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Abstract

A closed set of a Euclidean space is said to be Chebyshev if every point in the space has one and only
one closest point in the set. Although the situation is not settled in infinite-dimensional Hilbert spaces, in
1932 Bunt showed that in Euclidean spaces a closed set is Chebyshev if and only if the set is convex. In
this paper, from the more general perspective of Bregman distances, we show that if every point in the
space has a unique nearest point in a closed set, then the set is convex. We provide two approaches: one is
by nonsmooth analysis; the other by maximal monotone operator theory. Subdifferentiability properties of
Bregman nearest distance functions are also given.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout the paper, RJ is the standard Euclidean space with inner product 〈·, ·〉 and induced
norm ‖ · ‖, and Γ is the set of proper lower semicontinuous convex functions on RJ . Let C
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be a nonempty closed subset of RJ . If each x ∈ RJ has a unique nearest point in C , the set
C is said to be Chebyshev. The famous Chebyshev set problem inquires: “Is a Chebyshev set
necessarily convex?”. It has been studied by many authors, see [1,6,14,16,7,17–19,26,27,29] and
the references therein. Although answered in the affirmative by Bunt in 1932 [8] (see also [22]),
we look at the problem from the more general point of view of Bregman distances.

Let

f : RJ
→]−∞,+∞] be convex and differentiable on U := int dom f 6= ∅. (1)

The Bregman distance associated with f is defined by

D: RJ
× RJ

→ [0,+∞] : (x, y) 7→

{
f (x)− f (y)− 〈∇ f (y), x − y〉 , if y ∈ U ;
+∞, otherwise.

(2)

Assume that C ⊂ U . It is a natural generalization of the Chebyshev problem to ask the following:

“If every x ∈ U has – in terms of the Bregman distance – a unique nearest point in C ,
i.e., C is Chebyshev for the Bregman distance, must C be convex?”

We give two approaches to our affirmative answer: one uses beautiful properties of maximal
monotone operators: Rockafellar’s virtual convexity theorem on ranges of maximal monotone
operators; the other uses generalized subdifferentials from nonsmooth analysis, which allows
us to characterize Chebyshev sets. We also study subdifferentiabilities of Bregman distance
functions associated to closed sets. These nonsmooth analysis results are interesting in their own
right, since Bregman distances have found tremendous applications in Statistics, Engineering,
and Optimization; see the recent books [9,11] and the references therein.

The function D does not define a metric, since it is not symmetric and does not satisfy the
triangle inequality. It is thus remarkable that it is not only possible to derive many results on
projections and distances similar to the one obtained in finite-dimensional Euclidean spaces, but
also to provide a general framework for best approximations.

The paper is organized as follows. In Section 2, we state our assumptions on f and provide
some concrete choices. In Section 3, we characterize left Bregman nearest points and geodesics.
We show that the Bregman normal is a proximal normal. In Section 4, when f is Legendre and
1-coercive and C is Chebyshev, we show that the composition of the Bregman nearest point
map and ∇ f ∗ is maximal monotone. This allows us to apply Rockafellar’s theorem on virtual
convexity of range of maximal monotone operator to obtain that a Chebyshev set is convex.
In Section 5, we study subdifferentiability properties of the left Bregman distance function.
Formulas for the Clarke subdifferential, the limiting subdifferential and the Dini subdifferential
are given. In Section 6, we give a complete characterizations of Chebyshev sets. Our approach
generalizes the results given by Hiriart-Urruty [19,17] from the Euclidean to the Bregman setting.
Finally, in Section 7 we show that the convexity of Chebyshev sets for right Bregman projections
of f can be studied by using the left Bregman projections of f ∗. We give an example showing
that even if the right Bregman projection is single-valued, the set C need not be convex.

Notation: In RJ , the closed ball centered at x with radius δ > 0 is denoted by Bδ(x) and
the closed unit ball is B = B1(0). For a set S, the expressions int S, cl S, conv S signify the
interior, closure, and convex hull of S respectively. For a set-valued mapping T : RJ ⇒ RJ ,
we use ran T and dom T for its range and domain, and T−1 for its set-valued inverse, i.e., x ∈
T−1(y)⇔ y ∈ T (x). For a function f : RJ

→]−∞,+∞], dom f is the domain of f , and f ∗

is its Fenchel conjugate; conv f (cl conv f ) denotes the convex hull (closed convex hull) of f .



H.H. Bauschke et al. / Journal of Approximation Theory 159 (2009) 3–25 5

For a differentiable function f , ∇ f (x) and ∇2 f (x) denote the gradient vector and the Hessian
matrix at x . Our notation is standard and follows, e.g., [23,24].

2. Standing assumptions and examples

From now on, and until the end of Section 6, our standing assumptions on f and C are:

(A1) f ∈ Γ is a convex function of Legendre type, i.e., f is essentially smooth and essentially
strictly convex in the sense of [23, Section 26].

(A2) f is 1-coercive, i.e., lim‖x‖→+∞ f (x)/‖x‖ = +∞. An equivalent requirement is
dom f ∗ = RJ (see [24, Theorem 11.8(d)]).

(A3) The set C is a nonempty closed subset of U .

Important instances of functions satisfying the above conditions are:

Example 2.1. Let x = (x j )1≤ j≤J and y = (y j )1≤ j≤J be two points in RJ .

(i) (Halved) Energy: If f : x 7→ 1
2‖x‖

2, then U = RJ ,

D(x, y) =
1
2
‖x − y‖2,

and ∇2 f (x) = Id for every x ∈ RJ . Note that f ∗(x) = 1
2‖x‖

2, dom f ∗ = RJ , and
∇

2 f ∗ = Id.
(ii) (Negative) Boltzmann–Shannon Entropy: If f : x 7→

∑J
j=1 x j ln(x j ) − x j for x ≥ 0, +∞

otherwise (where x ≥ 0 means x j ≥ 0 for 1 ≤ j ≤ J and similarly for x > 0, and
0 ln 0 = 0), then U = {x ∈ RJ : x > 0}, and

D(x, y) =


J∑

j=1

x j ln(x j/y j )− x j + y j , if x ≥ 0 and y > 0;

+∞, otherwise

is the so-called Kullback–Leibler divergence. Note that

∇
2 f (x) =


1/x1 0 · · · 0 0

0 1/x2 0 · · · 0
... 0

. . . 0 0
0 . . . 0 1/xJ−1 0
0 . . . 0 0 1/xJ

 ,

that f ∗(x) =
∑J

j=1 ex j with dom f ∗ = RJ , and that

∇
2 f ∗(x) =


ex1 0 · · · 0 0
0 ex2 0 · · · 0
... 0

. . . 0 0
0 . . . 0 exJ−1 0
0 . . . 0 0 exJ

 .

(iii) (Negative) Fermi–Dirac Entropy: If f : x 7→
∑J

j=1 x j ln x j + (1 − x j ) ln(1 − x j ), then
U = {x ∈ RJ

: 0 < x < 1} and
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D(x, y) =


J∑

j=1

x j ln(x j/y j )+ (1− x j ) ln((1− x j )/(1− y j )),

if 1 ≥ x ≥ 0 and 1 > y > 0;
+∞, otherwise.

While

∇
2 f (x) =



1
x1(1− x1)

0 · · · 0

0
1

x2(1− x2)
0 0

... 0
. . . 0

0 . . . 0
1

xJ (1− xJ )


,

∀0 < x < 1, x ∈ RJ ,

we have f ∗(x) =
∑J

j=1 ln(1+ ex j ) with

∇
2 f ∗(x) =



ex1

(1+ ex1)2
0 · · · 0

0
ex2

(1+ ex2)2
0 0

... 0
. . . 0

0 . . . 0
exJ

(1+ exJ )2


, ∀x ∈ RJ .

