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Abstract This work was divided into two phases. Phase one included the validation of neural

network to predict mortar and concrete properties due to sulfate attack. These properties were

expansion, weight loss, and compressive strength loss. Assessment of concrete compressive strength

up to 200 years due to sulfate attack was considered in phase two. The neural network model

showed high validity on predicting compressive strength, expansion and weight loss due to sulfate

attack. Design charts were constructed to predict concrete compressive strength loss. The inputs of

these charts were cement content, water cement ratio, C3A content, and sulfate concentration.

These charts can be used easily to predict the compressive strength loss after any certain age and

sulfate concentration for different concrete compositions.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Introduction

The service life of concrete structures is affected by the expo-

sure to severe environmental conditions. In fact, among the
different types of attack of concrete structures, sulfates are
the most widely exposing [1]. The reduction in compressive

strength and expansion is a direct effect of sulfate exposure.
The prediction of concrete structures service life needs an over-
view on the properties of concrete for a long time due to sulfate
attack. The assessment of concrete properties due to sulfate

attack using experimental methods is limited to short time
nearly 700 days [2,3]. The long term concrete properties need
a more appropriate method [4].

Numerical modeling methods such as neural networks are
being increasingly used in civil engineering applications, espe-
cially for the purpose of interpolating concrete properties

[5–7].
Polynomial interpolation is inappropriate and may yield

unsatisfactory results when it is used to predict intermediate

values. Linear regression can exclude illegitimate results. The
numerical modeling regression methods are the best methods
to predict concrete experimental results due to their multi-
parameters [8,9].

More appropriate strategies for such cases are derived as an
approximating function that fits the shape or general trend of
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Table 1 Ranges of used variables in database.

Minimum Maximum

Input variables

Cement content, CC (kg/m3) 207 532

Water cement ratio (w/c) 0.28 0.73

C3A (%) Zero 17

Sulfate concentration, SO3 (%) Zero 10

Initial compressive strength, Fc int (MPa) 16.5 78.4

Period of immersion (days) 7 16,425

Output variables

Compressive strength (MPa) 16.0 66.46

Expansion (·10�4) 0.08 110

Weight loss (%) 0.074 6.30
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the data without necessarily matching the individual points.

Artificial neural network is the development of multiple regres-
sion methods. Although such approaches have common sense
appeal and are valid for very complex calculations, they are

deficient because they are arbitrary. Therefore, expectation
of long term concrete properties is very difficult with these
approaches. To remove this subjectivity, some criterion must

be advised to establish a basis for the predicting [8,9]. A tech-
nique for accomplishing this objective, called interpolation
regression, is discussed in this paper.

2. Artificial Neural Networks (ANNs)

Neural networks are composed of simple elements operat-

ing in parallel. These elements are inspired by biological
nervous systems. As in nature, the connections between
elements largely determine the network function. Neural
network can be trained to perform a particular function

by adjusting the values of the connections (weights)
between elements. Typically, neural networks are adjusted,
or trained, so that a particular input leads to a specific

target output [10,11].
Neural network is adjusted, based on a comparison of the

output and the target, when the network output matches the

target. Typically, many such input/target pairs are needed to
train a network. Neural networks have been trained to per-
form complex functions in various fields that are difficult for
conventional computers or human beings [12,13].
Table 2 References of mortar and concrete data set.

Model no. Data set Sulfate type Ou

1-a Concrete Mg Co

1-b Mortar Mg Co

2-a Concrete Mg Ex

2-b Mortar Mg Ex

3-a Concrete Mg W

3-b Mortar Mg W

4-a Concrete Na Co

4-b Mortar Na Co

5-a Concrete Na Ex

5-b Mortar Na Ex

6-a Concrete Na W

6-b Mortar Na W
3. Structural applications of neural network

In recent years ANN could be trained to solve problems that
are difficult for conventional computers or human brains.

ANN has been applied to many other fields such as; aerospace,
automotive, banking, credit card activity checking, defense,
electronics, entertainment, financial, industrial, insurance,

manufacturing, medical, oil and gas, robotics, speech, securi-
ties, telecommunications, transportation, and civil engineering
[14,15].

