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Abstract

We investigate the size and structure of ordered binary decision diagrams (OBDDs) for random Boolean functions. It
was known that for most values of n, the expected OBDD size of a random Boolean function with n variables is equal
to the worst-case size up to terms of lower order. Such a phenomenon is generally called strong Shannon e&ect. Here
we show that the strong Shannon e&ect is not valid for all n. Instead it undergoes a certain periodic ‘phase transition’:
If n lies within intervals of constant width around the values n = 2h + h, then the strong Shannon e&ect does not hold,
whereas it does hold outside these intervals. Our analysis provides doubly exponential probability bounds and generalises
to ordered Kronecker functional decision diagrams (OKFDDs).
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A Boolean function is a mapping f:{0; 1}n → {0; 1} depending on Boolean variables. EDcient representation and
manipulation of Boolean functions is an important issue in applications, e.g., formal veriEcation. The state-of-the-art data
structure for Boolean functions are ordered binary decision diagrams, abbreviated OBDD (see Bryant’s articles [6,8]).
An OBDD is an acyclic directed graph with one root and two terminals 0 and 1. Every non-terminal node is labelled

with a variable and has two outgoing edges pointing to successor nodes. Which one of them is ‘active’ depends on
the value of the variable. To compute the value of the function, one starts at the root node and follows the unique
path of active edges to a terminal. Each OBDD has a global ordering in which the variables are tested. A level is the
set of all nodes labelled with a given variable. An OBDD is called reduced, if it contains no nodes representing the
same subfunction. The reduced ordered binary decision diagram of a Boolean function is uniquely determined for each
variable ordering. It can be obtained (or even deEned) as the result of the application of two reduction rules to its binary
decision tree. The merging rule allows to identify nodes that test the same variable and have coinciding successor nodes
(Fig. 1). By the deletion rule, nodes with both outgoing edges pointing to the same successor can be removed, because
the function they represent does not depend on the variable that is about to be tested (Fig. 2). The quasi-reduced ordered
binary decision diagram (qOBDD) results from applying (only) the merging rule to its binary decision tree. It will play
an important role in our analysis. The quasi-reduced OBDD of a Boolean function is also uniquely determined for each
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Fig. 2. Deleting v.

variable ordering, and from the qOBDD of a function one can obtain its OBDD by applying the deletion rule. We consider
reduced OBDDs unless stated otherwise.
Many tasks can be performed eDciently with OBDD, including equivalence checking, satisEability test, satisEability

count, synthesis (computation of f ⊗ g from f and g, where ⊗ is a Boolean operation), replacement of variables by
functions (substitution), redundancy test (“does f(x1; : : : ; xn) depend on xi?”), and more. EDcient implementation are e.g.
[4,27]. The size of the OBDD for a given function generally depends on the choice of the variable ordering. The optimal
variable ordering problem is hard to approximate up to constant factors [26]. For heuristics see e.g. [24]. While there exist
Boolean functions having exponential OBDD size for all variable orderings (like the ‘middle’ bit of integer multiplication
[7]), the importance of OBDDs stems from the fact that many functions encountered in practice have moderately sized
OBDDs at least for some variable orderings.
This paper is devoted to theoretical investigations on the size of the OBDD of a Boolean function which has been

chosen according to the uniform distribution. Using counting arguments, Liaw and Lin [21] showed that the expected
optimal OBDD size in this model is never more than a constant factor apart from the worst-case OBDD size of any
function on n variables. Later Wegener [29] showed that the two quantities in fact coincide up to terms of lower order,
if the number of variables is uniformly distributed in [2h::2h+1 − 1] and h goes to inEnity. 3 The phenomenon that almost
all functions have the same OBDD size as the hardest functions up to a factor of 1 + o(1) is called the strong Shannon
e;ect for random Boolean functions and OBDDs. 4 If almost all functions have the same OBDD size up to a factor of
1 + o(1), which may be smaller than the worst-case size, then the weak Shannon e;ect holds. Wegener proved that the
weak Shannon e&ect holds for all n. He also showed that the strong Shannon e&ect holds for ‘most’ n, in the sense just
described.
These results led to the conjecture [29] that the strong Shannon e&ect also holds for all n. But this turns out not to

be the case. We will uncover a periodic ‘phase transition’ in the development of the gap between the expected and the
worst-case size of the OBDD of a random Boolean function. The strong Shannon e&ect does not hold within intervals of
constant width around the values n= 2h + h, where h∈N, but it does hold outside these intervals.

3 Intervals of integers are denoted as [a :: b] := [a; b] ∩ Z and [a] := [1 :: a].
4 In this paper, o- and O-terms are unsigned, whereas !-, 
-, and �-terms are non-negative.
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Theorem 1.1 (Main Theorem). Denote the minimal size of an OBDD for a Boolean function f by Z∗(f) and the
worst-case OBDD size by W . Let

B :=
⋃
h∈N
[2h + h− d(h)::2h + h+ d(h)];

where d is speci=ed in (i) and (ii) below, and set A := N \ B.
(i) If n→ ∞ in such a way that n∈A for some d(h) → ∞, then

Pr(Z∗ = (1− o(1))W ) ∼ 1;

i.e., the strong Shannon e;ect holds for the minimal OBDD size of random Boolean functions.
(ii) If n→ ∞ in such a way that n∈B for some d(h) = O(1), then

Pr(Z∗ = (1− 
(1))W ) ∼ 1;

and the strong Shannon e;ect does not hold for the minimal OBDD size of random Boolean functions.
The same conclusions hold for the minimal qOBDD size.

In the proof, we Erst investigate the case of a Exed variable ordering and then generalise to arbitrary (including the
optimal) variable orderings. We pursue a reEnement of Wegener’s urn experiment approach. His key observation was that
the size of each OBDD level is given by the classical urn occupancy experiment, whose expectation and variance are well
known [20]. He then handled the case of arbitrary variable orderings using the method of second moments. Instead, we will
invoke specialised large deviation inequalities which yield stronger estimates and allow some simpliEcations in the proof.
We cannot apply the results of Kolchin, Sevast’T̂anov and ChistT̂akov [20] on the limit distributions of the urn occupancy
experiment, because they make no assertion about the convergency rate. Instead, we use a large deviation inequality that
follows from Azuma’s martingale inequality, and invoke ChvUatal’s bound on the hypergeometric distribution. The resulting
probability bound is doubly exponential in n, which improves upon the exponential bound of [29]. Another methodical
innovation of our approach is the use of a functional equation to locate a certain ‘critical level’ in the OBDD.
The new approach has the advantage that it enables us to extend Main Theorem 1.1 to a generalisation of OBDDs

called ordered Kronecker functional decision diagram (OKFDD) [12]. OKFDDs include several other (earlier) extensions
of the OBDD data structure as special cases. Such a result apparently cannot be obtained by the second moment method.

2. Preliminaries

Throughout this section we consider a random Boolean function f together with an arbitrary, but Exed variable ordering.
Without loss of generality, we will assume this ordering to be (x1; : : : ; xn). We denote the qOBDD for f with respect to
the canonical variable ordering by qOBDD(f). The nodes on level i of qOBDD(f) represent the di&erent subfunctions of
f that can be obtained by substituting the Erst i− 1 variables xi; : : : ; xi−1 by constants c1; : : : ; ci−1. In OBDDs, a node is
present only if the subfunction really depends on the variable tested there. Let Yi resp. Zi denote the number of nodes on
level i of qOBDD(f) resp. OBDD(f); so Yi¿ Zi. Upper bounds on the level sizes in qOBDDs follow from the growth
rate of the decision tree, ki := 2i−1, and from the number of Boolean functions with n − i + 1 variables, mi := 22

n−i+1

(see Fig. 3). For reduced OBDDs, we set m′
i := mi − mi+1. Clearly, Yi6wi := min{ki; mi} and Zi6w′

i := min{ki; m′
i}.

