

Linear Algebra and its Applications 318 (2000) 79-86

### LINEAR ALGEBRA AND ITS APPLICATIONS

www.elsevier.com/locate/laa

# On two questions about quaternion matrices

Liping Huang<sup>1</sup>

Institute of Mathematics, Xiangtan Polytechnic University, Xiangtan 411201, People's Republic of China Received 10 December 1999; accepted 27 April 2000

Submitted by R.A. Brualdi

### Abstract

This paper answers two questions proposed in [Fuzhen Zhang, Linear Algebra Appl. 251 (1997) 21–57], showing that there exists a  $2 \times 2$  quaternion matrix with only two non-similar left eigenvalues that is not diagonalizable, and giving some necessary and sufficient conditions for

$$\begin{vmatrix} \frac{A}{-B} & \frac{B}{A} \end{vmatrix} = 0.$$

© 2000 Elsevier Science Inc. All rights reserved.

AMS classification: 15A33

Keywords: Quaternion matrix; Complex representation matrix; Left eigenvalue

## 1. Introduction

The aim of this paper is to answer two of the questions proposed in [1].

Let *R* be the real number field,  $C = R \oplus Ri$  be the complex number field, and  $H = C \oplus Cj = R \oplus Ri \oplus Rj \oplus Rk$  be the quaternion division ring over *R*, where k := ij = -ji,  $i^2 = j^2 = k^2 = -1$ . If  $\alpha = a_1 + a_2i + a_3j + a_4k \in H$ , where  $a_i \in R$ , then let  $\overline{\alpha} = a_1 - a_2i - a_3j - a_4k$  be the conjugate of  $\alpha$ ,  $|\alpha| = \sqrt{\overline{\alpha}\alpha} = \sqrt{a_1^2 + a_2^2 + a_3^2 + a_4^2}$ . Let  $M_{m \times n}(\Omega)$  be the set of all  $m \times n$  matrices over a ring  $\Omega$ with identity, and  $M_n(\Omega) = M_{n \times n}(\Omega)$ ,  $\Omega^n = M_{n \times 1}(\Omega)$ . Suppose  $A = (a_{ij}) \in \Omega$ 

E-mail address: hangp@mail.xt.hn.cn (L. Huang).

<sup>&</sup>lt;sup>1</sup> Supported by the National Natural Science Foundation of China and the Natural Science Foundation of Hunan Province.

 $M_{n \times n}(H)$ . Let  $A^{T}$  be the transpose matrix of A,  $\overline{A}$  be the conjugate matrix of A, and  $A^{*} = (\overline{a}_{ij})^{T}$  be the transpose conjugate matrix of A. Let  $N(A) = \{X \in H^{n} \mid AX = 0\}$  be the null space of A. We write  $A \sim B$  if A is similar to B. For  $A(\lambda)$ ,  $B(\lambda) \in M_{n}(H[\lambda])$ , we write  $A(\lambda) \cong B(\lambda)$  if  $A(\lambda)$  is congruence to  $B(\lambda)$ , i.e., there exist unimodular matrices  $P(\lambda)$ ,  $Q(\lambda) \in M_{n}(H[\lambda])$  such that  $P(\lambda)A(\lambda)Q(\lambda) = B(\lambda)$ .

Let  $A \in M_n(H)$ ,  $\lambda \in H$ . If there exists  $0 \neq X \in H^n$  such that

$$AX = \lambda X \quad (\text{or } AX = X\lambda), \tag{1}$$

then  $\lambda$  is said to be a left (or right) eigenvalue of *A*, and *X* is said to be an eigenvector of *A* corresponding to the left (right) eigenvalue  $\lambda$ . The set of left (or right) eigenvalues of *A* is called the left (or right) spectrum, denoted by  $\sigma_l(A)$  (or  $\sigma_r(A)$ ). Let

 $\rho_l(A) = \sup\{|\lambda| \mid \lambda \in \sigma_l(A)\}$ 

be the right spectral radius, and

$$\rho_r(A) = \sup\{|\lambda| \mid \lambda \in \sigma_r(A)\}$$

be the left (left) spectral radius.

