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1. INTRODUCTION 

The concepts of a vector space category and a subspace category were 
introduced by Nazarova and Rojter [ 131. They use it in their solution of the 
second Brauer-Thrall conjecture [ 131. Vector space categories are also 
successfully applied by Ringel [ 171 in the investigation of one-relation tame 
algebras and by the author in 1231. 

Let F be a division ring. We recall from [ 13, 161 that a vector space 
category IK, is an additive category IK together with a faithful additive 
functor (-1: IK --t mod(F) from IK to the category of finite-dimensional right 
vector spaces over F. The subspace category @(lK,..) of IK,. is defined as 
follows. The objects of P(IK,) are triples (U, X, p) where U is a finite- 
dimensional right vector space over F, X is an object in IK and q~: U, + (XI, 
is an F-linear map. The map from (U, X, q) into (U’, X’, cp’) is a pair (u, h) 
where u E Hom,(U, U’) and h: X+ X’ is a map in IK such that (h / (o = p’u. 
The factor space category Y '(lKF) of IK, is defined analogously. There is a 
pair of additive functors 

fY(lK,,.)~ ?' ‘(lKF) 
s+ 

defined by taking the cokernel and the kernel, respectively. 
Subspace categories of vector space categories play an important role in 

the representation theory of artinian rings. A principal motivation for them is 
the following useful observation of Nazarova and Rojter in [ 131 (see also 
[ 16, 241). To any simple ideal S in an artinian ring /1 one can associate a 
vector space category IK, with F = End(S)OP, an additive functor 
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T: mod(A) -+ W(IK,)oP and a proper ring epimorphism E: A + A ‘. Under 
some assumptions any indecomposable A-module which is not a A ‘-module 
via E can be reconstructed from an indecomposable object in iV(IK,) by the 
functor T. If Exti(S, S) = 0 then the functor T is full (see 116, 
Proposition 3.21 and [24, Theorem I.11 for a more detailed discussion). It 
follows that the classification of indecomposable A-modules is reduced to the 
classification of the indecomposable objects in %(IK,) because we can 
suppose by induction that A ‘-modules are known. 

The aim of this paper is to present methods for the computation of the 
indecomposable subspaces of arbitrary vector space categories. 

Following an idea of Drozd ]8] we define right peak rings and two 
additive functors from %(IK,) and T(IK,) to the category mod,,(R) of 
finitely generated right modules with essential projective socles over 
appropriate right peak ring R. The functors are used for the computation of 
the indecomposable objects in Z!(lK,) as well as in mod,,(R). They play a 
role of the Coxeter functors ]5, 211. 

By a right peak ring we mean a semiperfect ring R whose soc(R,) is 
essential and it is a finite direct sum of a copy of a simple projective right 
module. Elementary properties of the category mod,,(R) we need in this 
paper are included in Section 2. 

In Section 3 we study Krull-Schmidt vector space categories with a finite 
number of pairwise nonisomorphic indecomposable objects. If IK, is such a 
vector space category and K, ,..., K, are all pairwise nonisomorphic indecom- 
posable objects in IK we associate to IK, the right peak ring 

with E = End(K, @ +.. @K,,)and.K,=.IK,@ ... OK,/,. We supposein 
this paper that R, is either schurian with the constant dimension property 
(see Section2) or that R,, is an artinian PI-ring (i.e., R,, satisfies a 
polynomial identity). In both cases R,, has a Morita duality. Our basic tool 
we use in this paper are the functors 

mod,,&) & 7 ‘(IK,) $?! P(IK,.) k, mod,((R,,),) 
s- 

as well as the Coxeter scheme of IK, defined in Section 3. They give a 
constructive method for the study of the indecomposable objects in %(IK,) 
provided it is of finite type and R,, is a schurian finite-dimensional algebra 
over a field (Theorem 3.11). They also yield a useful formula for the 
calculation of the almost split sequences in mod,,(R) provided R is a right 
peak artin algebra (Corollary 3.7). 
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In Section 4 we study modules over artinian PI-rings of the form 

where G is a division ring. Using the properties of the functor H proved in 
Theorem 3.3 together with [ 17, Sect. 2.51 we prove that if S is of finite 
representation type then there is an equivalence of categories 

where IK, = Hom,(,M,, mod(S)) and [mod(S)] is the two-sided ideal in 
mod(R) generated by mod(S) considered as the full subcategory of mod(R) 
via the ring epimorphism R + S. If R is a right peak ring and modsp (S) is of 
finite type then there is an equivalence of categories 

where l”K, = Hom,(,M,, mod,,(S)) and mod;(R,) is the full subcategory of 
mod,,(R,) consisting of modules having no injective direct summands. As a 
consequence we get a constructive method for solving schurian vector space 
PI-categories of finite type and useful information about the structure of their 
subspace categories (Theorem 4.4). If IK, is such a vector space category 
then the method allows us to reduce in finite number of steps the 
classification of indecomposable objects in %((IK.) to the well-known 
classification of the indecomposable modules over hereditary PI-rings of the 
form 

where G and F' are division rings and (dim, N)(dim NF8) < 3 (see [7]). 
In Section 5 we extend the differentiation algorithm [4] from e-hereditary 

I-Gorenstein rings to right peak rings. It follows that the algorithm can be 
used in the investigation of subspace categories of vector space categories. 