These bounds are tight, as was shown in [17, Lemma 2] by a direct construction. So the worst-case size of the whole
qOBDD is W (n) =

∑n
i=1 wi. Liaw and Lin [21] showed that W (n) =�(2n=n) (see also [17]). We review results on the

worst-case size (as far as they are applied in our analysis) in Section 3. More details about how W (n)=(2n=n) oscillates
between certain critical parametrizations of n can be found in [15,16].
Recall that Yi was deEned as the number of nodes at the ith level of qOBDD(f). It turns out that Yi is almost always

almost equal to Zi, the corresponding number for OBDD(f). Thus, the merging rule alone is already suDcient to reduce
the diagram size from 2n (the size of the decision tree) to some value below W (n) =�(2n=n), whereas the e&ect of the
deletion rule is comparatively negligible for a random Boolean function. This fact was observed by Liaw and Lin [21]
and rigorously proved by Wegener [29]. The consequence for our analysis is that we may focus on quasireduced OBDDs
instead of reduced OBDDs.
Since we want to decide when the strong Shannon e&ect holds, what we are really interested in is Xi := wi − Yi,

the number of nodes that are ‘missing’ at the ith level of the qOBDD compared with the worst-case size wi. We put
X :=

∑
i Xi, Y :=

∑
i Yi and let E(X ) resp. E(Y ) denote the expectations. Then the strong Shannon e&ect for OBDDs

with respect to a Exed variable ordering holds if and only if E(X )=W → 0 as n→ +∞. We estimate the worst-case size
W (n) and the expectation E(X ) separately. The diDcult part is the analysis of E(X ).
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Fig. 3. The worst-case shape of a qOBDD.

Wegener showed that random OBDDs are essentially worst-case shaped whenever n is such that for all levels i either
kiTmi or kiUmi holds. His result is essentially Part (i) of our Theorem 1.1 (but here we determine the range of n for
which the condition holds). In order to prove Part (ii), we must deal with those n for which an i exists such that ki and
mi are of (about) the same size. We also take some care to let both parts (ranges of n) be complementary to each other.
We need a concise notation for the critical point i where the upper bounds ki and mi meet. 5 We deEne the function

L by the functional equation

L(n) + log L(n) = n (2.1)

and set

i� := L(n) + �+ 1: (2.2)

Then by deEnition,

ki� = 2
�+L and mi� = 2

2−�L: (2.3)

With this notation, the critical point is precisely at i = i0, and wi0 = ki0 = mi0 = 2
L(n). But note that i0 is not an integer

in general. It only marks the borderline where the worst-case level width turns from growing exponentially to shrinking
doubly exponentially (see Fig. 3). What we really have to deal with is the critical level (if it exists), which has the form
i� ∈N, where |�| must be suDciently small (see DeEnition 4.3.). By deEnition of the function L, we have

wi =

{
ki; i6 i0;

mi; i¿ i0:
(2.4)

There is no closed formula for L, whereas by the deEning functional equation (2.1), the inverse function of L is simply
L−1(i) = i + log i. As an alternative deEnition, one can also obtain L as a pointwise limit of a sequence of functions
Lr , r ∈N0, deEned by L−1(n) := 1 and Lr+1(n) := n − log Lr(n). It is elementary to show that the pointwise limit
L(n) := limr→∞ Lr(n) exists i& n¿ 1. In fact, the inequalities

L2r(n)¿L2r+2(n)¿L(n)¿L2r+3(n)¿L2r+1(n) (2.5)

5 We consider mi instead of m′
i for technical reasons, although our interest is mainly in reduced OBDDs.
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are valid for r ∈N0 and n¿ 1. The Erst approximations are

L0(n) = n;

L1(n) = n− log n;

L2(n) = n− log(n− log n):

(2.6)

From these one can easily show that L(n) ∼ n and 2L(n) ∼ 2n=n. Also, L1(n) − L(n) = o(1), since L1(n) − L2(n) = o(1).
Inequalities (2.5) will be applied occasionally, but the asymptotics are more important.
Working with L simpliEes the calculations. Earlier investigations dealt with L1 in some way [29] or approximated L

by other means [21]. In [17], 
i0� was implicit in the form of min{i∈N | ki¿mi}, but no asymptotic for 
i0� − i0 was
given. We decided to use L itself and apply the functional equation (2.1) in the calculations.
The following inequalities are valid for x6 0.

1 + x

1 + x +
x2

2
+
x3

6


6 ex6 1 + x +

x2

2
: (2.7)

3. Worst-case sizes

This section is devoted to worst-case bounds for W (n) and W ′(n). Let us refer to the ratios W=2L and W ′=2L as the
relative worst-case size. 6 A detailed analysis of the oscillation of the relative worst-case size was given in [15,16]; here
we only repeat the main result. In view of the oscillations, the global bounds are tight, and for every particular sequence
of n, the relative worst-case size is known up to a factor of 1+o(1). Our global lower and upper bounds slightly improve
upon those of Liaw and Lin [21], Heap and Mercer [17], and Breitbart et al. [5]. However, our main results can be shown
using only W ′(n) ∼ W (n) =�(2L(n)), and this was already known from [21].

Theorem 3.1 (Gropl et al. [16,15]). (i) For n→ +∞,

1¡
W (n)
2L(n)

6 2 + O(2−L(n)=2) = 2 + O
(√

n
2n

)
:

Furthermore, if n∈N \ {2h + h | h∈N} is large enough, then the upper bound can be improved to W=2L ¡ 2.
(ii) For large enough n,

1¡
W ′(n)
2L(n)

¡ 2;

and both inequalities are asymptotically tight.

Essentially, the lower bound from [5] is 1 + o(1), and the upper bound from [21] is 2 + o(1).
We remark that oscillations do not occur for the relative worst-case size of general branching programs (where variables

may be tested arbitrarily often, not necessarily respecting a global ordering) [5]. The results of [15] imply that the relative
worst-case size of read-once branching programs oscillates in a similar way as that of OBDDs. (In read-once branching
programs, variables can be tested at most once, but in arbitrary order.)

4. Expected qOBDD size for a $xed variable ordering

In this section, we determine the expected size of the levels of the qOBDD with a Exed variable ordering for a random
Boolean function. In a typical qOBDD, not all levels are as large as in the worst-case examples. We deEned Xi =wi − Yi
as the number of ‘missing’ nodes at the ith level of a qOBDD. For each level, the expected value E(Xi) can be computed
by the following urn experiment [20,29], a variation of the classical urn occupancy experiment.
Think of the subfunctions that result from constant assignments to the Erst i− 1 variables as balls and of the possible

subfunctions at level i as urns. Then at level i, there are ki balls being thrown into mi urns, so E(Yi) is the expected
number of non-empty urns.