(iv) In general, we can let f : x 7→
∑J

i=1 φ(xi ) where φ : R →] − ∞,+∞] is a Legendre
function. Then U = (int domφ)J ,

D(x, y) =
J∑

j=1

φ(x j )− φ(y j )− φ
′(y j )(x j − y j ), ∀ x ∈ RJ , y ∈ U.

In particular, one can use φ(t) = |t |p/p with p > 1.

The following result (see [23, Theorem 26.5]) plays an important role in what follows.

Fact 2.2 (Rockafellar). A convex function f is of Legendre type if and only if f ∗ is. In this case,
the gradient mapping

∇ f : U → int dom f ∗ : x 7→ ∇ f (x),

is a topological isomorphism with inverse mapping (∇ f )−1
= ∇ f ∗.

3. Bregman distances and projection operators

We start with:

Definition 3.1. The left Bregman nearest distance function to C is defined by

←−
DC : U → [0,+∞] : y 7→ inf

x∈C
D(x, y), (3)
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and the left Bregman nearest point map (i.e., the classical Bregman projector) onto C is
←−
PC : U → U : y 7→ argmin

x∈C
D(x, y) = {x ∈ C : D(x, y) =

←−
DC (y)}.

The right Bregman distance and right Bregman projector onto C are defined analogously and
denoted by

−→
DC and

−→
PC , respectively. Note that while in [4] the authors consider proximity

operators associated with convex set C , here our set C need not be convex and we do not assume
that D(·, ·) is jointly convex.

We shall often need the following identity

D(c, y)− D(x, y) = f (c)− f (x)− 〈∇ f (y), c − x〉, ∀c ∈ U, x ∈ U, y ∈ U (4)

which is an immediate consequence of the definition.
Our first result characterizes the left Bregman nearest point.

Proposition 3.2. Let x ∈ C and y ∈ U.

(i) Then

x ∈
←−
PC (y) ⇔ D(c, x) ≥ 〈∇ f (y)−∇ f (x), c − x〉 ∀c ∈ C. (5)

If C is convex, then

x ∈
←−
PC (y) ⇔ 0 ≥ 〈∇ f (y)−∇ f (x), c − x〉 ∀c ∈ C. (6)

(ii) Suppose that x ∈
←−
PC (y). Then the Bregman projection of

zλ = ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x)) with 0 ≤ λ < 1, (7)

on C is singleton with
←−
PC (zλ) = x . (8)

If C is convex, (8) holds for every λ ≥ 0.

Proof. (i): By definition, x ∈
←−
PC (y) if and only if

0 ≤ D(c, y)− D(x, y) ∀c ∈ C;

equivalently, f (c)− f (x) ≥ 〈∇ f (y), c− x〉 by (4). Subtracting 〈∇ f (x), c− x〉 from both sides,
we obtain

D(c, x) ≥ 〈∇ f (y)−∇ f (x), c − x〉.

Hence (5) holds.
The convex counterpart (6) is well known and follows, e.g., from [2, Proposition 3.16].
(ii) Assume that x ∈

←−
PC (y) and zλ = ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x)) with 0 ≤ λ < 1. Then

by (5),

D(c, x) ≥ 〈∇ f (y)−∇ f (x), c − x〉 ∀c ∈ C. (9)

Take c ∈ C . By Fact 2.2, ∇ f ◦ ∇ f ∗ = Id, we have

〈∇ f (zλ)−∇ f (x), c − x〉 (10)

= 〈∇ f ◦ ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x))−∇ f (x), c − x〉 (11)

= 〈(λ∇ f (y)+ (1− λ)∇ f (x))−∇ f (x), c − x〉 (12)

= λ〈∇ f (y)−∇ f (x), c − x〉. (13)
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If 〈∇ f (y)−∇ f (x), c − x〉 ≤ 0, then

λ〈∇ f (y)−∇ f (x), c − x〉 ≤ 0 ≤ D(c, x);

if 〈∇ f (y)−∇ f (x), c − x〉 ≥ 0, then using 0 ≤ λ < 1 and (9),

λ〈∇ f (y)−∇ f (x), c − x〉 ≤ 〈∇ f (y)−∇ f (x), c − x〉 ≤ D(c, x).

In either case, by (10) we have

〈∇ f (zλ)−∇ f (x), c − x〉 ≤ D(c, x) ∀c ∈ C.

Hence x ∈
←−
PC (zλ) by (5). We proceed to show that

←−
PC (zλ) is a singleton. If λ = 0, then

zλ = x ,
←−
PC (x) = {x} by strict convexity of f . It remains to consider the case 0 < λ < 1. Let

x̂ ∈
←−
PC (zλ). Then D(x, zλ) = D(x̂, zλ), which is

f (x̂)− f (x)− 〈∇ f (zλ), x̂ − x〉 = 0,

by (4). Using zλ = ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x)), we have

f (x̂)− f (x)− 〈λ∇ f (y)+ (1− λ)∇ f (x), x̂ − x〉 = 0,

so that

λ[ f (x̂)− f (x)− 〈∇ f (y), x̂ − x〉] + (1− λ)[ f (x̂)− f (x)− 〈∇ f (x), x̂ − x〉] = 0,

and

λ[ f (x)− f (x̂)− 〈∇ f (y), x − x̂〉] = (1− λ)[ f (x̂)− f (x)− 〈∇ f (x), x̂ − x〉].

This gives, by (4), λ[D(x, y)− D(x̂, y)] = (1− λ)D(x̂, x) and hence

D(x, y)− D(x̂, y) =
1− λ
λ

D(x̂, x),

since 1 > λ > 0. If x̂ 6= x , then D(x̂, x) > 0 by the strict convexity of f so that
D(x, y) > D(x̂, y), and this contradicts that x ∈

←−
PC (y). Therefore,

←−
PC (zλ) = {x}.

When C is convex, by (6), x ∈
←−
PC (y) if and only if

〈∇ f (y)−∇ f (x), c − x〉 ≤ 0, ∀c ∈ C. (14)

If zλ = ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x)) with λ ≥ 0, then

〈∇ f (zλ)−∇ f (x), c − x〉

= 〈∇ f ◦ ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x))−∇ f (x), c − x〉 (15)

= λ〈∇ f (y)−∇ f (x), c − x〉 ≤ 0. (16)

By (6), x ∈
←−
PC (zλ). Applying (8), we see that x =

←−
PC (zλ). Indeed, select λ1 > λ. Since

zλ = ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x))⇒ ∇ f (zλ) = ∇ f (x)+ λ(∇ f (y)−∇ f (x)), (17)

zλ1 = ∇ f ∗(λ1∇ f (y)+ (1− λ1)∇ f (x))⇒ ∇ f (zλ1)

= ∇ f (x)+ λ1(∇ f (y)−∇ f (x)). (18)

Solve (18) for ∇ f (y)−∇ f (x) and put into (17) to get

∇ f (zλ) =

(
1−

λ

λ1

)
∇ f (x)+

λ

λ1
∇ f (zλ1).
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This gives

zλ = ∇ f ∗((1− λ/λ1)∇ f (x)+ λ/λ1∇ f (zλ1)).