Today, ANN has been applied to many civil engineering

problems with some degree of success such as detection of
structural damage, structural system identification, modeling
of material behavior, structural optimization, structural con-

trol, ground water monitoring, prediction of settlement of
shallow foundation, concrete mix proportions, and predicting
properties of conventional concrete and high performance con-

cretes [15,16]. Ozcan et al. [10] used neural networks to predict
long-term compressive strength of silica fume concrete. Topcu
and Sarıdemir [15] predicted properties of waste autoclaved

aerated concrete aggregate using artificial neural network.
Saridemir [7] studied the use of neural network for develop-

ing a methodology for predicting compressive strength of con-
crete with different w/c ratios. They arranged the data used in

the neural network model in a format of five input parameters
that cover the water-to-binder ratio, binder sand ratio,
metakaolin percentage, superplasticizer percentage, and age.

The proposed neural network model predicts the compressive
strength of mortars only.

The use of neural networks to predict the concrete durabil-

ity is the logic development in structural damage detection.
Concrete durability due to chloride or sulfate attack was mod-
eled by neural networks. Topcu et al. [5] used back propaga-

tion neural networks to predict the corrosion current in
reinforced concrete, in which fly ash was used. They concluded
that, the neural network models performed better than the
multiple regression ones, especially in reducing the scatter of

predictions.
Yaprak et al. [11] used the neural network to predict com-

pressive strength of concrete. Yaprak et al. arranged the data

used in the neural network model in a format of four input
parameters that cover the water-to-binder ratio, cement con-
tent, curing conditions, and age. Also, Pann et al. [16] used

neural networks for predicting the 28 day compressive strength
of Portland composite cement.
tput variable Reference numbers

mpressive strength [19–21,29,31,35,53,54]

mpressive strength [19–21,26,30,43,44,55]

pansion [19–21,37,53]

pansion [19–22,41,43]

eight loss [19–21,29]

eight loss [19–21]

mpressive strength [23,29,31,34–36,38,42,45,47,50,52,56]

mpressive strength [26,30,36,44,46,55]

pansion [23–25,28,32–34,37–40,48,50,51]

pansion [22,24,27,33,41,49]

eight loss [24,29,16]

eight loss [32]



Figure 1 The chosen model architecture.
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Goktepe et al. [13] studied the effect of sulfate attack on the
expansion of mortar for a long term period of time using neu-
ral networks. Orejarena and Fall [6] focused on studying the

use of artificial neural networks to predict the effect of sulfate
attack on strength of cemented paste. The neural networks
Figure 2 Model 1 predicted vs. experimental compressive strength fo

ions.

Figure 3 Model 2 predicted vs. experimental linear expansion for test
model was composed of five input parameters. These parame-
ters were the cement content, slag content, binder ratio, water
cement ratio, and sulfate content. The output parameter was

compressive strength. The authors explained that NNs have
strong potential as a feasible tool for evaluation of the effect
of sulfate attack on the compressive strength of concrete.

4. Program and model developing

Concrete structures exposed to sulfates attack generally deteri-

orate due to formation of gypsum and ettringite. This deterio-
ration leads to decrease in compressive strength, weight loss,
and volume increase (expansion) [17,18].

In this section, a neural network model is developed to pre-
dict the concrete properties vs. time due to sulfate attack. Mul-
tilayer feedforward network models have been trained with

Levenberg–Marquardt training algorithm [10,11]. The data
used for calibrating and validating of the neural network were
collected from the experimental studies of many published
papers [19–56].

4.1. Data collecting and grouping

The used data were collected from 38 different documented

published papers [19–56]. Among those, 2000 records were
used for training, testing, and validating phases of neural
r testing data (a – concrete, b – mortar) subjected to Mg2+ sulfate

ing data (a – concrete, b – mortar) subjected to Mg2+ sulfate ions.



Figure 4 Model 3 predicted vs. experimental weight loss for testing data (a – concrete, b – mortar) subjected to Mg2+ sulfate ions.

Figure 5 Model 4 predicted vs. experimental compressive strength for testing data (a – concrete, b – mortar) subjected to Na+ sulfate

ions.

Figure 6 Model 5 predicted vs. experimental linear expansion for testing data (a – concrete, b – mortar) subjected to Na+ sulfate ions.
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network models. In these models, six inputs and one output
were estimated for each case study. The inputs include the
amount of cement per unit concrete volume, water cement

ratio, C3A content, sulfate type and solution concentration,
initial compressive strength, period of immersion in solution.
The model output variables were compressive strength, expan-

sion, and weight loss. The available data set was divided into
two main groups (mortar and concrete). The ranges of the used
variables in the database are presented in Table 1, while Table 2
presents the considered references for each model.

4.2. Artificial neural network architecture

Before proceeding with model development, some model
parameters were selected based on similar studies and the liter-

ature available [10–12]. The total database size in the present



Figure 7 Model 6 predicted vs. experimental weight loss for testing data (a – concrete, b – mortar) subjected to Na+ sulfate ions.