6 Remember that 2L ∼ 2n=n.
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Proposition 4.1. (i)

E(Yi) =
∑
j∈[mi ]

Pr(jth urn is non-empty) = mi(1− qi);

where

qi := Pr(first urn is empty) =
(
1− 1
mi

)ki
;

(ii)

E(Xi) =

{
ki − mi(1− qi); i6 i0;

miqi; i¿ i0:

The proof is straightforward. For (ii), use (2.4).
As already mentioned, we have to be especially careful about those n for which an i exists such that ki and mi are of

roughly the same size, because then qi �= o(1) and qi �= 1 + o(1) (and we are in part (ii) of the Main Theorem). These
critical levels are what we have to look at in this section. The existence of critical levels is the reason why the strong
Shannon e&ect breaks down occasionally. We say that a level j is critical if E(Xj) is bigger than a constant fraction of
W . In our analysis, we show that such a j necessarily has the form j = i� ∈N for some suDciently small |�|. Of course,
for |�| → +∞, no level i� can be critical, since then wj = o(W ) by (2.4). But the actual threshold for � which we will
determine in what follows is much smaller.
We cannot compute E(Xj)=W directly in order to decide whether the strong Shannon e&ect holds. Instead we look at

the ratio E(Xj)=2L and use the results from Section 3. We also show that there is at most one critical level.
The main technical contribution of this section is Theorem 4.8, which leads to an ‘intermediate’ result about the expected

qOBDD size with respect to a Exed variable ordering of random Boolean functions, Theorem 4.12. The restriction to a
Exed variable ordering can be dropped when we apply strong large deviation bounds. This is done for the merging rule
in Section 5 and for the deletion rule in Section 6. The e&ect of the deletion rule is comparatively negligible.
Before we delve into the technicalities, we explain the idea of the proof in an easy special case.

Proposition 4.2. For n = 2h + h and h ↗ +∞, E(X )=W = 
(1), so the strong Shannon e;ect does not hold. More
precisely,

lim inf
n=2h+h
h↗+∞

E(Xi0 )
2L

¿
1
e
; and lim inf

n=2h+h
h↗+∞

E(X )
W

¿
1
2e
:

Proof. Recall that L(2h + h) = 2h, which implies that the critical point i0 = 2h + 1∈N is also a level. Observe that
wi0 = ki0 = mi0 = 2

L = 22
h
. By Proposition 4.1, we have

E(Xi0 ) = mi0

(
1− 1
mi0

)ki0
= 22

h
(
1− 1

22h

)22h
∼ 22

h

e
;

and by (2.4),

W (2h + h) =
i0∑
i=1

ki +
n∑
i=i1

mi = 2 · 22h − 1 + o(22
h
) ∼ 2 · 22h :

The tightness of these bounds will be shown in Theorem 4.8. Some prerequisites are developed in the next section.

4.1. Prerequisites

The proof of Proposition 4.2 was easy because L(2h + h) = 2h is an integer. Things get more complicated for arbitrary
n. We will show that taking more than a constant number of steps away from the ‘bad’ values n = 2h + h is enough to
guarantee that the strong Shannon e&ect holds, and that any constant number is not suDcient.
Stated in another way, the diDculty that arises in the proof for general n is that the critical point i0 does no longer

coincide with the critical level of the qOBDD, which in fact can be �i0� or 
i0�, depending on n. Therefore, we introduce
a parameter �′(n)∈R such that i�′(n) will be the critical level, if there is any.
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De$nition 4.3. Let �′(n) denote the di&erence between L(n) and the next natural number, i.e.

�′(n) := ‘ − L(n);
where ‘∈N is the unique element of ] L(n)− 1

2 ; L(n) +
1
2 ] ∩N, and write

i′ := i�′ :

By deEnition, i�′(n) = i0 + �′(n) = ‘ + 1 is the integer nearest to i0. In case of a tie, we round up, so �′(n)∈ ]−1
2 ;

1
2 ].

Obviously, �′(2h + h) = 0. This is the case we considered in Proposition 4.2. As |�′| gets larger, E(Xi�′ ) becomes
negligible compared to 2L very soon, and hence there is always at most one critical level. We need to End out how large
�′ is, depending on n. Therefore, we introduce two other parameters h(n) and a(n) such that n=2h(n) + h(n)+ a(n). Then
a is closely related to �′.
There is one little complication with this approach. As n grows from 2h

′
+ h′ to 2h

′+1 + h′ + 1, the parameter �′(n)
Erst goes up from 0 to about 12 , then jumps down to about − 1

2 and Enally becomes 0 again. (This is because L(n) grows
slightly slower than n.) In the following deEnition, we force that the jumps of a(n) are at the same positions as those of
�′(n) by the requirement that a and �′ have the same sign. It is not necessary for us to determine the exact position of
the jumps.

De$nition 4.4. For n∈N, we deEne h(n)∈N and a(n)∈Z by the requirements that (i) n = 2h(n) + h(n) + a(n), (ii)
a(n) · �′(n)¿ 0, and (iii) |a(n)| is minimal under conditions (i) and (ii).

It is easy to check that the numbers h(n) and a(n) are well deEned. Next we note some immediate consequences of
DeEnitions 4.3 and 4.4.

Proposition 4.5. (i) If �′(n)¿�′(n+ 1), then n ∼ √
2 2h

′
for some h′ ∈N.

(ii) If (h′t)t∈N and (a′t)t∈N are sequences such that a′t = o(2
h′t ) as t → +∞ and nt := 2h

′
t + h′t + a

′
t , then h(nt) = h

′
t

and a(nt) = a′t .
(iii) For large n, we have |a(n)|6 0:42 · 2h(n) and thus, n=�(2h(n)).

Proof. Assertion (i): Using the notation of DeEnition 4.3, we have

�′(n) = ‘ − L(n) = ‘ − n+ log L(n):
Since L(i) ∼ i,

L(n+ 1)
L(n)

=
n+ 1− log L(n+ 1)
n− log L(n)

= 1 +
1− log L(n+ 1)=L(n)
n− log L(n)

= 1 +
1− o(1)
n

and hence,

log
L(n+ 1)
L(n)

=
∣∣∣∣O

(
1
n

)∣∣∣∣ :
So

�′(n+ 1) = (‘ + 1)− (n+ 1) + log L(n) +
∣∣∣∣O

(
1
n

)∣∣∣∣= �′(n) +
∣∣∣∣O

(
1
n

)∣∣∣∣ (4.1)

unless

�′(n) + log
L(n+ 1)
L(n)

¿
1
2
: (4.2)

The latter can happen only if �′(n) = 1
2 − |O(1=n)|, so

1
2

−
∣∣∣∣O

(
1
n

)∣∣∣∣= �′(n) = log L(n)− h′

for some h′ ∈N. This shows that

n ∼ L(n) = 2h′+
1
2−|O(1=n)| ∼

√
2 2h

′
:
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Assertion (ii): Notice that a′t =o(nt). First assume that a
′
t ¿ 0. Using Eq. (4.1) for n=2h

′
t + h′t , n=2

h′t + h′t +1; : : : up
to n= nt − 1 and adding up the error terms, we End that

�′(nt)− �′(2h′t + h′t)︸ ︷︷ ︸
=0

= O
(

at
2h′t + h′t

)
= o(1):

In particular, inequality (4.2) does never hold for these n. It follows that h(nt) = h(2h
′
t + h′t) = h

′
t , and hence a(nt) = a

′
t .

A similar argument works for a′t ¡ 0, but here we use the estimate �′(n − 1) = �′(n) − |O( 1n )|, which can be proved in
the same way as (4.1).