As x ∈
←−
PC (zλ1), (8) applies. �

It is interesting to point out a connection to the proximal normal cone N P
C (x) of C at x ∈ C

Recall that

N P
C (x) := {t (y − x) : t ≥ 0, x ∈ PC (y), y ∈ RJ

},

in which PC denotes the usual projection on C in terms of the Euclidean norm, and each vector
t (y− x) is called a proximal normal to C at x ; see, e.g., [13, Section 1.1] for further information.

Proposition 3.3. Suppose that f is twice continuously differentiable on U, let y ∈ U, and
suppose that x ∈

←−
PC (y). Then ∇ f (y)−∇ f (x) ∈ N P

C (x).

Proof. By Proposition 3.2(i),

D(c, x) ≥ 〈∇ f (y)−∇ f (x), c − x〉 ∀c ∈ C. (19)

Since the Hessian of f is continuous, using Taylor’s formula, we obtain

D(c, x) = f (c)− f (x)− 〈∇ f (x), c − x〉 =
1
2
〈c − x,∇2 f (ξ)(c − x)〉

where ξ ∈ [c, x]. (20)

Fix δ > 0. Since ∇2 f is continuous on the compact set C ∩ Bδ(x), there exists σ = σ(x, δ) > 0
such that ‖∇2 f (ξ)‖ ≤ 2σ for every ξ ∈ C ∩ Bδ(x). Then (20) gives D(c, x) ≤ σ‖c − x‖2. By
(19),

σ‖c − x‖2 ≥ 〈∇ f (y)−∇ f (x), c − x〉 ∀c ∈ C ∩ Bδ(x).

By [13, Proposition 1.1.5.(b) on page 25], ∇ f (y)−∇ f (x) ∈ N P
C (x). �

The following example illustrates the geodesics {zλ : 0 ≤ λ ≤ 1} given by (7).

Example 3.4. Let x = (x j )1≤ j≤J and y = (y j )1≤ j≤J be two points in RJ .

(i) If f : x 7→ 1
2‖x‖

2, then ∇ f = ∇ f ∗ = Id. We have

zλ = λy + (1− λ)x,

for λ ∈ [0, 1]. Hence zλ is a componentwise arithmetic mean of x and y.
(ii) If f : x 7→

∑J
j=1 x j ln(x j )− x j , then

∇ f (x) = (ln x1, . . . , ln xn),

f ∗: x∗ 7→
J∑

j=1

exp(x∗j ),

so that

∇ f ∗(x∗) = (exp x∗1 , . . . , exp x∗J ).
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We have

zλ = ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x)) (21)

= ∇ f ∗(λ ln y1 + (1− λ) ln x1, . . . , λ ln yJ + (1− λ) ln xJ ) (22)

= (exp(λ ln y1 + (1− λ) ln x1), . . . , exp(λ ln yJ + (1− λ) ln xJ )) (23)

= (yλ1 x1−λ
1 , . . . , yλJ x1−λ

J ). (24)

Hence zλ is a componentwise geometric mean of x and y.
(iii) If f : x 7→

∑J
j=1 exp(x j ), then f ∗: x∗ 7→

∑J
j=1 x∗j ln(x∗j )− x∗j so that

∇ f (x) = (exp(x1), . . . , exp(xJ )), ∇ f ∗(x∗) = (ln x∗1 , . . . , ln x∗J ).

Hence

zλ = (ln(λ exp(y1)+ (1− λ) exp(x1)), . . . , ln(λ exp(yJ )+ (1− λ) exp(xJ ))).

Define the symmetrization of D for x, y ∈ U by

S(x, y) := D(x, y)+ D(y, x) = 〈∇ f (x)−∇ f (y), x − y〉.

Proposition 3.5. Given x, y ∈ U and 0 < λ < 1, set

zλ := ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x)).

Then we have:

(i) D(x, y) = D(x, zλ)+ D(zλ, y)+ 1−λ
λ

S(x, zλ).
(ii) S(x, y) = 1

1−λ S(y, zλ)+ 1
λ

S(zλ, x).

Proof. Since zλ = ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x)), and

D(x, zλ) = f (x)− f (zλ)− 〈∇ f (zλ), x − zλ〉,

we have

D(x, zλ) = f (x)− f (zλ)− 〈λ∇ f (y)+ (1− λ)∇ f (x), x − zλ〉 (25)

= λ[ f (x)− f (zλ)− 〈∇ f (y), x − zλ〉]

+ (1− λ)[ f (x)− f (zλ)− 〈∇ f (x), x − zλ〉] (26)

= λ[D(x, y)− D(zλ, y)] − (1− λ)[ f (zλ)− f (x)− 〈∇ f (x), zλ − x〉] (27)

= λ[D(x, y)− D(zλ, y)] − (1− λ)D(zλ, x). (28)

Hence (1− λ)[D(x, zλ)+ D(zλ, x)] + λD(x, zλ)+ λD(zλ, y) = λD(x, y). Dividing both sides
by λ yields

D(x, y) = D(x, zλ)+ D(zλ, y)+
1− λ
λ

S(x, zλ), (29)

which is (i).
To see (ii), we rewrite

zλ = ∇ f ∗((1− λ)∇ f (x)+ λ∇ f (y)).

Applying (i), we get

D(y, x) = D(y, zλ)+ D(zλ, x)+
λ

1− λ
S(zλ, y). (30)
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Adding (29) and (30), we obtain

S(x, y) = D(x, y)+ D(y, x) (31)

= [D(zλ, y)+ D(y, zλ)] + [D(zλ, x)+ D(x, zλ)] +
1− λ
λ

S(x, zλ)

+
λ

1− λ
S(zλ, y) (32)

=

(
1+

λ

1− λ

)
S(zλ, y)+

(
1+

1− λ
λ

)
S(x, zλ) (33)

=
1

1− λ
S(y, zλ)+

1
λ

S(zλ, x), (34)

which is (ii). �

4. Bregman nearest points and maximal monotone operators

We shall need the following pointwise version of a concept due to Rockafellar and Wets [24,
Definition 1.16].

Definition 4.1. Let g : RJ
×RJ

→]−∞,+∞] and let ȳ ∈ RJ . We say that g is level bounded
in the first variable locally uniformly at ȳ, if for every α ∈ R, there exists δ > 0 such that⋃

y∈Bδ(ȳ)

{x ∈ RJ : g(x, y) ≤ α} is bounded.

Proposition 4.2. The Bregman distance D is level bounded in the first variable locally uniformly
at every point in U.

Proof. Suppose the opposite. Then there exist ȳ ∈ U and ᾱ ∈ R such that for every n ∈
{1, 2, . . .}, there exist yn ∈ U and xn ∈ dom f such that

‖yn − ȳ‖ <
1
n
, D(xn, yn) ≤ ᾱ, and ‖xn‖ > n.

We then have yn → ȳ, ‖xn‖ → ∞ and

D(xn, yn) ≤ ᾱ. (35)

Now

D(xn, yn) = f (xn)− f (yn)− 〈∇ f (yn), xn − yn〉 (36)

= f (xn)− 〈∇ f (yn), xn〉 + [− f (yn)+ 〈∇ f (yn), yn〉]. (37)

Since f is Legendre, ∇ f is continuous on U . When n→∞, we have

− f (yn)+ 〈∇ f (yn), yn〉 → − f (ȳ)+ 〈∇ f (ȳ), ȳ〉 , (38)

and

f (xn)− 〈∇ f (yn), xn〉 = ‖xn‖

(
f (xn)

‖xn‖
−

〈
∇ f (yn),

xn

‖xn‖

〉)
(39)

≥ ‖xn‖

(
f (xn)

‖xn‖
− ‖∇ f (yn)‖

)
→∞, (40)
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since ‖∇ f (yn)‖ → ‖∇ f (ȳ)‖ and lim f (xn)/‖xn‖ = +∞. (38)-(40) and (37) altogether show
that D(xn, yn)→∞, but this contradicts (35). �

The following result will be very useful later.