The results of this paper are accounted in [24]. They were presented at 
the Annual Algebra Conference in Chiba (Japan) in July 1982. A particular 
case when IK, is special schurian was studied in [22]. It was shown there 
that special schurian vector space categories correspond to e-hereditary right 
QF-2 artinian rings under the map IK, w R,,. In this case mod,&) is the 
category of e-hereditary R,-modules in the sense of [4, Definition 1.31. It 
follows that the results of this paper extend some of the results in [3]. In our 
study of the socle projective modules we follow some concepts in [3,4]. 

Throughout this paper Mod(R) denotes the category of all right R- 
modules and mod(R) is the full subcategory of Mod(R) consisting of finitely 
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generated modules. Given a module X we denote by E(X), P(X), sot(X) and 
top(X) the injective envelope, the projective cover, the socle and the top of X, 
respectively. The direct sum of t copies of X is denoted by X’. The Jacobson 
radical of R will be denoted by J= J(R). Finally, we denote by RoP the ring 
opposite to R. 

2. RIGHT PEAK RINGS AND THEIR SOCLE PROJECTIVE MODULES 

DEFINITION 2.1. A ring R is called a right peak ring if soc(R,) is 
essential in R and has the form P’ where P is a simple projective module. In 
this case P is called the right peak of R. R is said to be a left peak ring if 
Rap is a right peak ring. 

PROPOSITION 2.2. Let R be a basic semiperfect ring. The following 
statements are equivalent: 

(a) R is a right peak ring. 

(b) R has a triangular form 

where F is a division ring, A is a semiperfect ring and ,,Mr is an A - F- 
bimodule which is A-faithful and finite dimensional ouer F. 

(c) R has the form 

where F , ,..., F, are local rings, F,, , is a division ring, iMj are F, - Fj- 
bimodules, i M, + , are Jinite dimensional over F,, , , the multiplication is 
given by Fi - F,-bilinear maps 

cijk:Mj@ jMk* iMk, 

with @ = @,, and the map 

Fijn+l:i Mj~HomF.+,~M”+I,iM,+I) 

adjoint to cijn + , is injective for all i andj. 

481!92:2 I: 
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ProoJ (a) 3 (c) Let R = P, @ .. . @ P,, , be a decomposition of R 
into a direct sum of indecomposable right ideals and suppose that P,, , is 
simple. If we put 

Fi = End(P,), iMj = Hom,(Pj, Pi) 

and if we take for cijk the morphism composition map then obviously R is 
isomorphic to the matrix ring required in (c). Since soc(R,) z P’,+ 1 then 

?ijn + I are injective and (c) follows. 

(c)a (b) Obvious. 

(b) * (a) If S c soc(R,) is a simple nonprojective module then the 
kernel of the projective coverfi P(S) --t S map is nonzero. Hence, via the ring 
isomorphism in (b), f corresponds to an elementf’ E A such thatf’M = 0; a 
contradiction. Then the proof is complete. 

Throughout this section we suppose that R is a semiperfect right peak ring 
and we fix a decomposition 

R=P,@... @P,@P,,, 

where Pi are indecomposable right modules. We identify R with its matrix 
form in Proposition 2.2 and we identify Pi with the indecomposable ith row 
ideal. 

The ring R is called schuriun if F, ,..., F,, , are division rings. 
Suppose that R is a right peak schurian ring. If R is artinian we associate 

to R a ualue scheme (I,, d) where I, = (l,..., n + 1 } and d is a pair of 
n + 1 x n + I matrices (d,), (dij) with 

d, = dim(,Mj),, and dii = dim,i(,Mj) for i=j. 

We put d(i = dii = 0 for all i. Usually we will consider (I,, d) as a set of 
point I, together with a set of dashed arrows 

(dibd;) 
i ----+ j 

with d, and d$ nonzero. We will write i ---+ j if di,j = dfj = 1; we write 

i 
(dij.dij) 

bj 

if iMj # 0 and there is no s # i, j with iMs # 0 and sMj # 0. 
Note that if P,, 1 is a right peak of R then there is a valued arrow in 

(I,, d) from arbitrary j into n + 1. This fact motivates the name “peak.” 
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PROPOSITION 2.3. Suppose R is a schurian right peak ring. Then 

(a) ciji = 0 for all i #j. 

(‘J) If iMa+, is a simple Fi - F,, 1 -bimodule for any i, then for any 
i # j either iMj = 0 or jMj = 0. In this case (I,, d) is a valued poset with a 
unique maximal element and R has an upper triangular matrix form. 

Proof: (a) If ciji # 0 then there are nonzero maps g: Pj+ Pi and 
J Pi--f Pj such that ciji(f@ g) =fg = 1. Hence i = j and (a) follows. 

(b) Suppose that iMj # 0 and jMi # 0. If P,, I is a right peak of R 
then by our assumption and Proposition 2.2 the composed map 

$fj @ jMi @ $f,+ , I@jin+: iMj @ jM,+, cijn+’ + iMn+, 

is a nonzero surjection. On the other hand the map is zero because we know 
from (a) that ciii = 0. We get a contradiction, which finishes the proof. 

Now we give a simple example of a right peak ring which is not an upper 
triangular matrix ring. 

EXAMPLE. Let K be a field and 

We take for c,,,:K@K2 + K2 the projection on the first coordinate, for 
c~,~: K @ K2 + K2 the projection on the second coordinate and c,~, = 
C 2,2 = 0. It is clear that R is a right peak ring and (I,, d) has the form 

A module X, will be called socle projective if soc(X,) is a projective and 
an essential submodule of X, . 