Table 3 The statistical values of proposed models.

Model no. ANN

RMS R2 MAPE

1-a 0.003 0.999 0.002

1-b 0.560 0.977 1.040

2-a 0.001 0.999 0.010

2-b 0.425 0.953 10.00

3-a 0.150 0.993 13.57

3-b 0.174 0.942 5.360

4-a 0.970 0.996 1.120

4-b 0.000 1.000 0.000

5-a 0.350 0.961 24.42

5-b 0.396 0.980 16.86

6-a 0.116 0.976 16.34

6-b 0.064 0.997 3.530

Figure 8 Prediction of expansion vs. time for 9.0% C3A.

Figure 9 Prediction of compressive strength loss vs. expansion

for 9.0% C3A.
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study was 2000 cases, considering 6 inputs and one output for

each model. These data are divided into 80% for training, 10%
for testing (also called verification) and 10% for validation
[10]. The preliminary architecture of the neural network
according to MATLAB manual, see Fig. 1 was conceived as

follows:

(a) Type of neural network: Multilayer perceptron feed-for-

ward was trained through the error back-propagation
algorithm (this is the most commonly used type of
ANN and its application to function approximation

has already been proven in several studies) [10–12].
(b) Neurons in the first layer: Six neurons were specified

using MATLAB manual according to model size.
(c) Hidden layers: It has been found that a single hidden

layer presents satisfactory results for many problems
[10].

(d) Neurons in hidden layer: Eleven neurons were specified

from empirical criteria [10].
(e) Number of outputs: Single output in every model

(compressive strength, expansion, weight loss).

The commercial software MATLAB� was used for the
development of the model. A script was developed and

adjusted several times until the error criteria were met. It
was found that by increasing the number of hidden neurons
to 12 instead of 11, the convergence of the model improved
drastically. In order to avoid overtraining of the network,
the training was stopped when the testing error increased. This



Figure 10 Expansion–time and expansion–compressive strength

loss relation of concrete with 350 kg/m3 cement content and 5.0%

C3A subjected to 5% Mg2+ sulfate ions.
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feature is automatically set up in the software. The training of

the network was stopped when the error factor in each vector
Figure 11 Prediction of expansion and compressive strength loss vs.

ions (a) 0.2% C3A. (b) 2.0% C3A. (c) 5.0% C3A. (d) 9.0% C3A.
(training, validation and testing) was equal/less 5% [10]. The
training method used in the model development was the
Levenberg–Marquardt algorithm which exhibits the fastest

convergence in similar problems [10].

5. Results and discussion

In the present study, three forms were used to comparative
evaluation of the performance of the multilayer feed-forward
neural network model. These forms are root-mean-squared

(RMS) error, absolute fraction of variance (R2) and mean
absolute percentage error (MAPE) as given in Eqs. (1)–(3).
These forms were calculated between model’s results and

experimental results [10]:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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time at 450 kg/m3 cement content subjected to 5% Mg2+ sulfate



Figure 12 Prediction of expansion and compressive strength loss vs. time at 350 kg/m3 cement content subjected to 5% Mg2+ sulfate

ions (a) 0.2% C3A. (b) 2.0% C3A. (c) 5.0% C3A. (d) 9.0% C3A.
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where t is the target value, o is the output value, n is the pat-
tern. In the present study, compressive strength, expansion,
and weight loss vs. time due to sulfate attack were predicted

using the multilayer feed-forward neural network model. In
the training and testing processes experimental data from
thirty-eight different sources were used [19–56]. All results,

obtained from experimental studies and the predicted values
for compressive strength, expansion, and weight loss vs. time
are shown in Figs. 2–7.

From these figures, the values obtained from the training
and testing using the ANN model were very close to the exper-
imental results. The results of ANN model demonstrate that
the ANN system can be successfully applied to establish accu-

rate and reliable prediction models. The statistical parameter
values of RMS, R2 and MAPE showed obviously this behav-
ior. The statistical values of RMS, R2 and MAPE including

all the ANN models, is given in Table 3. The best R2 value
obtained is 1.000 for training set ANN, while, the minimum
value of R2 is 0.942 for testing set ANN.

6. Interpolation regression of concrete compressive strength

using ANN

In this section, an attempt to predict the concrete compressive
strength for a long age due to sulfate attack is developed based
on the experimental results that were extracted from many

published papers [19–56]. Neural network is used herein to pre-
dict this relation up to 200 years.