Theorem 4.3. The following hold.

(i) For each y ∈ U, the set
←−
PC (y) is nonempty and compact. Moreover,

←−
DC is continuous on

U.
(ii) If xn ∈

←−
PC (yn) and yn → y ∈ U, then the sequence (xn)

∞

n=1 is bounded, and all its cluster

points lie in
←−
PC (y).

(iii) Let y ∈ U and
←−
PC (y) = {x}. If xn ∈

←−
PC (yn) and yn → y, then xn → x; consequently,

←−
PC is continuous at y.

Proof. Fix ȳ ∈ U and δ > 0 such that Bδ(ȳ) ⊂ U . Consider the proper lower semicontinuous
function g : RJ

× RJ
→]−∞,+∞] defined by

(x, y) 7→ D(x, y)+ ιC (x)+ ιBδ(ȳ)(y).

Observe that dom g = C × Bδ(ȳ). For every y ∈ RJ and α ∈ R, we have

{x ∈ RJ : g(x, y) ≤ α} =

{
C ∩ {x ∈ RJ : D(x, y) ≤ α}, if y ∈ Bδ(ȳ);
∅, otherwise.

(41)

We now show that

g is level bounded in the first variable locally uniformly at every point in RJ . (42)

To this end, fix z̄ ∈ RJ and α ∈ R.

Case 1: z̄ 6∈ Bδ(ȳ).
Let ε > 0 be so small that Bδ(ȳ) ∩ Bε(z̄) = ∅. Then (41) yields⋃

z∈Bε(z̄)

{x ∈ RJ : g(x, z) ≤ α} = ∅,

which is certainly bounded.

Case 2: z̄ ∈ Bδ(ȳ).
Since Bδ(ȳ) ⊂ U , we have z̄ ∈ U . Proposition 4.2 guarantees the existence of ε > 0 such

that ⋃
z∈Bε(z̄)

{x ∈ RJ : D(x, z) ≤ α} is bounded.

In view of (41), the set⋃
z∈Bε(z̄)∩Bδ(ȳ)

C ∩ {x ∈ RJ : D(x, z) ≤ α} =
⋃

z∈Bε(z̄)

{x ∈ RJ : g(x, z) ≤ α}

is bounded as well.
Altogether, we have verified (42).
Define a function m at y ∈ RJ by

m(y) := inf
x∈RJ

g(x, y) =

{
inf
x∈C

D(x, y) =
←−
DC (y), if y ∈ Bδ(ȳ);

+∞, otherwise.
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Then m =
←−
DC + ιBδ(ȳ) and

argmin
x∈RJ

g(x, y) =

{
argmin

x∈C
D(x, y) =

←−
PC (y), if y ∈ Bδ(ȳ);

∅, otherwise.

Now (42) and [24, Theorem 1.17(a)] imply that if y ∈ Bδ(ȳ), then
←−
PC (y) is nonempty and

compact. In particular,
←−
PC (ȳ) 6= ∅ and compact. Take x̄ ∈

←−
PC (ȳ). As

g(x̄, ·) = D(x̄, ·)+ ιBδ(ȳ)

is continuous at ȳ, by [24, Theorem 1.17(c)], the function m is continuous at ȳ. Hence
←−
DC is

continuous at ȳ. Since ȳ ∈ U is arbitrary, this proves (i). Next, [24, Theorem 1.17(b)] gives (ii)
since

←−
DC is continuous on U .

Finally, (iii) is an immediate consequence of (ii). �

Our next result states that
←−
PC ◦ ∇ f ∗ is a monotone operator. This is also related to [3,

Proposition 3.32.(ii)(c)], which establishes a stronger property when C is convex.

Proposition 4.4. For every x, y in U,

〈
←−
PC (y)−

←−
PC (x),∇ f (y)−∇ f (x)〉 ≥ 0; (43)

consequently,
←−
PC ◦ ∇ f ∗ is monotone.

Proof. Since

D(
←−
PC (x), y) ≥ D(

←−
PC (y), y), D(

←−
PC (y), x) ≥ D(

←−
PC (x), x),

we use (4) to get

f (
←−
PC (x))− f (

←−
PC (y))− 〈∇ f (y),

←−
PC (x)−

←−
PC (y)〉 ≥ 0,

f (
←−
PC (y))− f (

←−
PC (x))− 〈∇ f (x),

←−
PC (y)−

←−
PC (x)〉 ≥ 0.

Adding these inequalities yields

〈∇ f (y),
←−
PC (y)−

←−
PC (x)〉 − 〈∇ f (x),

←−
PC (y)−

←−
PC (x)〉 ≥ 0,

i.e., (43). The monotonicity now follows from Fact 2.2 and our assumption that
dom f ∗ = RJ . �

Definition 4.5. The set C is Chebyshev with respect to the left Bregman distance, or simply
←−
D -

Chebyshev, if for every x ∈ U ,
←−
PC (x) is a singleton.

For some instances of f , it is known that if C is convex, then it is
←−
D -Chebyshev (see, e.g., [2,

Theorem 3.14]) and
←−
PC is continuous (see, e.g., [4, Proposition 3.10(i)]). The next result is a

refinement.

Proposition 4.6. Suppose that C is
←−
D -Chebyshev. Then

←−
PC : U → C is continuous. Hence

←−
PC ◦ ∇ f ∗ is continuous and maximal monotone.

Proof. While the continuity of
←−
PC follows from Theorem 4.3(iii), Proposition 4.4 shows that

←−
PC ◦ ∇ f ∗ is monotone. Since

←−
PC is continuous on U and ∇ f ∗ : RJ

→ U is continuous, we
conclude that

←−
PC ◦ ∇ f ∗ is continuous on RJ . Altogether, since

←−
PC ◦ ∇ f ∗ is single-valued, it is

maximal monotone on RJ by [24, Example 12.7]. �
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Rockafellar’s well-known result on the virtual convexity of the range of a maximal monotone
operator allows us to show that

←−
D -Chebyshev sets are convex. Our proof extends a Hilbert space

technique due to Berens and Westphal [5].

Theorem 4.7 (
←−
D -Chebyshev Sets are Convex). Suppose that C is

←−
D -Chebyshev. Then C is

convex.

Proof. By Proposition 4.6,
←−
PC ◦ ∇ f ∗ is a maximal monotone operator on RJ . Using [24,

Theorem 12.41] (or [25, Theorem 19.2]), cl[ran
←−
PC ◦ ∇ f ∗] is convex. Since ran∇ f ∗ = U

and C ⊂ U , it follows that

C ⊃ ran
(
←−
PC ◦ ∇ f ∗

)
=
←−
PC (∇ f ∗(RJ )) =

←−
PC (U ) ⊃

←−
PC (C) = C,

from which cl[ran
←−
PC ◦ ∇ f ∗] = cl C = C. Hence C is convex. �

Corollary 4.8. The set C is
←−
D -Chebyshev if and only if it is convex.

5. Subdifferentiabilities of Bregman distances

Let us show that
←−
DC is locally Lipschitz on U .

