
\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}
$$

is invertible, and

$$
\left(\begin{array}{cc} A & B \\ -\overline{B} & A \end{array}\right)^{-1} = \left(\begin{array}{cc} D_1 & D_2 \\ -\overline{D}_2 & \overline{D}_1 \end{array}\right). \tag{36}
$$

"(iv) \Longleftrightarrow (ii)": If (iv) holds, then (i) holds and

rank (A, B) = rank $\left(-\overline{B}, \overline{A}\right)$ = *n*.

Thus

$$
(-\overline{B}, \overline{A})^+ = (-\overline{B}, \overline{A})^*((-\overline{B}, \overline{A})(-\overline{B}, \overline{A})^*)^{-1}
$$

=
$$
\begin{pmatrix} -B^T\\ A^T \end{pmatrix} (\overline{A}A^T + \overline{B}B^T)^{-1},
$$

and

$$
(A, B)(I_{2n} - (-\overline{B}, \overline{A})^+(-\overline{B}, \overline{A}))
$$

= (A, B) - (A, B) $\begin{pmatrix} -B^T\\ A^T \end{pmatrix} (\overline{A}A^T + \overline{B}B^T)^{-1}(-\overline{B}, \overline{A})$
= (A, B) - (BA^T - AB^T)($\overline{A}A^T + \overline{B}B^T)^{-1}(-\overline{B}, \overline{A}).$

Thus, (ii) holds.

Conversely, if (ii) holds, then by the above argument, we have

$$
rank\{(A, B)[I_{2n} - (-\overline{B}, \overline{A})^+(-\overline{B}, \overline{A})]\} = n,\tag{37}
$$

for the *g*-inverses $(-\overline{B}, \overline{A})^+$. By "(iv) \implies (i)", (i) holds. Thus by "(i) \Longrightarrow (iv)", condition (iv) holds.

 $"(i) \Longleftrightarrow (v)$ ": Since

$$
\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}
$$

is invertible if and only if

$$
\begin{pmatrix} -\overline{B} & \overline{A} \\ A & B \end{pmatrix}
$$

is invertible, by "(i) \Longleftrightarrow (iv)", we have "(i) \Longleftrightarrow (v)".

" $(v) \Leftrightarrow$ (iii)": Since $(A, B)^{-}(A, B)$ is idempotent matrices,

$$
R[I_{2n} - (A, B)^{-}(A, B)] = N[(A, B)^{-}(A, B)],
$$
\n(38)

and

$$
rank[I_{2n} - (A, B)^{-}(A, B)] = 2n - rank[(A, B)^{-}(A, B)].
$$
\n(39)

Thus by Corollary 6.2 of [2], we have

rank{(-
$$
\overline{B}
$$
, \overline{A})[I_{2n} - (A , B)[−](A , B)]}
= rank[I_{2n} - (A , B)[−](A , B)]
−dim{ $R[I_{2n}$ - (A , B)[−](A , B)]∩ N (− \overline{B} , \overline{A})}
= 2n − rank[(A , B)[−](A , B)]
−dim{ N [(A , B)[−](A , B)]∩ N (− \overline{B} , \overline{A})}.

Since rank $[(A, B)^{-}(A, B)] =$ rank (A, B) , it is easy to see that rank $(A, B) = n$ and dim{*N*[(A, B) [−] (A, B)] ∩ N (− $\overline{B}, \overline{A}$)} = 0 if and only if rank{ $(-\overline{B}, \overline{A})$ [I_{2n} $-(A, B)^{-}(A, B)] = n$. Thus we have "(v) \Longleftrightarrow (iii)". \square

Corollary 1. *If* $AB^T = BA^T$ *, then*

$$
\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}
$$

is invertible if and only if $rank(A, B) = n$ *.*

Corollary 2. *If* $A + (AB^T - BA^T)(\overline{A}A^T + \overline{B}B^T)^{-1}\overline{B}$ *is invertible, then*

$$
\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}
$$

is invertible.

Now, we can answer Question 2 as follows:

Theorem 2. *If A*, $B \in M_n(C)$, *then the following statements are equivalent:*

- *(*i*) A B* −*B A* $\Big| = 0;$
- (iii) rank $(A, B) < n$ *or* $rank[(A, B) - (BA^T - AB^T)(\overline{A}A^T + \overline{B}B^T)^{-1}(-\overline{B}, \overline{A})] < n;$ (40)
- (iii) rank $(A, B) < n$ *or*

$$
\dim\{N[(A,B)^{+}(A,B)] \cap N(-\overline{B},\overline{A})\} \neq 0;\tag{41}
$$

*(*iv*)*

$$
rank\{(A, B)[I_{2n} - (-\overline{B}, \overline{A})^-(-\overline{B}, \overline{A})]\} < n;\tag{42}
$$

*(*v*)*

$$
rank\{(-\overline{B}, \overline{A})[I_{2n} - (A, B)^{-}(A, B)]\} < n,\tag{43}
$$

where all g-inverses are arbitrary but fixed.

References

- [1] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997) 21–57.
- [2] G. Marsaglia, G.P.H. Styan, Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra 2 (1974) 269–292.
- [3] P. Lancaster, M. Tismenetsky, The Theory of Matrices with Applications, second ed., Academic Press, Orlando, 1985.
- [4] L. Huang, The matrix equation $A X B + C Y D = E$ over a simple Artinian ring, Linear and Multilinear Algebra 38 (1995) 225–232.