Assertion (iii): On each range of n where h(n) is constant we have a(n) = n− 2h(n) − h(n) = n− const:, so n �→ a(n)
is isotone there. Hence the maximal value of |a(·)| is attained for n or n + 1 in the situation of Assertion (i). So let
h′ ∈N be such that n ∼ √

2 2h
′
. A simple calculation shows that h(n) = h′, a(n) ∼ (

√
2− 1)2h(n) and h(n+ 1) = h′ + 1,

a(n+ 1) ∼ (1=
√
2− 1)2h(n+1). Therefore,

lim sup
n∈N

|a(n)|
2h(n)

= max
{√

2− 1; 1− 1√
2

}
¡ 0:42:

How are the two parameters �′ and a related? Given an a, we would like to know (approximately) how big �′ is. One
would expect that a and �′ are nearly proportional as long as we do not move away too far from the ‘nice’ values n=2h+h.
We introduce another parameter, ã(n), to make this connection explicit and precise. The notation ã(n) emphasises that
the new parameter has about the same size as a(n).

De$nition 4.6. We deEne

�x :=
x log e
L(n)

and

ã(n) :=
�′(n) L(n)
log e

:

Obviously, �′ = �ã.

Lemma 4.7. (i) If a= o(n), then ã= a+ O(a2=n) ∼ a.
(ii) If a→ ±∞, then ã→ ±∞.

Proof. Assertion (i): Let h = h(n) and a = a(n) as in DeEnition 4.4, and L = L(n). To determine �′(n), we expand L
using the functional equation (2.1)

L= n− log L= n− h︸ ︷︷ ︸
∈N

− log
L
2h
: (4.3)

We claim that �′(n) = log L
2h
= o(1). Using (2.1) once more, we End that

log
L
2h
= log

2h + h+ a− log L
2h

= log
(
1 +
h− log L+ a

2h

)
: (4.4)

Since

log(1 + x) = x log e + O(x2) (4.5)

for x = o(1), and L(n) ∼ n,
h− log L= h− log(2h(1 + o(1))) =−log(1 + o(1)) = o(1):

So

log
L
2h
= log

(
1 +
a+ o(1)
2h

)
=
a log e
2h

(
1 + O

( a
2h

))
= o(1)
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1

2e

a

lim
n=2 h+ h+ a

h   +∞

E(X)

W

0 1 2 3−1−2−3−4−5−6 4

↑  

Fig. 4. When the strong Shannon e&ect does not hold (Corollary 4.11).

is indeed the fractional part of L as was suggested in (4.3), and �′(n) = log(L=2h) = a log e=L + O(a2=L2) ∼ a log e=L.
Therefore, ã= L �′=log e = a+ O(a2=n) ∼ a.

Assertion (ii): To prove the contrapositive, assume that there exists an inEnite subsequence of n for which ã = O(1).
By deEnition of �′,

L= ‘ − �′ = ‘ − �ã; (4.6)

where ‘= ‘(n)∈N and ã= ã(n)=O(1). For notational convenience, assume that the subsequence is equal to the original
one. Application of the mapping L−1:i �→ i + log i to both sides of (4.6) gives

n= ‘ − �ã + log(‘ − �ã): (4.7)

Observe that |�ã| is rather small; we have
�ã = O(ã)=L= O(1=n):

So we can rewrite (4.7) as

n= ‘ + log ‘ − c;
with a small correction term c, whose size is only

c := �ã + log
‘

‘ − �ã = O(1=n) (4.8)

by (4.5). Therefore, we can guess that h(n) is equal to

h′ := log ‘ − c = n− ‘∈N: (4.9)

So far, we know that h′ is an integer close to log ‘. But what about 2h
′
and ‘? Expressing ‘ in terms of c and h′, we

End

‘ = 2log ‘ = 2h
′+c = 2h

′+O(1=n) = 2h
′
(1 + O(1=n)) = 2h

′
+ O(2h

′
=n);

and using (4.6) and (4.8), we have

2h
′
= 2log ‘−c = 2log(L+O(1))−O(1=n) = (L+ O(1))2O(1=n) ∼ L= O(n):

Hence 2h
′
= ‘ + O(1). So by (4.9)

a′ := n− 2h
′ − h′ = n− ‘ − h′ + O(1) = O(1):

But this implies that h(n) = h′ and a(n) = a′ = O(1) by Proposition 4.5(ii). Going from the subsequence back to the
original sequence, we have shown that |ã| 9 +∞ implies |a| 9 +∞. By deEnition, a and ã have the same sign.

4.2. Expected size of the qOBDD levels

Now we are prepared to extend the idea of Proposition 4.2 to the case of general n. Assertions (i) and (ii) of Theorem
4.8 are concerned with the size of the (possibly) critical level i′, while Assertion (iii) says that the other levels altogether
contribute only o(1) to E(X )=2L. Note that (i) implies the existence of a limit for constant a (which is not at all obvious).
See Fig. 4 for an illustration.
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Theorem 4.8. Let i′ be the critical level as in De=nition 4.3.
(i) For sequences of n such that a(n) = o(

√
n),

E(Xi′)
2L

=


 2−a+o(1)(e−2

a+o(1) − 1) + 1; a6 0;

2−a+o(1) e−2
a+o(1)
; a¿ 0:

(ii) For sequences of n such that |a(n)| → +∞, E(Xi′)=2L = o(1).
(iii) For all sequences of n, E(X − Xi′)=2L = 2−
(√n).

Proof. Let k := k ′i and m := m
′
i . Since we want to use Proposition 4.1, we need upper and lower bounds for q := qi′ .

Estimation of q:
Writing

q =
(
1− 1
m

)k
=

(
1− 1
m

)m(k)=m
=

(
1− 1
m

)(m−1)k=(m−1)

and using the inequalities (1− 1=x)x−1¿ 1=e¿ (1− 1=x)x, valid for x¿ 2, we see that

e−k=m ¿q¿ e−k=(m−1)¿ e−k=me−2k=m
2
¿ e−k=m

(
1− 2k
m2

)
: (4.10)

Therefore,

q = e−k=m
(
1−

∣∣∣∣O
(
k
m2

)∣∣∣∣
)
; (4.11)

which is e−k=m(1− |O(1=m)|), if a6 0 (because then k6m).
Proof of Assertion (i). In view of the proof of Assertions (ii) and (iii), the estimations we derive to prove

Assertion (i) rely on the weaker assumption ã=o(n) and do not require that a=o(
√
n). By Lemma 4.7 (i), ã= a+o(1)

for a= o(
√
n). We investigate positive and negative values of ã separately.