If  $A = A_1 + A_2 j \in M_{n \times n}(H)$ , where  $A_1, A_2 \in M_{n \times n}(C)$ , then the complex representation matrix (or adjoint matrix [1]) of A is defined by

$$\chi_A = \begin{pmatrix} A_1 & A_2 \\ -\overline{A_2} & \overline{A_1} \end{pmatrix}.$$
 (2)

A *g*-inverse of  $A \in M_{m \times n}(C)$  will be denoted by  $A^- \in M_{n \times m}(C)$  and understood as a complex matrix for which  $AA^-A = A$ . A Moore–Penrose inverse of  $A \in M_{m \times n}(C)$ will be denoted by  $A^+ \in M_{n \times m}(C)$  and understood as the unique complex matrix for which  $AA^+A = A$ ,  $A^+AA^+ = A^+$ ,  $AA^+ = (AA^+)^*$  and  $A^+A = (A^+A)^*$ .

We shall study two questions, Questions 7.1 and 5.4 in [1], which are cited, respectively as:

**Question 1.** Suppose  $A \in M_n(H)$  has *n* distinct left eigenvalues, any two of which are not similar. Is *A* diagonalizable?

**Question 2.** For  $A, B \in M_n(C)$ , what conditions can be imposed on A and B when

$$\begin{vmatrix} A & B \\ -\overline{B} & \overline{A} \end{vmatrix} = 0? \tag{3}$$

## 2. The answer to Question 1 is negative

Lemma 1. Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(H).$$

If 
$$c \neq 0$$
, then  $\lambda \in \sigma_l(A)$  if and only if  
 $(\lambda - a)c^{-1}(\lambda - d) - b = 0.$  (4)

**Proof.**  $\lambda \in \sigma_l(A)$  if and only if  $\lambda I - A$  is a singular matrix. Since

$$\lambda I - A = \begin{pmatrix} \lambda - a & -b \\ -c & \lambda - d \end{pmatrix} \cong \begin{pmatrix} 0 & (\lambda - a)c^{-1}(\lambda - d) - b \\ -c & \lambda - d \end{pmatrix},$$
(5)

if  $c \neq 0$ , then it is clear that  $\lambda \in \sigma_l(A)$  if and only if  $(\lambda - a)c^{-1}(\lambda - d) - b = 0$ .  $\Box$ 

The counterexample for Question 1 is as follows:

Let

$$A = \begin{pmatrix} -i - j & 1 - 2k \\ 1 & -i + j \end{pmatrix}.$$
(6)

Then A has only two distinct left eigenvalues

$$\lambda_1 = \sqrt{\frac{\sqrt{5} - 1}{2}} + \frac{\sqrt{5} - 3}{2}i - \left(\frac{\sqrt{5} - 1}{2}\right)^{3/2}k,\tag{7}$$

$$\lambda_2 = -\sqrt{\frac{\sqrt{5}-1}{2}} + \frac{\sqrt{5}-3}{2}i + \left(\frac{\sqrt{5}-1}{2}\right)^{3/2}k.$$
(8)

We show that  $\lambda_1$  and  $\lambda_2$  are not similar and A is not diagonalizable.

Since

$$A = \begin{pmatrix} 1 & -j \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -i & 0 \\ 1 & -i \end{pmatrix} \begin{pmatrix} 1 & -j \\ 0 & 1 \end{pmatrix}^{-1},$$
(9)

by the Jordan canonical form of quaternion matrix (cf. [1, Theorem 6.4]), it is clear that *A* is not diagonalizable.

Since Re  $\lambda_1 \neq$  Re  $\lambda_2$ , by Theorem 2.2 of [1],  $\lambda_1$  and  $\lambda_2$  are not similar. We now prove that *A* has only two left eigenvalues  $\lambda_1$  and  $\lambda_2$ .