Proposition 5.1. Suppose f is twice continuously differentiable on U. Then the left Bregman
distance function satisfies

←−
DC = f ∗ ◦ ∇ f − ( f + ιC )

∗
◦ ∇ f = [ f ∗ − ( f + ιC )

∗
] ◦ ∇ f, (44)

and it is locally Lipschitz on U.

Proof. The Mean Value Theorem and the continuity of ∇2 f on U imply that ∇ f is locally
Lipschitz on U . For y ∈ U ,

←−
DC (y) = inf

c∈C
[ f (c)− f (y)− 〈∇ f (y), c − y〉] (45)

= inf
c
[( f + ιC )(c)− 〈∇ f (y), c〉 + f ∗(∇ f (y))] (46)

= f ∗(∇ f (y))− sup
c
[〈∇ f (y), c〉 − ( f + ιC )(c)] (47)

= f ∗(∇ f (y))− ( f + ιC )
∗(∇ f (y)). (48)

Note that f +ιC ≥ f , ( f +ιC )∗ ≤ f ∗, so dom f ∗ ⊂ dom( f +ιC )∗. Being convex functions, both
( f + ιC )∗ and f ∗ are locally Lipschitz on the interior of their respective domains, in particular
on int dom f ∗ = RJ . Since ∇ f : U → RJ is locally Lipschitz, we conclude that

←−
DC is locally

Lipschitz on U . �

For a function g that is finite and locally Lipschitz at a point y, we define the Dini
subderivative and Clarke subderivative of g at y in the direction w, denoted respectively by
d g(y)(w) and d̂g(y)(w), via

d g(y)(w) := lim inf
t↓0

g(y + tw)− g(y)

t
,

d̂g(y)(w) := lim sup
x→y
t↓0

g(x + tw)− g(x)

t
,
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and the corresponding Dini subdifferential and Clarke subdifferential via

∂̂g(y) := {y∗ ∈ RJ
: 〈y∗, w〉 ≤ d g(y)(w), ∀w ∈ RJ

},

∂g(y) := {y∗ ∈ RJ
: 〈y∗, w〉 ≤ d̂g(y)(w), ∀w ∈ RJ

}.

Furthermore, the limiting subdifferential is defined by

∂L g(y) := lim sup
x→y

∂̂g(x),

see [24, Definition 8.3]. We say that g is Clarke regular at y if d g(y)(w) = d̂g(y)(w) for every
w ∈ RJ , or equivalently ∂̂g(y) = ∂g(y). For further properties of these subdifferentials and
subderivatives, see [15,21,24].

We now study the subdifferentiability of
←−
DC in terms of

←−
PC .

Proposition 5.2. Suppose f is twice continuously differentiable on U. Then the function −
←−
DC

is Dini subdifferentiable on U; more precisely, if y ∈ U, then

∇
2 f (y)[

←−
PC (y)− y] ⊂ ∂̂(−

←−
DC )(y),

and thus

∇
2 f (y)[conv

←−
PC (y)− y] ⊂ ∂̂(−

←−
DC )(y). (49)

Proof. Fix y ∈ U . By Theorem 4.3(i),
←−
PC (y) 6= ∅. Let x ∈

←−
PC (y). As ∂̂ is convex-valued, it

suffices to show that

∇
2 f (y)(x − y) ∈ ∂̂(−

←−
DC )(y). (50)

To this end, let t > 0 and w ∈ RJ . Since for sufficiently small t , y + tw ∈ U ,

−
←−
DC (y + tw) = sup

c∈C
(− f (c)+ f (y + tw)+ 〈∇ f (y + tw), c − (y + tw)〉) (51)

≥ − f (x)+ f (y + tw)+ 〈∇ f (y + tw), x − (y + tw)〉 (52)

and
←−
DC (y) = f (x)− f (y)− 〈∇ f (y), x − y〉, (53)

we have

−
←−
DC (y + tw)+

←−
DC (y) ≥ f (y + tw)− f (y)+ 〈∇ f (y + tw)

−∇ f (y), x − y〉 + 〈∇ f (y + tw),−tw〉.

Dividing both sides by t and taking the limit inferior as t ↓ 0, we have

d(−
←−
DC )(y)(w) ≥ 〈∇ f (y), w〉 + 〈∇2 f (y)w, x − y〉 − 〈∇ f (y), w〉 (54)

= 〈∇
2 f (y)(x − y), w〉, (55)

which gives (50). �

Lemma 5.3. Suppose that f is twice continuously differentiable on U, let y ∈ U, and suppose
that
←−
PC (y) is a singleton. Then

←−
DC is Dini subdifferentiable at y and

∇
2 f (y)(y −

←−
PC (y)) ∈ ∂̂

←−
DC (y). (56)
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Proof. Suppose that
←−
PC (y) = {x}, and fix w ∈ RJ . Let (tn) be a positive sequence such that

(y + tnw) lies in U , tn ↓ 0, and

d
←−
DC (y)(w) = lim

n→∞

←−
DC (y + tnw)−

←−
DC (y)

tn
.

Select xn ∈
←−
PC (y + tnw), which is possible by Theorem 4.3(i). We have

←−
DC (y + tnw)−

←−
DC (y) = D(xn, y + tnw)− D(xn, y)+ D(xn, y)− D(x, y)

≥ D(xn, y + tnw)− D(xn, y)

= f (xn)− f (y + tnw)− 〈∇ f (y + tnw), xn − (y + tnw)〉

− [ f (xn)− f (y)− 〈∇ f (y), xn − y〉]

= −( f (y + tnw)− f (y))− 〈∇ f (y + tnw)

−∇ f (y), xn − y〉 + tn〈∇ f (y + tnw),w〉.

Dividing by tn , we get
←−
DC (y + tnw)−

←−
DC (y)

tn

≥ −
f (y + tnw)− f (y)

tn
−
〈∇ f (y + tnw)−∇ f (y), xn − y〉

tn
+ 〈∇ f (y + tnw),w〉.

(57)

By Theorem 4.3(iii), xn → x . Taking limits in (57) yields

d
←−
DC (y)(w) ≥ −〈∇

2 f (y)w, x − y〉 = 〈∇2 f (y)(y − x), w〉.

Since this holds for every w ∈ RJ , we conclude that ∇2 f (y)(y − x) ∈ ∂̂
←−
DC (y). �

Lemma 5.3 allows us to generalize [24, Example 8.53] from the Euclidean distance to the
left Bregman distance. It delineates the differences between the Dini subdifferential, limiting
subdifferential and Clarke subdifferential.

Theorem 5.4. Suppose that f is twice continuously differentiable on U and that for every u ∈ U,
∇

2 f (u) is positive definite. Set g =
←−
DC , and let y ∈ U and w ∈ RJ . Then the following hold.

(i) The Dini subderivative is

d g(y)(w) = min
x∈
←−
PC (y)

〈∇
2 f (y)(y − x), w〉, (58)

so that the Dini subdifferential of g is

∂̂g(y) =

{
{∇

2 f (y)[y −
←−
PC (y)]} if

←−
PC (y) is a singleton;

∅, otherwise.
(59)

The limiting subdifferential is

∂L g(y) = ∇2 f (y)[y −
←−
PC (y)]. (60)

The Clarke subderivative is

d̂g(y)(w) = max
x∈
←−
PC (y)

〈∇
2 f (y)(y − x), w〉, (61)



H.H. Bauschke et al. / Journal of Approximation Theory 159 (2009) 3–25 17

from which we get the Clarke subdifferential

∂g(y) = ∇2 f (y)[y − conv
←−
PC (y)]. (62)

Hence −
←−
DC is Clarke regular on U.