Given a ring R we denote by Mod,,(R) the category of all socle projective 
right R-modules. We will denote by mod,,(R) the full subcategory of 
Mod,(R) consisting of finitely generated modules. Finally, we denote by 
mod,,(R) the category of finitely generated right R-modules with injective 
top. 

If R is a right peak ring of the form 2.2(c) then we will identify in this 
paper any right R-module X with a system (Xi, joi)i,jgn+ I where Xi is the 
right F,-module Hom,(P,, X) and jrpi : Xi @ iMj 4 Xj is the corresponding 
Fj-linear map induced by the multiplication in R (see [4,20]). 
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Throughout this paper we will frequently use the following charac- 
terization of modules in mod,,(R) and in mod,,(R). 

PROPOSITION 2.4. Let R be a semiperfect ring of the form 2.2(c) and let 
X = (Xi, j~i) be a finitely generated right R-module. 

(4 Ifp,,, is a right peak of R then sot(X) is projective and essential 
if and only if the map 

adjoint to n + , vi is injective for any i < n. 
(b) If PT is a left peak of R then top(P,) is a unique injective simple 

right R-module and top(X) is injective if and only if the map 
io, :X, 0 ,Mi + Xi is surjective for any i. Here PT = Hom,(P, , R). 

Proof: First we note that n+IPi(XOg)=xg for any 
x E Xi = Hom,(Pi, X) and g E iM,+ I = Hom,(P,+ 1, Pi). In order to prove 
(a) suppose that sot(X) is projective and take a nonzero element x in Xi. 
Since there is a commutative diagram 

P n+ 1 

Jl 
f 

g 

Pi--+ x 

with f # 0, then n + , oi(x @ g) = f # 0 and therefore n + , $ji is injective. 
Conversely suppose that n + i qi is injective for all i and let S be a simple 

submodule of X. If t: Pi -+ S is the projective cover of S then there is 
g E iM,+, such that ,,+ i ~i(t @ g) = tg # 0. Hence S is projective and (a) is 
proved. The proof of the statement (b) is similar and we leave it to the 
reader. 

Suppose R is a right peak schurian ring of the form 2.2(c). Following 
Ringel [ 151 we say that the bimodule iMj has the constant dimension 
property if the dimensions of the iterated dual bimodules iMjj’ ’ ‘ij and 
g,,fy’. .ji over Fi and Fj are finite and equal to d; and dij, respectively. Here 
we put 

iNf = Hom,k(iNj, F,J 

for k = i, j and any Pi - Fj-bimodule i Nj . 
We say that R has the constant dimension property if R is a schurian 

artinian and the bimodules iMj have the constant dimension property for all 
i#j. 
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We recall from [7, Proposition 1.31 that any schurian artinian PI-ring has 
the constant dimension property. 

In the study of schurian vector space categories we will need the following 
simple result. 

PROPOSITION 2.5. Suppose that A = P, @ . .. @ P, is a basic schurian 
right artinian ring with the constant dimension property, P,,..., P,, are 
indecomposable right ideals in R and let 

2 = End(Q, @ ..a @ Q,) 

where Qj is the injective envelope of top(Pj). 

(a) rf Gi = End(Pi) and iNj = Hom(Pj, Pi) then for every j the module 
Qj is finitely generated and has the form 

Qj= (,Nj ,..., j_,N;, Gj,j+,N; ,..., nNj, &) 

where ivjk: kN$ @ kNi-+ i$ is such that its Gj-dual corresponds via the 
isomorphism Horn,& N; @ k Ni 3 Gj) z HomCk(kNi, kNj) to the map 
Fkij : iNj -+ Hom&Ni, kNj) adjoint to ckij. Moreover A- has the form 

Nz’ . . . JP”;’ ,N;’ 1 -2 

2N;2 G, -.a 2N”,I;2 2N;2 
. . 

,N;” nN;n ... ,N”,I;” G, 

and there is a Morita duality D: mod(A) + (mod(~“P)op. 

(b) If A is a right peak ring then x is also a right peak ring and 
(I,, , d) coincides with (Ix, a). 

(c) If A is a left peak ring then Q, ,..., Q, have injective tops, A- is a 
left peak ring and (I,, , d) coincides with (I,?, a). 

Proof We recall that given a finitely generated projective right A-module 
P we have a pair of adjoint functors 

Mod(End(P)) 3 Mod(A) * 

defined by formulas r(Y,,)=Hom,(P,Y), L(X)=Hom,,,,,,(Hom,(P,A),X). 
The functor L is full, faithful and carries over injectives into injectives. 
Moreover rL g id. 

Now taking for P the module Pi we get the indecomposable injective A- 
module L(Gj) which is obviously the injective envelope of top(Pj) and has 
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the form required in the statement (a). Note also that we have a right z- 
module decomposition /i = Pi @ .. + @ P; where 

is indecomposable. Since we have G, - Gi-bimodule isomorphisms 

Horn,-(Pi , Pl) E Horn,,&&, Qi) z iN;i 

then (a) follows. 
In order to prove (b) suppose that P, is a right peak of/i. We will prove 

that PA is a right peak of/i: For this purpose take a nonzero mapf: Qj + Qi, 
if: j. By our assumption there is a commutative diagram 

P(Qj> --% Q’ 

I 

/ 1 / 
d / II’ 

Qj 
where t is a projective cover of Qj, u is a monomorphism and Q’ is a direct 
sum of copies of Q,. The restriction g of the map w to a suitable summand 
Q, of Q’ has the property gff 0. It follows from Proposition 2.2 that Ph is a 
right peak of/i: The remaining part of (b) is a consequence of (a). 