By Lemma 1,  $\lambda$  is a left eigenvalue of A if and only if

$$(\lambda + i + j)(\lambda + i - j) - (1 - 2k) = 0.$$
<sup>(10)</sup>

Write  $\lambda = x - i$ . Then  $\lambda = x - i \in \sigma_l(A)$  if and only if

$$x^2 - xj + jx + 2k = 0. (11)$$

Let  $x = \lambda + i = y_1 + y_2 i + y_3 j + y_4 k$ , where  $y_i \in R$ . Then (11) can be written as

$$y_1^2 - y_2^2 - y_3^2 - y_4^2 + 2(y_1y_2 + y_4)i + 2y_1y_3j + 2(y_1y_4 - y_2 + 1)k = 0.$$
(12)

Thus,  $\lambda = y_1 + (y_2 - 1)i + y_3j + y_4k \in \sigma_l(A)$  if and only if

L. Huang / Linear Algebra and its Applications 318 (2000) 79-86

$$y_1^2 - y_2^2 - y_3^2 - y_4^2 = 0,$$
  

$$y_1y_2 + y_4 = 0,$$
  

$$y_1y_3 = 0,$$
  

$$y_1y_4 - y_2 + 1 = 0.$$
(13)

By  $y_1y_3 = 0$ , it is easy to see that  $y_3 = 0$  and  $y_1 \neq 0$ . Thus, any  $\lambda \in \sigma_l(A)$  can be written as

$$\lambda = y_1 + (y_2 - 1)i - y_1 y_2 k, \tag{14}$$

where

$$y_1^2 - y_2^2 - y_1^2 y_2^2 = 0,$$
  

$$y_1^2 y_2 + y_2 - 1 = 0.$$
(15)

Since  $y_2 = 1/(y_1^2 + 1) > 0$ , it is easy to see that Eqs. (15) have only two solutions

$$(y_1, y_2) = \left(\sqrt{\frac{\sqrt{5}-1}{2}}, \frac{\sqrt{5}-1}{2}\right) \text{ or } \left(-\sqrt{\frac{\sqrt{5}-1}{2}}, \frac{\sqrt{5}-1}{2}\right).$$
 (16)

Thus A has only two left eigenvalues  $\lambda_1$ ,  $\lambda_2$ . We further have

$$\sigma_r(A) = \{ q^{-1} i q \mid 0 \neq q \in H \},$$
(17)

$$\rho_r(A) = \rho_l(A) = 1. \tag{18}$$

#### 3. Invertibility of the complex representation matrix

By Lemmas 5 and 6 of [4], clearly we have:

**Lemma 2.** Let  $A \in M_{m \times n}(C)$ ,  $D \in M_{m \times q}(C)$ . Then the following statements are equivalent:

- (i) The matrix equation AX = D has a solution  $X \in M_{n \times q}(C)$ ;
- (ii)  $\operatorname{rank}(A, D) = \operatorname{rank}(A);$
- (iii)  $AA^{-}D = D$ .

Moreover, if matrix equation AX = D has a solution, then its general solution can be written as

$$X = A^{-}D + (I - A^{-}A)W,$$
(19)

with arbitrary  $W \in M_{n \times q}(C)$ , where all g-inverses involved are arbitrary but fixed.

**Theorem 1.** If  $A, B \in M_n(C)$ , then the following statements are equivalent: (i)  $\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}$  is invertible;

- (ii) rank(A, B) = n and rank $[(A, B) - (BA^{T} - AB^{T})(\overline{A}A^{T} + \overline{B}B^{T})^{-1}(-\overline{B}, \overline{A})] = n;$  (20)
- (iii) rank(A, B) = n and dim $\{N[(A, B)^{-}(A, B)] \cap N(-\overline{B}, \overline{A})]\} = 0;$ (21)

(iv)

$$\operatorname{rank}\{(A, B)[I_{2n} - (-\overline{B}, \overline{A})^{-}(-\overline{B}, \overline{A})]\} = n;$$
(22)

(v)

$$\operatorname{rank}\{(-\overline{B},\overline{A})[I_{2n}-(A,B)^{-}(A,B)]\}=n,$$
(23)

where all g-inverses are arbitrary but fixed. Moreover, if condition (iv) holds, letting  $S = I_{2n} - (-\overline{B}, \overline{A})^- (-\overline{B}, \overline{A}), D = S[(A, B)S]^- = (D_1 - \overline{D}_2)^T$ , then

$$\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}^{-1} = \begin{pmatrix} D_1 & D_2 \\ -\overline{D}_2 & \overline{D}_1 \end{pmatrix}.$$
 (24)