(ii) If y ∈ C, then g is strictly differentiable with derivative 0.

Proof. By Theorem 4.3(i),
←−
PC (y) 6= ∅. Fix x ∈

←−
PC (y) and t > 0 sufficiently small so that

y + tw ∈ U . In view of
←−
DC (y + tw) ≤ D(x, y + tw) and

←−
DC (y) = D(x, y), we have

d g(y)(w) = lim inf
t↓0

←−DC (y + tw)−←−DC (y)

t
≤ lim inf

t↓0

D(x, y + tw)− D(x, y)

t

= lim inf
t↓0

f (x)− f (y + tw)− 〈∇ f (y + tw), x − (y + tw)〉 − [ f (x)− f (y)− 〈∇ f (y), x − y〉]

t

= lim inf
t↓0

−[ f (y + tw)− f (y)] − 〈∇ f (y + tw)−∇ f (y), x − y〉 + t〈∇ f (y + tw),w〉

t

= lim inf
t↓0
−

f (y + tw)− f (y)

t
−
〈∇ f (y + tw)−∇ f (y), x − y〉

t
+ 〈∇ f (y + tw),w〉

= −〈∇ f (y), w〉 − 〈∇2 f (y)w, x − y〉 + 〈∇ f (y), w〉

= 〈∇
2 f (y)(y − x), w〉.

Since this holds for every x ∈
←−
PC (y), it follows from Theorem 4.3(i) that

d g(y)(w) ≤ min
x∈
←−
PC (y)

〈∇
2 f (y)(y − x), w〉.

To get the opposite inequality, we consider a positive sequence (tn) such that tn ↓ 0, (y+ tnw)
lies in U , and

d g(y)(w) = lim
n→∞

←−
DC (y + tnw)−

←−
DC (y)

tn
.

Select xn ∈
←−
PC (y + tnw), which is possible by Theorem 4.3(i). Then

←−
DC (y + tnw) = D(xn, y + tnw)

= f (xn)− f (y + tnw)− 〈∇ f (y + tnw), xn − (y + tnw)〉 (63)

and

←−
DC (y) ≤ D(xn, y) ≤ f (xn)− f (y)− 〈∇ f (y), xn − y〉. (64)

By Theorem 4.3(ii), and after taking a subsequence if necessary, we assume that xn → x ∈
←−
PC (y). We estimate

←−DC (y + tnw)−
←−DC (y)

tn

≥
−[ f (y + tnw)− f (y)] − 〈∇ f (y + tnw)−∇ f (y), xn − y〉 + 〈∇ f (y + tnw), tnw〉

tn

=
−[ f (y + tnw)− f (y)]

tn
−
〈∇ f (y + tnw)−∇ f (y), xn − y〉

tn
+ 〈∇ f (y + tnw),w〉. (65)
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Taking limits, we obtain

d g(y)(w) ≥ −〈∇2 f (y)w, x − y〉 = 〈∇2 f (y)(y − x), w〉 ≥ min
x∈
←−
PC (y)

〈∇
2 f (y)(y − x), w〉.

Therefore, (58) is correct.
For y∗ ∈ RJ , y∗ ∈ ∂̂g(y) if and only if

〈y∗, w〉 ≤ 〈∇2 f (y)(y − x), w〉 ∀x ∈
←−
PC (y), w ∈ RJ .

This holds if and only if y∗ = ∇2 f (y)(y − x), ∀x ∈
←−
PC (y); since ∇2 f (y) is invertible, we

deduce that x = y− (∇2 f (y))−1 y∗, so that
←−
PC (y) is unique. Therefore, if

←−
PC (y) is not unique,

then ∂̂g(y) has to be empty. Hence (59) holds.
For every z ∈ RJ , we have

∂̂g(z) ⊂ ∇2 f (z)(z −
←−
PC (z)).

The upper semicontinuity of
←−
PC (see Theorem 4.3(ii)) implies through ∂L g(y) =

lim supz→y ∂̂g(z) that

∂L g(y) ⊂ ∇2 f (y)(y −
←−
PC (y)). (66)

Equality actually has to hold. Indeed, for x ∈
←−
PC (y) and 0 ≤ λ < 1, the point

zλ := ∇ f ∗(λ∇ f (y)+ (1− λ)∇ f (x)),

has
←−
PC (zλ) = {x} by Proposition 3.2(ii). Lemma 5.3 shows that

∇
2 f (zλ)(zλ − x) ∈ ∂̂g(zλ),

where ∇2 f (zλ)(zλ − x) → ∇
2 f (y)(y − x) as λ → 1, since ∇2 f is continuous. Thus

∇
2 f (y)(y − x) ∈ ∂L g(y) and therefore

∇
2 f (y)(y −

←−
PC (y)) ⊂ ∂L g(y). (67)

Hence (66) and (67) together give (60).
Since g is locally Lipschitz around y ∈ U by Proposition 5.1, the singular subdifferential of g

at y is 0, so that its polar cone is RJ . Then for every w ∈ RJ , using [24, Exercise 8.23] we have

d̂g(y)(w) = sup{〈y∗, w〉 : y∗ ∈ ∂L g(y)};

thus, (61) follows from (60). Now (61) is the same as

d̂g(y)(w) = max〈∇2 f (y)(y − conv
←−
PC (y)), w〉.

As conv
←−
PC (y) is compact, we obtain (62) or directly apply [24, Theorem 8.49] and (60).

The Clarke regularity of −
←−
DC follows from combining (49) and (62). Indeed,

∇
2 f (y)[conv

←−
PC (y)− y] ⊂ ∂̂(−

←−
DC )(y) ⊂ ∂(−

←−
DC )(y) = ∇

2 f (y)[conv
←−
PC (y)− y],

so that ∂̂(−
←−
DC )(y) = ∂(−

←−
DC )(y).

(ii): When y ∈ C ,
←−
PC (y) = {y}. By (60), ∂L g(y) = {0}, and this implies that g is strictly

differentiable at y by [24, Theorem 9.18(b)]. �

Corollary 5.5. Suppose that f is twice continuously differentiable and that ∇2 f (y) is positive
definite, for every y ∈ U. Then for y ∈ U, the following are equivalent:
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(i)
←−
DC is Dini subdifferentiable at y;

(ii)
←−
DC is differentiable at y;

(iii)
←−
DC is strictly differentiable at y;

(iv)
←−
DC is Clarke regular at y;

(v)
←−
PC (y) is a singleton.

If these hold, we have ∇
←−
DC (y) = ∇2 f (y)[y −

←−
PC (y)].

Proof. (i)⇒ (ii): By Proposition 5.2, both −
←−
DC and

←−
DC are Dini subdifferentiable. Thus

←−
DC

is differentiable at y (see [13, Exercise 3.4.14 on page 143]), and

∂̂
←−
DC (y) = −∂̂(−

←−
DC )(y) = {∇

←−
DC (y)}.