The estimation of concrete compressive strength in one

model gives scatter output results due to different types of sul-
fate attack using concrete water cement ratio, cement content,
C3A, degree of sulfate exposure, and time. So, in this
approach, the estimation of concrete compressive strength

due to sulfate attack is divided into two stages. Stage one
includes estimation of relation between age, and expansion
for different mentioned variables using neural network. Rela-

tion between expansion and concrete compressive strength loss
is established using neural network in the second stage.

In this model, compressive strength loss is used instead of

compressive strength values because expansion and compres-
sive strength loss increase in one direction vs. time where com-
pressive strength values decreases as time increases. So, the use

of compressive strength loss seems to be reliable in the pro-
posed model. Using neural network model, relation between
expansion strain and time of exposure is estimated. Fig. 8
shows an example for concrete with 350 kg/m3 cement and

5.0% C3A subjected to 5.0% sulfate attack.
Fig. 9 shows the relation between expansion strain and con-

crete compressive strength loss. Figs. 8 and 9 are merged

together in Fig. 10 which shows the relation between time



Figure 13 Prediction of expansion and compressive strength loss vs. time at 300 kg/m3 cement content subjected to 5% Mg2+ sulfate

ions (a) 0.2% C3A. (b) 2.0% C3A. (c) 5.0% C3A. (d) 9.0% C3A.

Figure 14 Prediction of expansion and compressive strength loss vs. time at 450 kg/m3 cement content subjected to 5% Na+ sulfate ions

(a) 0.2% C3A. (b) 2.0% C3A. (c) 5.0% C3A. (d) 9.0% C3A.
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Figure 15 Prediction of expansion and compressive strength loss vs. time at 350 kg/m3 cement content subjected to 5% Na+ sulfate ions

(a) 0.2% C3A. (b) 2.0% C3A. (c) 5.0% C3A. (d) 9.0% C3A.

Prediction of concrete compressive strength due to long term sulfate attack using neural network 635
and expansion for different w/c (straight lines) and relation
between expansion and compressive strength loss (curves) for
the same w/c. This figure is presented for concrete having
cement content of 350 kg/m3 9.0% C3A and subjected to

5.0% Mg sulfate attack.
According to Fig. 10, the procedures for determining the

concrete compressive strength loss% for concrete with 9.0%

C3A and 0.5w/c after 130 years are carried out according to
the following steps:

1. Age 130 years.
2. Using the relation between expansion strain and age at 0.5

w/c ratio, expansion strain can be estimated as 700 · 10�4.
3. Using an expansion of 700 · 10�4 and expansion–compres-

sive strength loss relation. The expected compressive
strength loss percentage can be estimated as 62%. These
steps are summarized in Fig. 10.

6.1. Design charts for estimating concrete compressive strength
loss using neural network

The aim of this proposed model is to present a new application
approach for estimating concrete compressive strength loss

due to sulfate attack. Design charts are established to estimate
the compressive strength loss for different cases. The design
charts are designed using zones limits of ACI 201 and ACI
318 [57,58].

ACI 318 divides sulfate attack to four zones according to

the sulfate concentration and recommends specified mix prop-
erties for each zone [57,58]. The proposed durability design
charts can be presented according to the following items:

1. Cement content and water cement ratio. Cement content of
300, 350, and 450 kg/m3 are used. Three values of w/c are

specified for each cement contents; (0.3, 0.4, and 0.5 for
450 kg/m3, 0.4, 0.5, and 0.6 for 350 kg/m3, and 0.5, 0.6,
and 0.7 for 300 kg/m3).

2. C3A content. Four values are used as 0.2%, 2.0%, 5.0%,

and 9.0%.
3. Sulfate concentration. SO3 concentrations are specified as

0.2%, 1.0%, and 5.0%.

4. Type of ions. Sodium and magnesium sulfates are used.

Using the concept of neural network presented in Fig. 10,

design charts for different parameters mentioned previously
are constructed as shown in Figs. 11–28. These charts show
the relation between percentage of concrete compressive

strength loss and age related with expansion. The cement
content in these charts varies from 300 to 450 kg/m3 while



Figure 16 Prediction of expansion and compressive strength loss vs. time at 300 kg/m3 cement content subjected to 5% Na+ sulfate ions

(a) 0.2% C3A. (b) 0% C3A. (c) 5.0% C3A. (d) 9.0% C3A.