Now suppose that Pf is a left peak of/i. Then by Proposition 2.2 the map 
Clij is injective for all i and j. Hence the map i lyi, is surjective for all i and j 
and by Proposition 2.4 top(Qj) is injective. Then in view of the duality D the 
module (Pi)’ is a left peak of/i. Since the remaining part of (c) follows from 
(a) the proof is complete. 

A module N in mod,,(R) is said to be sp-injective if N is injective with 
respect to those monomorphisms in mod,,(R) whose cokernels have 
projective socles. 

PROPOSITION 2.6. Zf 

is a right peak ring and AMc = Hom,(,M,., F) is A-noetherian then 

is a left peak ring and there is an equivalence of categories 

V: mod,,(R) -+ mod,,(R “) 
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with the following properties: 

(a) Let K, L, N be modules in mod,(R). A sequence 

O-tK-+L-+N-+O 

is exact in mod(R) if and only if the induced sequence 

O+V(K)+V(L)+V(N)+O 

is exact in mod(R’). 

(b) A module X in mod,,(R) is sp-injective if and only tf X z V ’ (Q) 
where Q is an injective module in mod(R “) and E(V(X)) E mod,,(R “). 

Proof: Since AMF is a faithful A-module then by Proposition2.2 Rv is a 
left peak ring. Let X be a module in mod,(R). By Proposition 2.4 X can be 
identified with a triple (Xi, Xi, t) where t: Xi @ AM,.+ Xi is an F- 
homomorphism such that its adjoint map i: XJ, -+ Horn& MF, Xf’) is 
injective. We put V(X) = (YL, Yi, s) where YL. = X;, Y” = Coker t and 
s: Y;@, dM;)--) Y; is the composition of the cokerne; map with the 
natural isomorphism YL OF (A MF) E Hom,d MF, YL). We define V on maps 
in a natural way and we get a covariant additive functor. By Proposition 2.4 
V(X) is a module in mod,,(R”) and V is dense. Now it is easy to check that 
V is an equivalence satisfying (a) and (b). We leave it to the reader (compare 
[4, Propositions 1.6 and 1.71). 

Our previous results together with [ 181 yield 

COROLLARY 2.7. Let R be a right peak ring. If R is either an artinian 
PI-ring or has the constant dimension property then every module in 
mod,,(R) has an sp-injective envelope in mod,,(R). Moreover there is a 

duality DV: mod,,(R) + mod,,((p)““). 

We finish this Section by a useful result on rings having both the left and 
the right peaks. 

PROPOSITION 2.8. Let R be a schurian artinian ring with a right peak 
P n+ L and suppose that R has the constant dimension property. The following 
three conditions are equivalent: 

(a) E(R,) is projective. 

(b) R is a right QF - 3 ring. 

(c) R has a left peak PT = Hom,(P,, R) and dlntl = d;,, 1 = 1. 
Furthermore, if E(R,) is projective then E(P,+ 1) is a unique indecomposable 
projective-injective right R-module, any indecomposable module X in 
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mod,(R) with X, # 0 is isomorphic to E(P,+ ,) and any indecomposable 
module Y in mod,,(R) with Y,,+ 1 # 0 is isomorphic to E(P,+ ,). 

f’w$ (4 * (b) W’,+ A is a faithful projective module. 

(b) 3 (c) If R is a right QF - 3 ring then E(P,+ i) is projective and by 
Proposition 2.2 the module Hom,(E(P,+ ,), R) is a left peak of R satisfying 
the condition (c). 

(c) + (a) It is enough to prove that P, g E(P,+ ,). For this purpose we 
note that by our assumption and Proposition 2.2 the F,-homomorphism 

adjoint to cun+, is injective for every i. Then we have defined an R- 
monomorphism C: P, -+ E(P,+,). Since Pf is a left peak of R then by 
Proposition 2.2 the Pi-homomorphism 

= 
Clin+ I : i M n+l+HomF,Wiy lMn+l)~ ,M! 

adjoint to clin+ , is injective. Now in view of the constant dimension property 
Clin+, is bijective for every i. Hence C is an isomorphism and (a) follows. 

Now suppose that E(R,) is projective. If X is an indecomposable module 
in mod,,(R) with X, # 0 then there is a nonzero map P, --)X which is an 
isomorphism because P, g E(P,+ i). If Y is an indecomposable module in 
mod,,(R) with Y,, , # 0 then there is a commutative diagram 

P ?I+,- y 

c,! 
u 

with u # 0 and the projective cover of Y has the form Pi +(fK) Y. Hence 
ut, # 0 for some k. Since End(P,) is a division ring then u is an isomorphism 
and the proof of the Proposition is complete. 