Estimation of k=2L and m=2L for ã= o(n): Clearly,
k
2L
= 2�

′
= eã=L = eo(1) ∼ 1; (4.12)

because n ∼ L(n). To estimate m=2L, we apply the Taylor approximation ex = 1 + x + O(x2) for x → 0, which yields

(1− 2−�′)L= (1− e−ã=L)L= ã+ r ∼ ã (4.13)

for some

r = r(n) = O(ã2=L) = O(ã2=n) = o(ã): (4.14)

So
m
2L
= 2(2

−�′ −1)L = 2−ã−r : (4.15)

The case 0¿ ã = o(n): In this case, E(Xi′) = k − m(1− q) by Proposition 4.1, and the asymptotic (4.11) for q implies
that

E(Xi�′ ) = k − m(1− q) = k − m(1− e−k=m(1− O(k=m2)))

= k − m(1− e−k=m) + O(k=m): (4.16)

By substituting (4.12) and (4.15) into (4.16), we obtain

E(Xi′)
2L

= 2−ã−r(e−2
ã+reã=L − 1) + eã=L + O(2−L): (4.17)

In particular, (i) follows for a=−|o(√n)|.
The case 06 ã = o(n): In this case, E(X ′

i ) = mq by Proposition 4.1 and q = e
−k=m(1 + O(k=m2)) by (4.11). Since

�′ = �ã = o(n) log e=L= o(1), we have

k
m2

=
2�

′+L

(22−�
′ L)2

= 2o(1)+L−2·2
o(1)L = o(1)
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and the asymptotic for q simpliEes to q ∼ e−k=m. Together with (4.12) and (4.15), we obtain

E(Xi′)
2L

=
mq
2L

∼ m
2L
e−k=m =

2−ã−r

e2ã+r+o(1)
; (4.18)

where r = O(ã2=L) by (4.14). In particular, (i) follows for a= |o(√n)|.
Proof of Assertion (ii) (Erst part): We split the sequence of n into four subsequences depending on whether |ã(n)|6√

n
or |ã(n)|¿√

n and whether ã(n)¿ 0 or ã(n)6 0. Lemma 4.7(ii) tells us that |ã(n)| → +∞, because |a(n)| → +∞.
For the two subsequences satisfying |a(n)|6√

n, the estimations from the proof of Assertion (i) can be applied, since
we only used the premise ã= o(n) in the proof. Also, we still have a ∼ ã, so (4.14) implies r = O(1).

The case 06 ã(n) → +∞ ∧ ã(n)6√
n: Since ã+ r → +∞, E(Xi′)=2L → 0 follows immediately from (4.18).

The case 0¿ ã(n) → −∞ ∧ ã(n)¿ − √
n: In this case, ã + r → −∞, so 2ã+r = o(1). Using (4.17) and the Taylor

approximation ex = 1 + x + (1 + o(1))x2=2 for x → 0 we see that
E(Xi′)
2L

= 2−ã−r(−2ã+reã=L + 22(ã+r)−1e2ã=L(1 + o(1))) + eã=L + O(2−L)

= 2ã+r−1e2ã=L(1 + o(1)) + O(2−L) = o(1): (4.19)

So far we have proved Assertion (ii) for |ã|6√
n. To complete the proof of Theorem 4.8(ii) and (iii), we need the

following lemma.

Lemma 4.9. Assume that n→ +∞ and j = j(n)∈ [n] is a level such that

|j − i0|¿
√
n log e
L(n)

;

where i0 denotes the critical point. Let a′ := (j − i0) L(n)=log e. Then
E(Xj)
2L

6
E(Xj)
wj

=



2a

′+O(1) = 2−
(√n); j ¡ i0;

e−2

(

√
n)
; j ¿ i0:

Proof. Recall that the deEnition of ã(n) was devised such that i�′ = i�ã . In this lemma, we are no longer concerned with
i�′ , but an arbitrary level j. Nevertheless, we can deEne

a′ :=
(j − i0) L(n)

log e
: (4.20)

Then j= i�a′ is satisEed and |j− i0|¿√
n log e=L(n) is equivalent to |a′|¿√

n. We write k := kj , m := mj , q := qj , and
L := L(n). We consider two cases: a′6− √

n and a′¿
√
n. Recall that wj is given by (2.4).

First, assume that a′6− √
n. Then j¡ i0 and by (2.3), k = 2�a′+L = 2L2j−i06 2L and m= 22

−�a′ L ; hence

k
m
6
2L

m
= 2(1−2

−�a′ )L = 2(1−e
−a′ =L)L6 2a

′
= 2−
(√n); (4.21)

using (2.7) for the last inequality. In particular, we have by (4.11)

q = e−k=m(1 + O(k=m2)) = e−k=m(1 + O(2a
′
=m)):

Therefore, analogously to (4.16), it holds

E(Xj) = k − m(1− q) = k − m(1− e−k=m(1− O(2a
′
=m)))

= k − m(1− e−k=m) + O(2a
′
):

Using ex = 1 + x + (1 + o(1))x2=2 for x → 0, we get

E(Xj) = k − m
(
1−

(
1− k
m
+
k2

2m2
(1 + o(1))

))
+ O(2a

′
)

=
k2

2m
(1 + o(1)) + O(2a

′
): (4.22)

Here the leading term is bounded by

k2

2m
= k · k

2m
6 k · 2a′−1
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because of (4.21). Since j¡ i0, wj = k and we infer
E(Xj)
wj

=
E(Xj)
k

6 2a
′+O(1) = 2−
(√n) (4.23)

as claimed.
Now for the second case, a′¿

√
n. In this case j¿ i0 and k=2j−i02L ¿ 2L. By Proposition 4.1(ii) and (4.10) we have

E(Xj) = mq6me
−k=m6me−2

L=m: (4.24)

By (2.3),

2L

m
= 2(1−2

−�a′ )L:

For x¿ 0, the inequality 1 − e−x¿ x=(1 + x) follows from (2.7) and the mapping x �→ x=(1 + x) is monotone. Using
a′=L¿ a′=n¿

√
n in the last inequality, we see that

(1− 2−�a′ )L= (1− e−a
′=L)L¿

a′=L
1 + a′=L

L¿
√
n

1 +
√
n=L

= 
(
√
n):

By (2.4) wj = m and therefore,
E(Xj)
wj

=
E(Xj)
m

6 e−2
L=m6 2−2
(

√
n )
:

Proof of Theorem 4.8 (continued). Proof of Assertion (ii) (conclusion). In the remaining cases the subsequences satisfy
|ã(n)|¿√

n and are therefore covered by Lemma 4.9—just set j := i′.
Proof of Assertion (iii): If j∈ [n] \ {i�′}, then |j − i0|¿ 1=2 holds by deEnition of �′. So by Lemma 4.9,

E(X − X ′
i )

2L
=

∑
j∈[n]\{i′}

E(Xj)
2L

= n · 2−
(√n) = 2−
(√n):

Theorem 4.8 gives us a fairly complete overview of the ‘expected’ shape of a random qOBDD. Above and below i′�,
the levels are essentially full. If and only if �′ is suDciently small, i.e., �′=O(1=n), then the expected size of the critical
level i′� is by a factor 1− 
(1) smaller than its worst-case width. We summarise these observations in a corollary.

Corollary 4.10. Assume that n→ +∞ and j = j(n)∈ [n].
(i) For all j,

1− 1
e
6
E(Yj)
wj

6 1:

(ii) If |j − i0|= !(1=n), then
E(Yj)
wj

∼ 1:

Proof. Assertion (i) follows from Theorem 4.8 (in particular, Eqs. (4.17) and (4.18) from the proof of its Assertion (i)),
since E(Xj)=wj is maximized if j = i′ = i0 with value E(Xi0 ) = wi0 =e. Hence,

E(Yj)
wj

=
wj − E(Xj)
wj

¿ 1− 1
e
:

Assertion (ii) is immediate from Theorem 4.8(ii) (for small |j − i0|) and Lemma 4.9 (for large |j − i0|).

For small a(n), we can determine the ratio of the expected qOBDD size to its worst-case size very precisely. The
special case where a(n) is a constant is shown in Fig. 4 on p. 14.

Corollary 4.11. If n→ +∞ is such that a(n) = o(
√
n), then

E(Y )
W

=



1− 2−a+o(1)(e−2

a+o(1) − 1) + 1
2 + o(1)

; a6 0;

1− 2−a+o(1) e−2
a+o(1)

1 + 2−a + o(1)
; a¿ 0:



C. Gr
opl et al. / Discrete Applied Mathematics 142 (2004) 67–85 79

Proof. Direct plug-in from Theorem 4.8 and the results on the worst-case size of [15,16].