(ii) ⇒ (i) is clear. (ii) ⇔ (iii) ⇔ (iv): This is a consequence of [30, Theorem 3.4].
(ii)⇔ (v): If

←−
DC is differentiable at y, then (59) implies that

←−
PC (y) is a singleton. Conversely,

if
←−
PC (y) is a singleton, then (62), Proposition 5.1, and [12, Proposition 2.2.4] show that

←−
DC

is strictly differentiable and hence differentiable at y. Finally, the gradient formula ∇
←−
DC (y) =

∇
2 f (y)[y −

←−
PC (y)] is a consequence of Proposition 5.2 or Lemma 5.3. �

Corollary 5.6. Suppose that f is twice continuously differentiable on U and that ∇2 f (y) is
positive definite for every y ∈ U. Then

←−
PC is almost everywhere and generically single-valued

on U.

Proof. By Proposition 5.1,
←−
DC is locally Lipschitz on U . Apply Rademacher’s Theorem [7,

Theorem 9.1.2] or [13, Corollary 3.4.19] to obtain that
←−
DC is differentiable almost everywhere

on U . Moreover, since −
←−
DC is Clarke regular on U by Theorem 5.4, we use [20, Theorem 10]

to conclude that −
←−
DC is differentiable generically on U , and so is

←−
DC . Hence the result follows

from Corollary 5.5. �

6. Characterizations of Chebyshev sets

Definition 6.1. For g : RJ
→]−∞,+∞] (not necessarily convex), we let

∂g(x) := {s ∈ RJ
: g(y) ≥ g(x)+ 〈s, y − x〉 ∀y ∈ RJ

} if x ∈ dom g;

and ∂g(x) = ∅ otherwise; and the Fenchel conjugate of g is defined by

s 7→ g∗(s) := sup{〈s, x〉 − g(x) : x ∈ RJ
}.

According to [17, Proposition 1.4.3],

s ∈ ∂g(x) ⇒ x ∈ ∂g∗(s), (68)

which becomes “⇔” if g ∈ Γ . In order to study
←−
D -Chebyshev sets, we need two preparatory

results concerning subdifferentiabilities of f + ιC and ( f + ιC )
∗. Lemmas 6.2, 6.3 and

Theorem 6.6 generalize respectively, and are inspired by [17, Propositions 3.2.1, 3.2.2 and
Theorem 3.2.3].

Lemma 6.2. Let x ∈ RJ . Then

∂( f + ιC )(x) = {s ∈ RJ : x ∈
←−
PC (∇ f ∗(s))} = (

←−
PC ◦ ∇ f ∗)−1(x),

and consequently ∂( f + ιC ) =
(
←−
PC ◦ ∇ f ∗

)−1
.
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Proof. The statement is clear if x 6∈ C , so assume x ∈ C . By [17, Theorem 1.4.1],

s ∈ ∂( f + ιC )(x) ⇔ ( f + ιC )
∗(s)+ ( f + ιC )(x) = 〈s, x〉. (69)

Proposition 5.1 shows that

( f + ιC )
∗
= f ∗ −

←−
DC ◦ ∇ f ∗ on RJ .

Combining with (69) and since x ∈ C , we get

s ∈ ∂( f + ιC )(x) ⇔ f ∗(s)− (
←−
DC ◦ ∇ f ∗)(s)+ f (x) = 〈s, x〉;

equivalently,

←−
DC (∇ f ∗(s)) = f (x)+ f ∗(s)− 〈s, x〉 (70)

= f (x)+ f ∗((∇ f ◦ ∇ f ∗)(s))− 〈∇ f ◦ ∇ f ∗(s), x〉 (71)

= f (x)− f (∇ f ∗(s))− 〈∇ f (∇ f ∗(s)), x −∇ f ∗(s)〉 (72)

= D(x,∇ f ∗(s)), (73)

i.e., x ∈
←−
PC (∇ f ∗(s)). �

The following result, which establishes the link between ∂( f + ιC )∗ and
←−
PC ◦ ∇ f ∗, is the

cornerstone for the convexity characterization of
←−
D -Chebyshev sets.

Lemma 6.3. Let s ∈ RJ . Then

∂( f + ιC )
∗(s) = conv[

←−
PC (∇ f ∗(s))] = conv[

←−
PC ◦ ∇ f ∗(s)]

Consequently,
←−
PC ◦ ∇ f ∗ is monotone on RJ .

Proof. Since f is 1-coercive and C is closed, the function f + ιC is 1-coercive and lower
semicontinuous. We have that conv( f + ιC ) is lower semicontinuous by [17, Proposition 1.5.4],
and dom( f + ιC )∗ = RJ by [17, Proposition 1.3.8]. Now

x ∈ ∂( f + ιC )
∗(s)⇔ x ∈ ∂[conv( f + ιC )]

∗(s)⇔ s ∈ ∂[conv( f + ιC )](x),

in which the first equivalences follows from [17, Corollary 1.3.6] and the second equivalence uses
the lower semicontinuity of conv( f + ιC ). Using [17, Theorem 1.5.6], s ∈ ∂[conv( f + ιC )](x)
if and only if there exist x1, . . . , xk ∈ RJ , α1, . . . , αk > 0 such that

k∑
j=1

α j = 1, x =
k∑

j=1

α j x j , and s ∈
k⋂

j=1

∂( f + ιC )(x j ). (74)

But s ∈ ∂( f + ιC )(x j ) is equivalent to

x j ∈
←−
PC (∇ f ∗(s)),

by Lemma 6.2. Hence (74) gives ∂( f + ιC )∗(s) = conv
←−
PC (∇ f ∗(s)). Finally, as a selection of

∂( f + ιC )∗, which is maximal monotone, the operator
←−
PC ◦ ∇ f ∗ is monotone. �

Remark 6.4. Let y ∈ RJ
= dom f ∗. Then ( f + ιC )∗(y) = f ∗(y) − infx∈C [ f (x) + f ∗(y) −

〈y, x〉]. Since

f (x)+ f ∗(y)− 〈y, x〉 = f (x)+ f ∗(∇ f (∇ f ∗(y)))− 〈∇ f (∇ f ∗(y)), x〉

= D(x,∇ f ∗(y)),
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we have ( f + ιC )∗(y) = f ∗(y)−
←−
DC (∇ f ∗(y)). Hence

( f + ιC )
∗
= f ∗ −

←−
DC ◦ ∇ f ∗;

see also Proposition 5.1. If f = 1
2‖ · ‖

2, then

( f + ιC )
∗
=

1
2
‖ · ‖

2
−

1
2

d2
C ,

where dC (y) := inf{‖y − x‖ : x ∈ C},∀y ∈ RJ . In this case, Lemma 6.3 is classical; see [18,
pages 262–264] or [19].

We also need the following result from [28].

Proposition 6.5 (Soloviov). Let g : RJ
→] −∞,+∞] be lower semicontinuous, and assume

that g∗ is essentially smooth. Then g is convex.

Now we are ready for the main result of this section.

Theorem 6.6 (Characterizations of
←−
D-Chebyshev Sets). The following are equivalent:

(i) C is convex;
(ii) C is

←−
D -Chebyshev, i.e.,

←−
PC is single-valued on U;

(iii)
←−
PC is continuous on U;

(iv)
←−
DC ◦ ∇ f ∗ is differentiable on RJ ;

(v) f + ιC is convex.

When these equivalent conditions hold, we have

∇(
←−
DC ◦ ∇ f ∗) = ∇ f ∗ −

←−
PC ◦ ∇ f ∗ on RJ

; (75)

consequently,
←−
DC ◦ ∇ f ∗ is continuously differentiable.

If, in addition, f is twice continuously differentiable on U and ∇2 f (y) is positive definite
∀y ∈ U, then (i)–(iv) are equivalent to

(vi)
←−
DC is differentiable on U.