**Proof.** "(i)⇐⇒(iv)": If

$$\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}$$

is invertible, then rank(A, B) = n. Let  $Q = A + Bj \in M_n(H)$ . Then

$$\chi_A = \begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}.$$

By Theorem 4.3 of [1], Q is invertible. Let  $Q^{-1} = X_1 + X_2 j$ , where  $X_1, X_2 \in M_n(C)$ . Then by Theorem 4.2 of [1], we have

$$\chi_{\mathcal{Q}}\chi_{\mathcal{Q}^{-1}} = \begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix} \begin{pmatrix} X_1 & X_2 \\ -\overline{X}_2 & \overline{X}_1 \end{pmatrix} = I_{2n}.$$
(25)

Let

$$Y = \begin{pmatrix} X_1 \\ -\overline{X}_2 \end{pmatrix}.$$

We have

$$(A, B)Y = I$$
 and  $(-\overline{B}, \overline{A})Y = 0.$  (26)

Thus, the matrix equations

(A, B)X = I and  $(-\overline{B}, \overline{A})X = 0$  (27)

have a common solution  $X = Y \in M_{2n \times n}(C)$ .

Let

$$S = I_{2n} - (-\overline{B}, \overline{A})^{-} (-\overline{B}, \overline{A}), \qquad (28)$$

where the *g*-inverse  $(-\overline{B}, \overline{A})^-$  is arbitrary but fixed. By Lemma 2, the general solution of the matrix equation  $(-\overline{B}, \overline{A})X = 0$  can be written as

$$X = SW, (29)$$

with arbitrary  $W \in M_{2n \times n}(C)$ . Thus, there exists  $W_0$  such that  $Y = SW_0$ . Using it to replace X in the equation (A, B)X = I, we have

$$(A, B)SW_0 = I_n. aga{30}$$

By (30)

$$n \ge \operatorname{rank}[(A, B)S] \ge \operatorname{rank}I_n = n.$$
 (31)

Thus we have (22).

Conversely, if condition (22) holds, then by Lemma 2, the matrix equation

$$((A, B)S)X = I_n \tag{32}$$

has a solution  $X = [(A, B)S]^{-}$ . Suppose

$$D = S[(A, B)S]^{-} \in M_{2n \times n}(C).$$
(33)

Then we have

$$(A, B)D = I$$
 and  $(-\overline{B}, \overline{A})D = 0.$  (34)

Let

$$D = \begin{pmatrix} \underline{D}_1 \\ -\overline{D}_2 \end{pmatrix}.$$

Then it is easy to see that

$$\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix} \begin{pmatrix} D_1 & D_2 \\ -\overline{D}_2 & \overline{D}_1 \end{pmatrix} = I_{2n}.$$
(35)

Thus

$$\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}$$

is invertible, and

$$\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}^{-1} = \begin{pmatrix} D_1 & D_2 \\ -\overline{D}_2 & \overline{D}_1 \end{pmatrix}.$$
(36)

"(iv) $\iff$ (ii)": If (iv) holds, then (i) holds and

 $\operatorname{rank}(A, B) = \operatorname{rank}(-\overline{B}, \overline{A}) = n.$ 

Thus

$$(-\overline{B}, \overline{A})^{+} = (-\overline{B}, \overline{A})^{*} ((-\overline{B}, \overline{A})(-\overline{B}, \overline{A})^{*})^{-1}$$
$$= \begin{pmatrix} -B^{\mathrm{T}} \\ A^{\mathrm{T}} \end{pmatrix} (\overline{A}A^{\mathrm{T}} + \overline{B}B^{\mathrm{T}})^{-1},$$

and

$$(A, B)(I_{2n} - (-\overline{B}, \overline{A})^+ (-\overline{B}, \overline{A}))$$
  
=  $(A, B) - (A, B) \begin{pmatrix} -B^{\mathrm{T}} \\ A^{\mathrm{T}} \end{pmatrix} (\overline{A}A^{\mathrm{T}} + \overline{B}B^{\mathrm{T}})^{-1} (-\overline{B}, \overline{A})$   
=  $(A, B) - (BA^{\mathrm{T}} - AB^{\mathrm{T}})(\overline{A}A^{\mathrm{T}} + \overline{B}B^{\mathrm{T}})^{-1} (-\overline{B}, \overline{A}).$ 

Thus, (ii) holds.