Remark 2.9. (a) Suppose I is a finite partially ordered set and F is a 
division ring. Denote by I* the enlargement of I by a unique maximal 
element and by I, the enlargement of I by a unique minimal element. Then 
the incidence ring FZ* of Z* with coefficients in F is a right peak ring, FZ, is 
a left peak ring, (FI*)‘g FZ,, mod@*) is the category I-sp of I-spaces in 
the sense of Gabriel (see [ 171) and modfi(FI,) is the category I-fsp of I- 
factor spaces, i.e., FI,-modules (Xi, i~j)i,jElm such that ipj: Xi-+ Xi is an 
epimorphism for j < i in I,. In this case the functor V: I-sp + I-fsp carries 
over an I-space (U, UJiE1 with Ui c tJ into (Xi, joi) where X, = U, 
Xi = U/Vi and j~i: Xi + Xj are the natural epimorphisms for all i <j in I,. 
Note also that (I,, , d) is the poset I*. 
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(b) Suppose that R = IX,,..., X,) is a set of finitely generated 
indecomposable socle projective modules over a right peak artinian ring R. If 
the right peak P, + 1 belongs to 51 then the ring 

E=End(X, @ ... OX,) 

is a right peak ring. If, in addition, E(P,+ ,) belongs to J2 then R is both a 
left and a right peak ring. This observation plays a key role in the definition 
of a differentiation. of a right peak ring with respect to a smooth indecom- 
posable projective right module (see Section 5). 

3. A COXETER SCHEME OF A VECTOR SPACE CATEGORY 

A vector space category IK, is called semiperfect if IK is a Krull-Schmidt 
category and every indecomposable object in IK has local endomorphism 
ring. 

Throughout this paper IK, is a vector space catagory defined by the 
faithful additive functor 

I--): IK -+ mod(F) 

where F is a division ring. We will suppose (for simplicity) that the number 
of isomorphism classes of indecomposable objects in IK is finite and we fix 
their representatives K, ,..., K,. 

We call IK, schurian if the semiperfect ring 

E=End(K,O... @K,) 

is schurian. We put 

F at1 =F and Fj = End(Kj) for j = l,..., n, 

and we define Fi - F,-bimodules iK, by the formulas 

iK n+l=Fi IKilF for i< n, 

iKj = lK(Kj, Ki) for i,j,<n, i#j, 

where IK(K,, Ki) denotes the group of all maps from Kj into Ki in IK. 
Since the E - F-bimodule 
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is E-faithful then by Proposition 3.1 the ring 

is a right peak ring and there is a ring isomorphism 

R,Kzi:-; j1.j :.:‘: ?;j 

where the multiplication in the matrix ring is given by the Pi - F,-linear 
maps cijS : iKj @ jK, -+ iK, defined by the formula 

cijs(f@ g> =fg for i, j, s < n, 

=lfl(g) for s=n+l, i,j<n. 

The ring R,, is called the right peak ring associated to IK,. The vector 
space catagory IK, is said to be artinian if R,, is both left and right artinian. 

We are going to define for any schurian vector space category IK, with the 
constant dimension property for R, a Coxeter scheme which is a sequence of 
functors having properties analogous to the Coxeter functors [5,21]. For 
this purpose we need the following definitions and notations. 

We denote by P‘(IK,) the factor space category defined as follows. The 
objects of 7 '(IK,) are triples (I’, X, t) where X is an object in IK, V is a tinite- 
dimensional right F-module and t: /Xl + V is an F-linear map. A map 
(V, X, t) + (V’, X’, t’) in 7’ ‘(IK,) is a pair of maps (f, g), fE Hom,.( V, V’), 
g E lK(X, X') such that t’ ) g] =ft. 

The category F(lKF) has a useful matrix interpretation similar to that one 
given in [22]. 

If (V, X, t) is either an object of P7/‘(IK,) or an object of %(IK,) we define 
its coordinate vector cdn( V, X, t) E Z”+’ by the formula 

cdn(V,X, t) = (s,,...,s,,s,+J 

where s,+ , = dim V, and X E Kj’ @ .e. @ K>. If all s, ,..., s, are nonzero 
then (V, X, t) is called exact. 

Now suppose that R is a right peak schurian ring. For any module 
X = (Xi, ipj) in mod,(R) we put 

dimX= (x~,...,x,,x,+~) 
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where xi = dim(X,),i. If P,, 1 is not a direct summand of X and the 
projective cover of X has the form P(X) = Pi1 @ -*a @ P: then we put 

cdW) = @I,..., s,, s,, 1) 

where s,, , = dim(X,+ ,h. If all s1 ,..., s,, s,, i are nonzero we call X exact 
(compare [3,8]). 

Now we define a pair of additive functors 

p(IK,) 2 9 ‘(IK,) 

by formulas S-(U, X, t) = (Coker t, X, t’), S+( V, X, t) = (Ker t, X, r”) where 
t’ and t” is the cokernel and the kernel map, respectively. We define S- and 
S+ on morphisms in a natural way. 

The proof of the following simple lemma is left to the reader. 

LEMMA 3.1. The jiunctors S- and S+ have the following properties: 

(a) Let A be an indecomposable object in 'F.(IK,). Then SfA = 0 if 
and only zf A r (F, 0,O). If S’A # 0 then there is an isomorphism 
SS+A “A. 

(b) If A and B are indecomposable objects in ?’ ‘(IK,.) such that 
S+A #O and S+B#O then S’ induces an isomorphism Hom(A, B) r 
Hom(S+A, S+B). 

(c) The properties (a) and (b) with S + and S - interchanged. 