In this case, we have

∇
←−
DC (y) = ∇

2 f (y)[y −
←−
PC (y)] ∀y ∈ U ; (76)

consequently,
←−
DC is continuously differentiable.

Proof. (i) ⇒ (ii) is well known; see, e.g., [2, Theorem 3.12]. (ii) ⇒ (iii) follows from
Theorem 4.3(iii). To see (iii)⇒ (iv), we use Remark 6.4:

←−
DC ◦ ∇ f ∗ = f ∗ − ( f + ιC )

∗.

Since
←−
PC is continuous on U and ∇ f ∗ : RJ

→ U , ∂( f + ιC )∗ is single-valued on RJ by
Lemma 6.3. Thus, ( f + ιC )∗ is differentiable on RJ . Altogether,

←−
DC ◦ ∇ f ∗ = f ∗ − ( f + ιC )∗

is differentiable on RJ .
When f + ιC is convex, since C ⊂ U we have that dom( f + ιC ) = C is convex, and this

shows (v)⇒ (i). We now prove (iv)⇒ (v) and assume (iv). Remark 6.4 shows

( f + ιC )
∗
= f ∗ −

←−
DC ◦ ∇ f ∗, (77)
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which implies that

( f + ιC )
∗ is differentiable on RJ . (78)

Since f + ιC is lower semicontinuous, it follows from Proposition 6.5 that f + ιC is convex.
When equivalent conditions (i)–(v) hold, (75) follows from Lemma 6.3 and (77). Since∇ f ∗ is

continuous and
←−
PC is continuous by (iii), we obtain that

←−
DC ◦∇ f ∗ is continuously differentiable.

When ∇2 f (y) is positive definite, ∀y ∈ U , (ii) ⇔ (vi) by Corollary 5.5. Finally, (76) follows
from Theorem 5.4, i.e., (59). This finishes the proof. �

Remark 6.7. When C is convex, formula (76) follows also from [4, Proposition 3.12(i)]. See also
[10, Lemma 3.2] for the first result of this kind, in the (negative) Boltzmann–Shannon entropy
setting.

7. Right Bregman projections

In this section, it will be convenient to write D f for the Bregman distance associated with

f (see (2)). Correspondingly, we write
←−
P

f
C ,
−→
P

f
C for the corresponding left and right projection

operators. While D f is convex in its first argument, it is not necessarily so in its second argument.

The properties of
−→
P

f
C can be studied by using

←−
P

f ∗

∇ f (C).

Proposition 7.1. Let f ∈ Γ be Legendre and C ⊂ int dom f . Then for the right Bregman nearest
point projection, we have

−→
P

f
C = ∇ f ∗ ◦

←−
P

f ∗

∇ f (C) ◦ ∇ f ; (79)

or equivalently,

←−
P

f ∗

∇ f (C) = ∇ f ◦
−→
P

f
C ◦ ∇ f ∗. (80)

Proof. By [2, Theorem 3.7(v)] (applied to f ∗ rather than f ),

D f ∗(x
∗, y∗) = D f (∇ f ∗(y∗),∇ f ∗(x∗)) ∀x∗, y∗ ∈ int dom f ∗.

For every y∗ ∈ int dom f ∗, we thus have

←−
P

f ∗

∇ f (C)(y
∗) = argmin

x∗∈∇ f (C)
D f ∗(x

∗, y∗)

= argmin
x∗∈∇ f (C)

D f (∇ f ∗(y∗),∇ f ∗(x∗)) (81)

= ∇ f (
−→
P

f
∇ f ∗(∇ f (C))(∇ f ∗(y∗))) = ∇ f (

−→
P

f
C (∇ f ∗(y∗))) (82)

= (∇ f ◦
−→
P

f
C ◦ ∇ f ∗)(y∗), (83)

which gives (80). Finally, we see that (79) is equivalent to (80) by using Fact 2.2. �

Lemma 7.2. Let f ∈ Γ be Legendre, let C ⊂ RJ be such that cl C ⊂ int dom f , and assume

that for every y ∈ int dom f ,
←−
P

f
C (y) 6= ∅. Then C is closed.
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Proof. Assume that (cn)
∞

n=1 is a sequence in C , and cn → y. We need to show that y ∈ C . By
assumption y ∈ cl C , and y ∈ U . If y 6∈ C , then

D f (c, y) = f (c)− f (y)− 〈∇ f (y), c − y〉 > 0, ∀c ∈ C, (84)

by, e.g., [2, Theorem 3.7.(iv)]. On the other hand, as f is continuous on U ,

0 ≤
←−
D

f
C (y) ≤ D f (cn, y) = f (cn)− f (y)− 〈∇ f (y), cn − y〉 → 0.

Thus,
←−
D

f
C (y) = 0. Using (84), we see that this contradicts the assumption that

←−
P

f
C (y)

6= ∅. �

Theorem 7.3. Let f ∈ Γ be Legendre, with full domain RJ , and let C ⊂ RJ be closed with

cl(∇ f (C)) ⊂ int dom f ∗. Assume that
−→
P

f
C (y) is a singleton for every y ∈ RJ . Then ∇ f (C) is

convex.

Proof. We have the facts that f ∗ is Legendre and f ∗ is 1-coercive. By (80),
←−
P

f ∗

∇ f (C)(y) is single-
valued for every y ∈ int dom f ∗. As cl(∇ f (C)) ⊂ int dom f ∗, Lemma 7.2 says that the set
∇ f (C) is closed. Hence we apply Theorem 6.6 to f ∗ and ∇ f (C), and we obtain that ∇ f (C) is
convex. �

Corollary 7.4. Let f and C satisfy A1–A3, assume that f has full domain, and that
−→
P

f
C (y) is

a singleton for every y ∈ RJ . Then ∇ f (C) is convex.

The following example shows that even if
−→
P

f
C (y) is a singleton for every y ∈ int dom f , the

set C may fail to be convex. Thus, Theorem 6.6 fails for the right Bregman projection
−→
P

f
C . Note

that Theorem 7.3 allows us to conclude that ∇ f (C) is convex rather than C .

Example 7.5. Consider the Legendre function f : R2
→ R given by

f (x, y) := ex
+ ey

∀(x, y) ∈ R2,

and its Fenchel conjugate

f ∗: R2
→]−∞,+∞]: (x, y) 7→

{
x ln x − x + y ln y − y, if x ≥ 0, y ≥ 0;
+∞, otherwise.

Define a compact convex set

C := [(0, 0), (1, 2)] = {(λ, 2λ) : 0 ≤ λ ≤ 1}.

As ∇ f (x, y) = (ex , ey) for every (x, y) ∈ R2, we see that

∇ f (C) = {(eλ, e2λ) : 0 ≤ λ ≤ 1}

is compact but clearly not convex.
(i) In view of Theorem 7.3 and the lack of convexity of ∇ f (C), there must exist (x, y) ∈ R2

such that
−→
P

f
C (x, y) is multi-valued.

(ii) Since
←−
P

f
C (x, y) is a singleton for every (x, y) ∈ R2, and since

−→
P

f ∗

∇ f (C) = ∇ f ◦
←−
P

f
C ◦∇ f ∗

by Proposition 7.1 (applied to f ∗ and ∇ f (C)), we deduce that
−→
P

f ∗

∇ f (C) is single-valued on
int dom f ∗ = {(x, y) : x > 0, y > 0}. Therefore, we obtain the striking conclusion that
the analogue of Theorem 6.6 for the right Bregman projection fails even though f ∗ is Legendre
and 1-coercive.
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