It is not hard to see that the decreasing rate of E(X )=W is doubly exponential for a → +∞ and exponential for
a→ −∞.
In [15, Chapter 6] the asymptotic size of E(Y )=W was investigated for general n. One also has to take the e&ect of

the deletion rule into account. It turns out that the ‘Shannon gap’ (W −E(Z∗))=W is minimized for some parametrisation

n= (54 + o(1))2
h, with value 2(

2
5 +o(1))n.

4.3. Strong Shannon e;ect for qOBDDs with a =xed variable ordering

Now we extract a qualitative result from the preceding quantitative analysis of the expected size of the qOBDD with
a Exed variable ordering for a random Boolean function. For which n is the expected size E(Y ) of the qOBDD (with a
Exed variable ordering) equal to the worst-case size W up to terms of lower order? The answer is: if and only if n stays
apart from 2h + h.

Theorem 4.12. Let B :=
⋃
h∈N [2

h + h− d(h) :: 2h + h+ d(h)] and A := N \ B.
(i) If n→ +∞ such that n∈A for some sequence d(h) → +∞, then
E(Y )
W

= 1− o(1):

(ii) If n→ +∞ such that n∈B for some sequence d(h) = O(1), then
E(Y )
W

= 1− 
(1):

Proof. We have E(X )=W =�(E(X )=2L), since W =�(2L) by Theorem 3.1. By Theorem 4.8(iii), all levels except i′ are
negligible (they contribute only o(1) to E(X )=2L).

Assertion (i): Since d(h) → +∞ and n is a sequence chosen from the set A, we have |a(n)| → +∞ as n → +∞.
Therefore, limn E(X ′

i )=2
L = 0 by Theorem 4.8(ii), and we are done.

Assertion (ii): Since d(h)=O(1) and n is a sequence chosen from the set B, we have a(n)=O(1). By partitioning the
sequence of n into subsequences, we may assume that a(n) is a constant. These subsequences may have Enite or inEnite
length, but only a Enite number of subsequences can be inEnitely long, because the original sequence satisEed a(n)=O(1).
For each inEnite subsequence of integers n where a(n) is a constant Theorem 4.8(i) implies that limn E(X ′

i )=2
L ¿ 0. So

the original sequence satisEes lim inf n E(Xi′)=2L ¿ 0, i.e., E(Xi′)=2L = 
(1).

Note that Markov’s inequality implies (since Y 6W ′ ∼ W ) that the strong Shannon e&ect for the qOBDD size for a
=xed variable ordering of a random Boolean function does hold in Case (i) of Theorem 4.12, whereas it does not hold
in Case (ii).

5. Strong Shannon e1ect for optimal qOBDDs

We have seen that the expected qOBDD size for a =xed variable ordering is approximately W (n) if and only if
|a(n)| → +∞ (Theorem 4.12). The next step is to consider qOBDDs with optimal variable orderings. Our approach is to
prove that for a random Boolean function with high probability all variable orderings lead to almost the same qOBDD
size. (Here we apply Azuma’s inequality.) Then in particular, an optimal variable ordering does only a little better than
the canonical one.

5.1. Azuma’s inequality

Azuma’s martingale inequality is by now a standard method to prove strong concentration of random variables. Here
we give a purely ‘combinatorial’ formulation.

Theorem 5.1 (Azuma’s Inequality, see e.g. Alon and Spencer [1, Theorem 7.4.2]). If B is a =nite domain and S:Bk → R
is a function satisfying the ‘Lipschitz condition’

∀ b; b′ ∈Bk : #{j | bj �= b′j}6 1 → |S(b)− S(b′)|6 1 (5.1)
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and the coordinates of b are chosen independently at random, then

Pr
b
(|S(b)− E(S)|¿ *

√
k)6 2 e−*

2=2:

The way in which we apply Azuma’s inequality to the urn occupancy experiment is somewhat simple-minded, but we
cannot expect a signiEcantly stronger result to hold (see next section). For related work on urn occupancy, see [1,14,18].

Corollary 5.2. Consider an urn experiment where k balls are thrown independently uniformly at random into m urns,
and denote by y the number of non-empty urns. Then

Pr(|y − E(y)|¿ *
√
k)6 2 e−*

2=2:

Proof. Denote a random assignment of balls to urns by b:[k] → [m] and let y(b) := #b[k] be the number of non-empty
urns for this particular assignment. Clearly, y satisEes the Lipschitz condition (5.1), since the number of non-empty urns
can only change by 1 if we move a ball from one urn to another. Therefore, Theorem 5.1 is applicable.

5.2. Optimal qOBDDs

From Corollary 5.2, we obtain the following strong concentration result for the size Y of the quasireduced OBDD
with respect to the canonical variable ordering of a random Boolean function. As it turns out, the probability that Y is
somewhat more than

√
E(Y ) apart from E(Y ) is only doubly exponentially small in n.

Theorem 5.3. For every c¿ 0,

Pr(|Y − E(Y )|¿ n2[(1+c)=2L])6 2n e−2
cL=4:

Proof. At each level j, we have an urn experiment where kj balls are thrown into mj urns, and Yj is the number of nodes
at level j of the qOBDD as well as the number of non-empty urns. So by Corollary 5.2,

Pr(|Yj − E(Yj)|¿ *
√
kj)6 2e−*

2=2: (5.2)

We consider two cases. From Section 2 recall that Yj6wj =min{kj; mj} for all levels j∈ [n]. For j¿ i1, we have
Yj6mj6mi1 = 2

L=2: (5.3)

If j6 i1, then Yj6 kj6 ki16 2L+1. Using (5.2) with * := 2[(1+c)=2L]=
√
kj , we get for j6 i1

Pr(|Yj − E(Yj)|¿ 2[(1+c)=2L])6 2e−2
cL=4; (5.4)

since *2=2¿ 2(1+c)L−L−1=2 = 2cL=4. For j¿ i1, (5.3) gives |Yj − E(Yj)6 2L=2 and (5.4) trivially holds. So

Pr(∃ j∈ [n] : |Yj − E(Yj)|¿ 2[(1+c)=2L])6 n · 2e−2cL=4; (5.5)

and the theorem follows.

We remark that using Azuma’s inequality one cannot improve the point n2[1+c]=2L where Theorem 5.3 ‘cuts o&’ beyond
!(

√
kj), and for j = i′ we have kj = 
(2L). The question arises whether a weaker (maybe not doubly exponential)

probability bound is provable for some cut-o& point O(2(1=2−
(1))L). The answer is “at least in general: no”, because Y ′
i

is asymptotically normally distributed for certain parametrizations of n. For example, if n = 2h + h, then i′ = 2h + 1 and
ki′ = mi′ = 2h, and the distribution of Y2h+1 is asymptotically normal by Theorem I.3.1 of [20]. Their result can only be
applied if the ratio k=m is a constant, because it makes no assertion on the convergency rate.
Now we turn to optimal variable orderings. DeEne Y∗(f) := min, Y,(f), where the index , runs over all variable

orderings. Y∗(f) is the minimal size of a qOBDD for f. Clearly E(Y,) does not depend on ,, since we consider the
uniform distribution for f. Let us write E(Y ) = E(Y,). For most Boolean functions, even choosing an optimal variable
ordering gives little improvement.