The following simple result plays an important role in our further con- 
sideration. 

LEMMA 3.2. Let IK, be an arbitrary vector space category and let pr(E) 
be the category of finitely generated projective right modules over the ring 
E = End(K, @ ... @ K,). Then 

(a) There exists an equivalence of categories o: IK + pr(E) such that 
the diagram 

IK l_l mod(F) 

w 
I/ - @3.&F 

PW) 

is commutative up to a natural equivalence co(-) @ E K, + 1-j. 
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(b) o induces a full and faithful embedding 

w ’ : F(IK,) + mod(R ,J. 

The image of CO ’ consists of all R,,-modules (XL, Xi, cp: X’ @ EKF -+ Xi) 
with X& in pr(E) and dim Xifinite. 

ProoJ We put CO(-) = IK(K, 0 .. . @ K,, -). It is well known that o is 
an equivalence of categories. 

We recall from [ 12) that there are equivalences of categories 

E - F-bimodules z Add(pr(E) @ pr(F)OP, .g/e) 

?Z Add(pr(E), Add(pr(F)OP, ,Pg)) 

z Add(lK, mod(F)) 

and the bimodule EKt’ corresponds to the functor ] - 1 via the composed 
equivalence. If K: pr(E) 0 pr(F)“” --t J& is the functor corresponding to 
EKF then the Yoneda Lemma and the adjoint formula yield 

o(X) @ EKF z @o(X), F) g 1x1, 

and (a) follows. Since (b) is an immediate consequence of (a) then the proof 
is complete. 

Remarks. (1) Lemma 3.2 remains valid if we replace the division ring 
F by an arbitrary artinian ring. This generalization is useful in solving 
matrix problems which are more general then the classification of indecom- 
posables in P(IK,). An interesting example of this kind is the category of 
representations of a pair of partially ordered sets. 

(2) It follows from Lemma 3.2 that the category P(IK,) is equivalent 
to the category of .K,-matrices in the sense of Drozd [9] (published in 
1972!). 

Following an idea of Drozd [8] we define a functor 

H: T/‘(IK,) + mod,,((R,,) 

as the composition of two functors 

P '(IK,) % mod(R,,) 3 mod,,(R ,J 

where CO+ is the full and faithful embedding in Lemma 3.2 and 0 is the left 
adjoint functor to the natural embedding mod&,) 4 mod(R ,K). 

Since 
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then any right R,,-module X is a triple (XL, V,., t) where t: X’ @ EKF+ V, is 
an F-linear map. X is in the image of o ’ if and only if XL is a projective E- 
module. It is easy to see that 

O(X) = (XL, v,, t’) 

where Xi is the image of the map f: Xh + Hom,LK,, V,) adjoint to t and t’ 
is the map adjoint to the inclusion Xj 4 Horn&K,, V,). 

We denote by Ti(lK,) the full subcategory of ?’ ‘(lKF) consisting of objects 
without direct summands of the form (0, X, 0) where X is an object in IK. 

For any objects A and B in an additive category @ we put 

4% B) = {fE g(A, B), 1, - gf is invertible for all g E SY(B, A) 1, 

J’(A,B)= {tEJ(A,B),t=gfwithfEJ(A,X),gEJ(X,B)} 

(see [ 121). 
Finally, we say that a module X over a right peak ring R has a perfect 

projective cover if the kernel of the projective cover P(X) -+ X has the form 
pi+, for some t(compare [3]). 

One of the main results of this paper is the following theorem. 

THEOREM 3.3. If IK, is a semiperfect vector space category then the 
functor H: F(IK,) + mod,,&) has the following properties: 

(1) H is full and dense. 

(2) A morphism h: A + B in P'(IK,) belongs to the kernel of the 
natural epimorphism 

a: (A, B) + Horn, ,,(H(A), H(B)) 

induced by H if and only tf h can be factored through an object (0, K, 0) 
where K is an object in IK. If A and B are indecomposable objects in Fo(lK,), 
H(A) is not simple and H(B) has a perfect projective cover then a is an 
isomorphism. 

(3) H(A) = 0 if and only if A z (0, K, 0) for some object K in IK. 

(4) If A and B are indecomposable objects in T',j(lK,) then a map 
h: A --f B is irreducible in P“(lK,) if and only if H(h) is irreducible. 

(5) H induces a representation equivalence of categories 

H: P’$KF) -+ mod,(R ,K) 

such that cdn(A) = cdn(H(A)) f or any object A in P',(IK,). Moreover, tf 

cdn(A)=(s,,...,s,,s,+,) 
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Xi = Im Xi @ J(Pi) @ @ Xi @ ,iKi -!@+ Xi 
j+i 

and the E-projective cover of XL has the form 

psi@ ,.. @&x;+o 

where pj is the E-projective cover of the simple E-module top(qi). 

ProoJ Suppose that A is an indecomposable object in Y ‘(IK,) and let 
o’(A)=X=(Xk, V,,t), @(X)=(X:, V,.,t’). Then either t=O or f is 
surjective. In the first case either Xi = 0 and V,. = F or A has the form 
(0, Ki, 0). In the second case XL is the E-projective cover of Xi. Hence the 
property (1) easily follows. In order to prove (2) suppose that o’(B) = 
(Yh,, W,., s) and H(B) = (Yi, W,., s’). We note that XL and Y; are 
projective. If IB’ (h) = (f, g) and H(h) = 0 then g = 0 and we have a 
commutative diagram 

where FE is the projective cover of Kerp’ and f = U’U. Hence (2) and (3) 
follow. 

