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a b s t r a c t

The main object of this work is to extend the univalent condition for a family of integral
operators. Several other closely-related results are also considered. A number of known
univalent conditions would follow upon specializing the parameters involved in our main
result.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let A denote the class of functions f of the form:

f (z) = z+
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk

U =
{
z : z ∈ C and |z| < 1

}
and satisfy the following usual normalization condition:

f (0) = f ′(0)− 1 = 0.

We denote by S the subclass of A consisting of functions which are also univalent in U. For some recent investigations of
various interesting subclasses of the univalent function class S, see the works by (for example) Altıntaş et al. [1], Gao et al. [4],
and Owa et al. [6].

The following univalent condition was proven by Pescar [8].

Theorem 1 (Pescar [8]). Let

α ∈ C (R(α) > 0)

and

c ∈ C (|c| 5 1; c 6= −1).
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Suppose also that the function f (z) given by (1.1) is analytic in U. If∣∣∣∣c |z|2α + (1− |z|2α
) zf ′′(z)

αf ′(z)

∣∣∣∣ 5 1 (z ∈ U),

then the function Fα(z) defined by

Fα(z) :=
(
α

∫ z

0
tα−1f ′(t)dt

) 1
α

= z+ · · ·

is analytic and univalent in U.

Ozaki and Nunokawa [7], on the other hand, proved another univalent condition asserted by Theorem 2.

Theorem 2 (Ozaki and Nunokawa [7]). Let f ∈ A satisfy the following inequality:∣∣∣∣∣ z2f ′(z)

[f (z)]2
− 1

∣∣∣∣∣ 5 1 (z ∈ U). (1.2)

Then f is univalent in U.

Yet another univalent condition was given by Pescar [9] as follows.

Theorem 3 (Pescar [9]). Let the function g ∈ A satisfy the inequality (1.2). Also let

α ∈ R
(
α ∈

[
1,

3
2

])
and c ∈ C.

If

|c| 5
3− 2α
α

(c 6= −1)

and

|g(z)| 5 1 (z ∈ U),

then the function Gα(z) defined by

Gα(z) :=
(
α

∫ z

0
[g(t)]α−1 dt

) 1
α

(1.3)

is in the univalent function class S.

Finally, Breaz and Breaz [3] (see also [2]) considered the following family of integral operators and proved that the
function Gn,α(z) defined by

Gn,α(z) :=
(

[n(α− 1)+ 1]
∫ z

0
[g1(t)]α−1

· · · [gn(t)]α−1 dt
) 1

n(α−1)+1
(g1, . . . , gn ∈ A) (1.4)

is univalent in U.

Remark 1. In its special case when n = 1, the integral operator in (1.4) would obviously reduce to the integral operator in
(1.3).

In view of Remark 1, we propose to investigate further univalent conditions involving the general family of integral
operators defined by (1.4). The following familiar result is of fundamental importance in our investigation.

Schwarz Lemma (See, for Example, [5]). Let the analytic function f be regular in the open unit disk U and let f (0) = 0. If

|f (z)| 5 1 (z ∈ U),

then

|f (z)| 5 |z| (z ∈ U), (1.5)

where the equality holds true only if

f (z) = Kz (z ∈ U) and |K| = 1. (1.6)



D. Breaz et al. / Applied Mathematics Letters 22 (2009) 41–44 43

2. The main univalent condition

In this section, we first state the main univalent condition involving the general integral operator given by (1.4).

Theorem 4. Let M = 1 and suppose that each of the functions gj ∈ A (j ∈ {1, . . . , n}) satisfies the inequality (1.2). Also let

α ∈ R
(
α ∈

[
1,

(2M + 1)n

(2M + 1)n− 1

])
and c ∈ C.

If

|c| 5 1+
(1− α

α

)
(2M + 1)n (2.1)

and ∣∣gj(z)∣∣ 5 M (z ∈ U; j ∈ {1, . . . , n}),

then the function Gn,α(z) defined by (1.4) is in the univalent function class S.

Proof. We begin by setting

f (z) =
∫ z

0

n∏
j=1

(
gj(t)

t

)α−1

dt,

so that, obviously,

f ′(z) =
n∏

j=1

(
gj(z)

z

)α−1

(2.2)

and

f ′′(z) = (α− 1) ·
n∑

j=1

(
gj(z)

z

)α−2 ( zg′j(z)− gj(z)

z2

)
·

n∏
k=1 (k6=j)

(
gk(z)

z

)α−1

. (2.3)

We thus find from (2.2) and (2.3) that

zf ′′(z)

f ′(z)
= (α− 1)

n∑
j=1

(
zg′j(z)

gj(z)
− 1

)
,

which readily shows that∣∣∣∣c |z|2α + (1− |z|2α
) zf ′′(z)

αf ′(z)

∣∣∣∣ =
∣∣∣∣∣c |z|2α + (1− |z|2α

) α− 1
α

n∑
j=1

(
zg′j(z)

gj(z)
− 1

)∣∣∣∣∣
5 |c| +

(
α− 1
α

)
·

n∑
j=1

(∣∣∣∣∣ z
2g′j(z)

[gj(z)]2

∣∣∣∣∣ ·
∣∣gj(z)∣∣
|z|
+ 1

)
.

Since∣∣gj(z)∣∣ 5 M (z ∈ U; j ∈ {1, . . . , n}),

by using the inequality (1.2), we obtain∣∣∣∣c |z|2α + (1− |z|2α
) zf ′′(z)

αf ′(z)

∣∣∣∣ 5 |c| + (α− 1
α

)
(2M + 1) n (z ∈ U),

which, in the light of the hypothesis (2.1), yields∣∣∣∣c |z|2α + (1− |z|2α
) zf ′′(z)

αf ′(z)

∣∣∣∣ 5 1 (z ∈ U).

Finally, by applying Theorem 1, we conclude that the function Gn,α(z) defined by (1.4) is in the univalent function class
S. This evidently completes the proof of Theorem 4. �
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3. Applications of Theorem 4

First of all, upon setting M = 1 in Theorem 4, we immediately arrive at the following application of Theorem 4.

Corollary 1. Let each of the functions gj ∈ A (j ∈ {1, . . . , n}) satisfy the condition (1.2). Suppose also that

α ∈ R
(
α ∈

[
1,

3n
3n− 1

])
and c ∈ C.

If

|c| 5 1+ 3
(1− α

α

)
n

and ∣∣gj(z)∣∣ 5 1 (z ∈ U; j ∈ {1, . . . , n}),

then the function Gn,α(z) defined by (1.4) is in the univalent function class S.

Next we set n = 1 in Theorem 4. We thus obtain the following interesting consequence of Theorem 4.

Corollary 2. Let M = 1 and suppose that the function g ∈ A satisfies the condition (1.2). Also let

α ∈ R
(
α ∈

[
1,

2M + 1
2M

])
and c ∈ C.

If

|c| 5 1+
(1− α

α

)
(2M + 1)

and

|g(z)| 5 M (z ∈ U),

then the function Gα(z) defined by (1.3) is in the univalent function class S.

Remark 2. Corollary 2 provides an extension of Theorem 3 due of Pescar [9].

Remark 3. If, in Theorem 4, we set M = n = 1, we obtain Theorem 3 due of Pescar [9].

Many other interesting corollaries and consequences of Theorem 4 can be deduced from Theorem 4 in a similar manner.
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