Theorem 5.4. For every c¿ 0,

Pr(|Y∗ − E(Y )|¿ n2[(1+c)=2]L)6 e−2
cL=4+O(n log n):
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Proof. If |Y∗ − E(Y )| is large, then there exists a variable ordering , such that |Y, − E(Y )| is large. For each variable
ordering, there is only a doubly exponentially small fraction of exceptional Boolean functions. So we simply multiply
the probability bound from Theorem 5.3 by n!, the number of all possible variable orderings, which satisEes n!¡nn =
en ln n.

From a larger perspective, the important facts here are that 2[(1+c)=2]L=o(W ) and W ·e−2cL=4+O(n log n) =o(1). This implies
that Theorem 4.12 (which is about the expected size) carries over to the case of optimal variable orderings; only the
o- and 
-terms change. But we also know how large Y∗ is with high probability:

Theorem 5.5. Let n→ +∞. Then

Pr(Y∗ = (1− o(1))W ) ∼ 1 i& |a(n)|= !(1):
That is, the strong Shannon e;ect holds for qOBDDs with optimal variable orderings if and only if n is such that
|a(n)| → +∞.

In other words, the strong Shannon e&ect for the optimal qOBDD size of a random Boolean function does hold in
Case (i) of Theorem 4.12, whereas it does not hold in Case (ii).

6. Deletion rule

So far, we know that the minimal qOBDD size is approximately the worst-case size W if and only if |a(n)| → +∞
(Theorem 5.5). In this section, we show that the deletion rule gives only a comparatively small amount of reduction.
Thus, the same statement is true for minimal OBDDs as well. This Enishes the proof of Main Theorem 1.1.
Actually, our analysis of large deviations goes beyond just proving that the weak Shannon e&ect holds for all sequences

of n, which was already shown by Wegener [29] using the second moment method. We obtain a doubly exponential
probability bound that enables us to generalise Main Theorem 1.1 to OKFDDs.

6.1. ChvBatal’s inequality

To estimate the probability of large deviations from the expected amount of reduction by the deletion rule, we apply a
large deviation inequality for hypergeometrically distributed random variables due to ChvUatal, cited here in slightly adapted
form.

Theorem 6.1 (ChvUatal [9]). Consider an urn experiment where y balls are chosen without replacement from an urn
containing white and black balls. Denote the fraction of black balls in the urn by p and let x′ be the number of black
balls chosen. Then x′ is a hypergeometrically distributed random variable with parameters p and y, mean E(x′) = py,
and for all .¿ 0, we have

Pr(x′¿ (p+ .)y)6 e−2.
2y:

6.2. Bounding the E;ect of the deletion rule

We denote the amount of reduction achieved by the deletion rule at level i by X ′
i =Yi−Zi and put X ′ :=

∑n
i=1 X

′
i =Z−Y .

We will show that the probability that X ′ is somewhat bigger than
√
W or

√
E(Y ) is only doubly exponentially small.

First we consider qOBDDs with a Exed variable ordering. It turns out that the random variable X ′
i is hypergeometrically

distributed if we condition on a particular value of Yi. Hence we can apply ChvUatal’s inequality.

Theorem 6.2. For every c¿ 0,

Pr(X ′¿ n2(1+c)=2L)6 e−(2+o(1))2
cL
:

Proof. The number of nodes deleted at some level j is given by the following urn experiment. Among the mj subfunctions
which are possible at level j of the qOBDD there are mj+1 functions that do not depend essentially on the variable xj .
Since the merging rule has already been applied, we have a situation in which Yj balls are chosen without replacement
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from an urn containing mj − mj+1 ‘white’ and mj+1 ‘black’ balls. The black balls correspond to those nodes at level j
which are deleted afterwards. Therefore, X ′

j is hypergeometrically distributed with parameters Yj and

pj :=
mj+1
mj

= 2(2
−�−1−2−�)L = 2−2−�−1L =

√
2−2−�L =

1√
mj
: (6.1)

In our case Yj is itself a random variable. Therefore we switch to conditional probabilities. For y6wj

Pr(X ′
j ¿ (pj + .j)wj| Yj = y)6 Pr(X ′

j ¿ (pj + .j)wj|Yj = wj)
since choosing more balls makes it more likely to get more than a given amount of black balls. In this way, we can
invoke Theorem 6.1 and estimate the situation at each level j as follows, using a parameter .j to be speciEed later.

Pr(X ′
j ¿ (pj + .j)wj) =

wj∑
y=0

Pr(X ′
j ¿ (pj + .j)wj|Yj = y)Pr(Yj = y)

6 Pr(X ′
j ¿ (pj + .j)wj|Yj = wj)

6 e−2.
2
j wj : (6.2)

A suDcient condition for X ′6 n 2[(1+c)=2L] is that the inequality

X ′
j 6 2[(1+c)=2L] (6.3)

is satisEed for all j. Let � := j − i0 (so j = i�). If j¿ i1, then (6.3) holds trivially, because
X ′
j 6 Yj6wj = mj = 2

2−�L6 21=2L:

For j6 i1, we want to show that (6.3) holds with high probability using (6.2). So we deEne

.j :=
2[(1+c)=2L]

wj
− pj; (6.4)

which gives

(pj + .j)wj = 2
(1+c)=2L:

We claim that .j¿ 0. Note that pj = 1=
√
mj by (6.1) and for j¿ i0, wj = mj . Comparing the logarithms, we End that

log
2[(1+c)=2L]

wj pj
= log(2[(1+c)=2L] pj) = ( 1+c2 − 2−�−1)L¿ c

2 L¿ 0; (6.5)

which proves .j¿ 0 for j¿ i0. For j6 i0, wj = kj and since .i0¿ 0 and the mappings j �→ kj and j �→ pj are isotone
for every n,

.j =
2[(1+c)=2L]

wj
− pj = 2[(1+c)=2L]

kj
− pj = 2[(1+c)=2L]

ki0
− pi0 = .i0¿ 0:

Hence .j¿ 0 for all j.
Using (6.2) for j6 i1 with the .j deEned in (6.4), we get the estimate

Pr(X ′
j ¿ 2[(1+c)=2L])6 e−2.

2
j wj : (6.6)

We need to lower bound .2j wj . Again we consider two cases.
If i06 j6 i1, then by (6.1),

.2j wj =
(
2[(1+c)=2L]

wj
− pj

)2
wj = 2

(1+c)Lp2j − 2[(1+c)=2]L+1pj + 1 = t
2
j − 2tj + 1;

where tj := 2[(1+c)=2L] pj¿ 2
c
2 L by (6.5). Therefore,

.2j wj¿ 2cL(1 + o(1)): (6.7)

If j6 i0, then wj = kj6 2L and

.2j wj =
(
2[(1+c)=2L]

wj
pj

)2
wj =

(
2[(1+c)=2L]

kj
− 1√

mj

)2
kj =


√

2(1+c)L

kj
−

√
kj
mj


2

¿




√
2(1+c)L

2L
+ O(1)


2

= 2cL(1 + O(
√
2−cL))2 = 2cL(1 + o(1)): (6.8)
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Eqs. (6.7) and (6.8) together imply that .2j wj¿ 2cL(1+o(1)) for all levels j6 i1. So by (6.6) the probability that (6.3)
fails for at least one level is bounded by

n · e−2·2cL(1+o(1)) = e−(2+o(1))2cL ; (6.9)

and the theorem follows.