Conversely, if (ii) holds, then by the above argument, we have

$$\operatorname{rank}\{(A, B)[I_{2n} - (-\overline{B}, \overline{A})^+ (-\overline{B}, \overline{A})]\} = n,$$
(37)

for the g-inverses  $(-\overline{B}, \overline{A})^+$ . By "(iv) $\Longrightarrow$ (i)", (i) holds. Thus by "(i) $\implies$ (iv)", condition (iv) holds.

"(i) $\iff$ (v)": Since

$$\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}$$

is invertible if and only if

$$\begin{pmatrix} -\overline{B} & \overline{A} \\ A & B \end{pmatrix}$$

is invertible, by "(i) $\iff$ (iv)", we have "(i) $\iff$ (v)".

"(v) $\iff$ (iii)": Since  $(A, B)^{-}(A, B)$  is idempotent matrices,

$$R[I_{2n} - (A, B)^{-}(A, B)] = N[(A, B)^{-}(A, B)],$$
(38)

and

$$\operatorname{rank}[I_{2n} - (A, B)^{-}(A, B)] = 2n - \operatorname{rank}[(A, B)^{-}(A, B)].$$
(39)

Thus by Corollary 6.2 of [2], we have

$$\operatorname{rank}\{(-\overline{B}, \overline{A})[I_{2n} - (A, B)^{-}(A, B)]\}$$
  
= 
$$\operatorname{rank}[I_{2n} - (A, B)^{-}(A, B)]$$
$$-\operatorname{dim}\{R[I_{2n} - (A, B)^{-}(A, B)] \cap N(-\overline{B}, \overline{A})\}$$
  
= 
$$2n - \operatorname{rank}[(A, B)^{-}(A, B)]$$
$$-\operatorname{dim}\{N[(A, B)^{-}(A, B)] \cap N(-\overline{B}, \overline{A})\}.$$

Since rank $[(A, B)^{-}(A, B)] =$ rank(A, B), it is easy to see that rank(A, B) = n and dim{ $N[(A, B)^{-}(A, B)] \cap N(-\overline{B}, \overline{A})$ } = 0 if and only if rank{ $(-\overline{B}, \overline{A})[I_{2n}]$  $-(A, B)^{-}(A, B)] = n$ . Thus we have "(v) $\iff$ (iii)".

**Corollary 1.** If  $AB^{T} = BA^{T}$ , then

$$\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}$$

is invertible if and only if rank(A, B) = n.

**Corollary 2.** If  $A + (AB^{T} - BA^{T})(\overline{A}A^{T} + \overline{B}B^{T})^{-1}\overline{B}$  is invertible, then

$$\begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}$$

is invertible.

Now, we can answer Question 2 as follows:

**Theorem 2.** If  $A, B \in M_n(C)$ , then the following statements are equivalent:

- (i)  $\begin{vmatrix} A & B \\ -\overline{B} & \overline{A} \end{vmatrix} = 0;$
- (ii)  $\operatorname{rank}(A, B) < n \text{ or}$  $\operatorname{rank}[(A, B) - (BA^{\mathrm{T}} - AB^{\mathrm{T}})(\overline{A}A^{\mathrm{T}} + \overline{B}B^{\mathrm{T}})^{-1}(-\overline{B}, \overline{A})] < n;$  (40)
- (iii) rank(A, B) < n or

$$\dim\{N[(A, B)^{-}(A, B)] \cap N(-\overline{B}, \overline{A})\} \neq 0;$$
(41)

(iv)

$$\operatorname{rank}\{(A, B)[I_{2n} - (-\overline{B}, \overline{A})^{-}(-\overline{B}, \overline{A})]\} < n;$$
(42)

(v)

$$\operatorname{rank}\{(-\overline{B},\overline{A})[I_{2n} - (A,B)^{-}(A,B)]\} < n,$$
(43)

where all g-inverses are arbitrary but fixed.

## References

- [1] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997) 21-57.
- [2] G. Marsaglia, G.P.H. Styan, Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra 2 (1974) 269–292.
- [3] P. Lancaster, M. Tismenetsky, The Theory of Matrices with Applications, second ed., Academic Press, Orlando, 1985.
- [4] L. Huang, The matrix equation AXB + CYD = E over a simple Artinian ring, Linear and Multilinear Algebra 38 (1995) 225–232.