(4) It follows from (2) that H induces an isomorphism 

(4 BYJ2(A B) E Hom(H(A), H(B))/J2(H@), H(B)). 

Since A and B are indecomposable then H(A) and H(B) are also indecom- 
posable. Then f: A + B (resp. H(f )) is irreducible if and only if f is not an 
isomorphism and f 6L J2(A, B) (resp. H(f) f+Z J’(H(A), H(B))). Hence (4) 
follows. 

Since the statement (5) follows immediately from (1) by applying standard 
projective cover arguments the proof is complete. 
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Remark (3). In the case when dim ]KjlF = 1 forj = l,..., n the functor H 
was defined in 1221 by a slightly different formula not involving projective 
covers. 

We can use the functor 0 to prove that there are almost split sequences in 
mod,(R) provided R is an artin algebra with a right peak (compare [2]). 
We have the following result. 

PROPOSITION 3.4. Let R be an artinian right peak ring. 

(a) If0-iX-r’ Y is a left minimal almost split monomorphism [ I] in 
mod(R) and X is a module in mod,(R) then 0 + X -+“’ O(Y) is a minimal 
left almost split monomorphism in mod,,(R) where u’ is the composition of u 
and the natural epimorphism Y--t O(Y). 

(b) If R is an artin algebra then for any module X in mod,,(R) there 
exist a left and a right minimal almost split maps in mod,,(R). 

Proof: (a) follows immediately from the fact that any map Y-+ Z with Z 
in mod,,(R) has a factorization-through Y-+ O(Y). Now in view of the 
duality DV: mod,,(R) -+ mod,,(R ) ’ Op the statement (b) follows from (a) 
because we know from [l] that there are almost split sequences in mod(R). 

Given a vector space category IK, we define a new vector space category 
IK: which is the category lKoP together with the composed functor 

IKoP u mod(QF)OP 0’. mod(FoP) 

where (-)* is the F-duality. Note that there is a ring isomorphism 
R,,, E (R:)OP which implies 

R;, z RPK” 

(we use the notation in Proposition 2.6). 
Now suppose that R,, is either schurian with the constant dimension 

property or is an artinian PI-ring. We define a functor 

G: fW%-) -+ mo4,((WJ 

as the composition of four functors 

%(IK,) o’, P '(IK,*) 3 (mod,(R,,))“P 

VW 

(mod,,(~~p))Op -% mod,,(W* 

where (U, X, t)* = (U*, X, t*), V is the equivalence in Proposition 2.6, 

(R,), = @%p 
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and D is a Morita duality (see Proposition 2.5 and [ 181). It follows from 
Proposition 2.5 that if R,, has the constant dimension property then 

(Qf; ;; ;; ‘T z;]. 

In order to formulate main properties of the functor G we need some 
notation. 

Let R be a right peak ring with the constant dimension property and 
suppose that its value scheme (I,, d) has no oriented cycles. We define 
reflections 

iii: z n+l -+ zn+l, i= I,..., n + 1, 

by the formula 6,(x1 ,..., x,+ i )= (y, ,..., y,,,) whereyj=xj forjf i, 

yi = d. :n+ Ix,+ 1 - (d’,ixl + ... +df~,iXi~,+xi+dii+,Xi+r+...+di,X,) 

for i< n and 

Y n+1=- n+1 X +d In+ 1x1+ a.. + d,,+ lx,. 

The composed map 

S=6, *.‘6,6,+, 

will be called the Coxeter transformation of the scheme (I,, d). 
Suppose that (I,, d) is symmetrizable in the sense that there are natural 

numbers I1 ,..., f,, , such that d, fj =fid; for all i and j. We associate to 
(I,, d) the rational Tits quadratic form 

ntl 
46 1 ,“., Xn+l>= x Xi’A+ 5 XiXjf,d$- 2 Xifid;n+l) X~+I. 

i= 1 i,j= 1 i= 1 

i#j 

Ife en+, 1 ,..., is the standard basis of Q!“” and B is the symmetric bilinear 
form associated to q then B(e,, ei) =fi, 

6,(x) = x - $y$ e, 
I) I 

and q(x) = q&(x)) for x E Q”+’ and i = l,..., n + 1. 
By an easy induction we can prove the following useful result. 
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LEMMA 3.5. If I,, d) has no oriented cycles then 

6, a.* Sn(x,,...,xn+l)= (Y1,...,Yn+J 

if and only if y, + , = x, + , and 

i-1 

,&, djiXj+Xifyi+ j$+, dbYj=dln+IXn+I 

for i = l,..., n. 

The proof is left to the reader. 
Let us denote by PO(lKF) the full subcategory of F(lK,) consisting of 

objects having no direct summands of the form (0, K, 0) with K # 0. 

THEOREM 3.6. Let IK, be a semiperfect vector space category and 
suppose that the ring R,, has a Morita duality. Then 

(a) The functor G has the properties (l)-(4) and the first part of (5) 
in Theorem 3.4 with H, 7 '(IK,.) and G, P(IK,) interchanged. 

(b) If R,, has the constant dimension property and (IR,K, d) has no 
oriented cycles then 

cdn(G(A)) = 6, ..e G,(cdn(A)) 

for any indecomposable object A in Po(lK,) such that the modules H(A*) and 
G(A) have perfect projective covers. 