Now we can show that the gap X ′ between the qOBDD size Y and the OBDD size Z is small for all variable
orderings with overwhelming probability. We deEne X ′

∗(f) to be the maximal number of nodes that can be deleted from
qOBDD,(f) for any variable ordering ,. Formally, X

′
∗(f) := max, X

′
,(f).

Theorem 6.3. For every c¿ 0,

Pr(X ′
∗¿ n2

[(1+c)=2]L)6 e−(2+o(1))2
cL
:

Proof. All we have to do is to multiply the probability bound from the Exed variable ordering case by the number of
variable orders, which is n!¡nn = en ln(n). We get a probability bound of

en ln n · e−(2+o(1))2cL = e−(2+o(1))2cL ; (6.10)

which proves the theorem.

6.3. Optimal OBDDs

We say that the weak Shannon e&ect holds if almost all Boolean functions have almost the same size for a certain
kind of representation. Combining the large deviation results Theorems 5.4 and 6.3, we obtain the following corollary.

Corollary 6.4. Let Z∗(f) denote the minimal OBDD size of a Boolean function f. Then

Pr(|Z∗ − E(Y )|¿ 2n 2[(1+c)=2L])6 e−2
cL=4+O(n log n);

and since E(Y ) = 
(2L), the weak Shannon e&ect holds for OBDDs (and qOBDDs) with optimal variable orderings
representing random Boolean functions.

Proof. This follows from |Z∗ − E(Y )|6 |Y∗ − E(Y )|+ |X ′
∗|.

Main Theorem 1.1 for OBDDs with optimal variable orderings now follows easily. In Theorem 4.12 we proved that the
strong Shannon e&ect undergoes periodic phase transitions if we restrict ourselves to the special case of a Exed variable
ordering. Since the weak Shanon e&ect holds—even with a doubly exponential probability bound—this result carries over
to the case of optimal variable orderings as well.

7. Other decision diagrams

In this Section, we explain how our results carry over to some modiEcations of the OBDD data structure which have
been proposed in the literature.

7.1. Zero-suppressed binary decision diagrams (ZBDDs)

Zero-suppressed binary decision diagrams (ZBDDs) are a variant of OBDDs with a modiEed deletion rule, which
allows a node to be deleted if and only if its ‘high’ successor is the terminal 0 (hence the name zero-suppressed).
ZBDDs were introduced by Minato [22] and have found applications in two-level logic minimisation [10] and various
combinatorial problems [11,23,25].
Schr)oer and Wegener [25] observed that ZBDDs behave quite similar to OBDDs, if random Boolean functions are

considered. The analyses of Liaw and Lin [21] and Wegener [29] carry over without major changes. The same is true for
our results. Let us explain why.
First, observe that a quasireduced ZBDD is the same as a qOBDD, because both binary decision diagram types use the

same merging rule. Therefore, the analysis of qOBDDs we gave in Sections 4 and 5 does not need to be modiEed.



84 C. Gr
opl et al. / Discrete Applied Mathematics 142 (2004) 67–85

The key observation is that the modiEed deletion rule in ZBDDs leads to the same probability distribution of X ′
i . We

quote from the proof of Theorem 6.2, p. 24: “Among the mj subfunctions which are possible at level j of the qOBDD there
are mj+1 functions that do not depend essentially on the variable xj .” For ZBDDs, this sentence should read: “Among the
mj subfunctions which are possible at level j of the qZBDD (=qOBDD) there are mj+1 functions g such that gxj=1 = 0.”
For a random Boolean function g= g(xj; : : : ; xn), the events g(0; xj+1; : : : ; xn) = g(1; xj+1; : : : ; xn) and g(1; xj+1; : : : ; xn) = 0
have the same probabilities, since we consider the uniform distribution. Thus, the results of Section 6 hold for ZBDDs,
too. In particular, we have a modiEed ‘Main Theorem 1.1’.

7.2. Ordered Kronecker functional decision diagrams (OKFDDs)

There is another modiEcation which is called ordered functional decision diagram (OFDD). OFDDs were introduced
by Kebschull et al. in [19]. In OFDDs, the Reed–Muller expansion takes over the part of the Shannon expansion. DeEne
f0 := f(0; x2; : : : ; xn) and f1 := f(1; x2; : : : ; xn) and f2 := f0 ⊕ f1. Then we can expand f as

f(̃x) = f0(̃x) ⊕ x1 ∧ f2(̃x): (7.1)

The deletion rule for OFDDs is syntactically the same as for ZBDDs, but now it has a di&erent meaning: a node can be
eliminated if and only if the function it represents does not depend on the variable tested there. OFDDs are particularly
useful for algorithms that deal with the ring sum expansion [13,28], although standard operations like ∧ and ∨ can lead
to an exponential blow-up [3].
To deEne OKFDDs, we have to consider yet another possibility for functional decomposition, namely

f(̃x) = f1(̃x) ⊕ \x1 ∧ f2(̃x); (7.2)

which leads to a data structure similar to OFDDs. Since there exist functions which have polynomial OBDD size and
exponential OFDD size and vice versa, Drechsler et al. [12] combined the three decomposition types into a hybrid data
structure. In OKFDDs, each variable is assigned one of the decomposition types (7.1) and (7.2) or the ‘usual’ Shannon
decomposition

f(̃x) = \x1 ∧ f0(̃x)⊕ x1 ∧ f1(̃x): (7.3)

Still OKFDDs are a unique representation for each such decomposition type list and variable ordering and can be
manipulated eDciently (but note the remark on OFDDs above). There exist functions for which OKFDDs are exponentially
smaller than both OBDDs and OFDDs [2].
Returning to our results on the strong Shannon e&ect, the situation is slightly more complicated for OKFDDs, because

the choice of the decomposition type list constitutes another potential for minimisation.
Again, quasireduced OKFDDs are the same as qOBDDs. Also, regardless which decomposition type is performed at a

level, a node can be deleted if and only if the subfunction it represents does not depend on the variable tested there, so
we do not even need to modify the proof of Theorem 6.2 as for ZBDDs.
If the OKFDD is in fact an OFDD, then the same conclusions as for ZBDDs can be made.
For arbitrary decomposition type lists, the key observation is that multiplying the doubly exponential probability bounds

with either n! or 3n n! does little harm, see (6:9′) on p. 26. Thus, the large deviation results from Section 6 hold for
OKFDDs as well (only the o-terms change). This includes the weak Shannon e&ect (Corollary 6.4) and a ‘Main Theorem
1.1’ for OKFDDs (in which Z∗ denotes the optimal OKFDD size).
We remark that there seems to be no way to overcome this diDculty using the second moment method as applied in

[29] due to the weaker probability bounds it supplies.

7.3. Free binary decision diagrams

Another interesting generalisation of OBDDs are read-once branching programs, which are also known as free binary
decision diagrams (FBDDs). In FBDDs, variables can be tested in arbitrary order, but only once on each evaluation
path. Wegener [29] has shown that the strong Shannon e&ect for FBDDs holds for ‘most’ values of n. Based upon work
presented in this article, Gr)opl [15] has shown that there exist certain ranges of n (whose lengths tend to inEnity as
n → ∞) such that the optimal FBDD size of Boolean function depending on n variables is a constant factor smaller
than the optimal OBDD size with high probability (i.e., the strong Shannon e&ect does not hold). Together with [29] this
implies a result similar to Main Theorem 1.1 about the strong Shannon e&ect in FBDDs.
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