Figure 17 Prediction of expansion and compressive strength loss vs. time at 450 kg/m3 cement content subjected to 1.0% Mg2+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.
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C3A content varies between 0.2% and 9.0%. The effect of sul-
fate ions type is considered in these charts.

The previous charts provide an easy method to estimate
concrete compressive strength loss and linear expansion
strain for any specified concrete proportions. As an example,
estimation of the compressive strength loss for concrete with
w/c = 0.5, and C3A = 5.0% subjected to 5.0% Mg sulfate

attack can be determined using Figs. 11–13. The compressive
strength loss after 150 years is 16%, 31%, and 37% for cement
content with 450, 350, and 300 kg/m3, respectively.



Figure 18 Prediction of expansion and compressive strength loss vs. time at 350 kg/m3 cement content subjected to 1.0% Mg2+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.

Figure 19 Prediction of expansion and compressive strength loss vs. time at 300 kg/m3 cement content subjected to 1.0% Mg2+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.

Figure 20 Prediction of expansion and compressive strength loss vs. time at 450 kg/m3 cement content subjected to 0.2% Mg2+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.
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Figure 21 Prediction Of Expansion And Compressive Strength Loss vs. Time At 350 kg/M3 Cement Content Subjected To 0.2% Mg2+

Sulfate Ions (A) 0.2% C3A. (B) 9.0% C3A.

Figure 22 Prediction of expansion and compressive strength loss vs. time at 300 kg/m3 cement content subjected to 0.2% Mg2+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.

Figure 23 Prediction of expansion and compressive strength loss vs. time at 450 kg/m3 cement content subjected to 1.0% Na+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.
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Figure 24 Prediction of expansion and compressive strength loss vs. time at 350 kg/m3 cement content subjected to 1.0% Na+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.

Figure 25 Prediction of expansion and compressive strength loss vs. time at 300 kg/m3 cement content subjected to 1.0% Na+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.

Figure 26 Prediction of expansion and compressive strength loss vs. time at 450 kg/m3 cement content subjected to 0.2% Na+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.
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Figure 27 Prediction of expansion and compressive strength loss vs. time at 350 kg/m3 cement content subjected to 0.2% Na+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.

Figure 28 Prediction of expansion and compressive strength loss vs. time at 300 kg/m3 cement content subjected to 0.2% Na+ sulfate

ions (a) 0.2% C3A. (b) 9.0% C3A.

Figure 29 Comparison between models for expansion–time

relation subjected to 2.1% Na+ sulfate ions at 5.0% C3A.

Figure 30 Comparison between models for expansion–time

relation subjected to 5.0% Mg2+ sulfate ions at 0.5 w/c and

450 kg/m3cement content.
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These charts emphasize the importance of using low w/c
ratio and low C3A content to increase the sulfate resistance
of concrete. In addition, the use of concrete with high cement

content enhances the resistance due to sulfate attack. The
effect of cement content is neglected in ACI code for concrete
subjected to sulfate attack. These design charts can be used

also to assess the alternative mix characteristics: w/c ratio,
cement content, and C3A content which add the same ability
to resist sulfate attack.

6.2. Comparison between the proposed model and other models

The model may be compared with similar models that were

presented in other published papers to ensure its reliability.
Fig. 29 shows the comparison between predicted expansion
by neural network model and Kurtis et al. [39] equation for
2.1% sodium sulfate attack. This figure shows high conver-

gence between neural network model and Kurtis et al. [39].
Fig. 30 shows the comparison between predicted expansion

by neural model and Diab et al. regression model for 5.0%

magnesium sulfate attack. This figure shows high convergence
between neural model and Diab et al. regression model with
450 kg/m3 cement content and 0.5 w/c [21].
7. Conclusions

Based on the models presented previously, the following con-

clusions can be drawn:

(1) Numerical modeling using neural network shows a great
performance to predict concrete properties subjected to

sulfate attack where the minimum value of R2 is 0.942
for testing set ANN.

(2) Design charts are established using neural network to

predict the compressive strength loss due to sulfate
attack for long time exposure.

(3) Design charts can be used easily to give different alterna-

tive mix constituents for concrete subjected to sulfate
attack.

(4) Design charts emphasize the importance of using low w/

c ratio and low C3A content to increase the sulfate resis-
tance of concrete. In addition, the use of concrete with
high cement content enhances the resistance of concrete
due to sulfate attack. However, ACI code for concrete

subjected to sulfate attack neglects this effect.
(5) The comparison between the present model and other

referenced models showed high convergence between

neural network model and other models in predicting
expansion.
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