Proof: (a) follows immediately from Theorem 3.4 and the definition of 
G. In order to prove (b) suppose that H(A*) and G(A) have perfect 
projective covers and let 

cdn(A) = (s1,..., s,+d, W(W)) = (s; ,..., s;+ J, 

dimH(A*)= (x ,,..., xntl), dim G(A) = (xl ,..., XL+ 1). 

Consider the module o’(A *) = &p, V, h) over the ring R,,, z:_(RE)‘~ where 
h: &KF) @ .P-+ $ is an F-linear map. By our assumption EP is projective 
of the form EP z (FT)‘l@ . . . @ (p;)“n where p: = Hom,(Fj, E) (see 
Theorem 3.4). Moreover h: E P-1 Horn& Kc, V) 2 E K, 0 F V is injective, 
dim EP= (x, ,..., x,) and VH(A*) = (V, E Y, t) where E Y = Coker h and 
t:EKE-@FV+E Y is the natural epimorphism. Hence xi = cfz: djisj + si for 
i # n + 1. Since obviously dim VH(A *) = dim G(A) then using the same type 
of arguments as above we conclude that xi = CJ= i+, s,/ d; + si for i # n + 1. 

481/92/Z-18 
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Consequently the equality Y=Cokerh yields ,rn+i=~Ltl and 
xi+xf=d;,+,s,+, for i= I,..., n. Then the required equality follows from 
Lemma 3.5 and the proof is complete. 

Now suppose that R,, is either an artinian PI-ring or an artinian schurian 
ring with the constant dimension property. We define two maps 

where (mod,(T)] denotes the set of isomorphism classes of modules in 
mod,(T). We will call d ’ and A- Coxeter maps of R,,. 

Let N = (X, , I’,, t: X, @ EKF + V,) be a module in mod,,(R ,J. Consider 
the sequence 

where u: PE+ X, is the projective cover of X, and W, = Ker t(u @ 1). Let 

t?:~+Hom,~K~, Wc)gEKF@F(W:) 

be the image of w under the composed isomorphism 

HomF(WFy PE 0 dF) + HomF((PE 0 EKF)F, W;) 

E Hom,(Hom,(P, , .Kc), WC) 

G Horn& Kc @ .(P”,), WF) 

Z Horn,(e) Horn,& Kg, WF)) 

where YE = Hom,(Y,, E). Note that if fE P”, and g E EK$ then 

wxd= [g@fl w 

where [g of]: P, @ EKF --t F is defined by the formula 

[g Ofl(P 0 k) = &f(P) * k). 

Now consider the module (E Y, WE, u) where U: EKF @ F( WC) + E Y is the 
cokernel of S. We put 

A+N=D(,Y, W;,u) 

where D is the duality in the definition of G. 
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The map A- is defined analogously. 
Now suppose that N is not projective. If p: P(N) + N is the projective 

cover of N then the module 

fi = P(N)/soc(Ker p) 

is isomorphic to N’ = (PE, VF, t(v @ 1)). Indeed, by the projectivity of P(N) 
there is a commutative diagram 

O- Kerp -P(N)-% N -0 

I /id /C*Cc@l),id) 

O---+Kerp’~P(N)-J%N’---+O 

and it is ealsy to see that soc(Kerp) = Kerp’, as required. Since obviously 
Kerp’ = (Ui,jwi) with U,,, = W, and Vi=0 for i#n+ 1 then the 
cokernel of the map j, : Hom,,,(P(N), R ,K) + Hom,,,(Ker p’, R ,J is iso- 
morphic to the RP,P-module (E Y, Wi, u), On the other hand Coker j, is the 
transpose module tr fl. 

Since we know from Proposition 2.2 and Lemma 3.2 that any right peak 
ring is of the form R = R,, with IK = pr(A) then the above remarks together 
with Proposition 3.4 yield 

COROLLARY 3.1. Let R be an artinian right peak ring which is either a 
PI-ring or has the constant dimension property. If N is an indecomposable 
nonprojective module in mod,(R) and L is an indecomposable non-sp- 
injective module in mod,,&) then 

A+NgDtr$, A-Lz@trD(L) 

where tr is the Auslander’s transpose. If; in addition, R is an artin algebra 
then R, z R and there are almost split sequences in mod,,(R) of the forms 

O+A+N+X+N+O, 

O-rL+Y-+A-L-0. 

Remark (4). The Corollary 3.7 gives a useful method for calculating 
almost split sequences in mod,,(R). It was already applied by Biinermann 
[6] in a particular case when R is an incidence ring FZ* of a partially 
ordered set (see Remark 2.9). In this case the maps A+ and A- coincide with 
the corresponding functions F and F of Drozd [8]. 
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DEFINITION 3.8. Let IK, be a schurian artinian vector space category 
such that the ring R, has the constant dimension property. The Coxeter 
scheme of IK, is the following infinite diagram Cox(lK,) 

. ..& P(IK-,) W'(ltim,) zf%! 

where IK, = IK,, R, = R,,, IKi are vector space categories for i= fl, &2,..., 
Ri = hi, Ri+ 1 = (R,,$, , Hi and Gi are the functors H and G taken for the 
category IK i, d t? and d ; are appropriate maps d + and d -, S is the Coxeter 
transformation of the value scheme (I,,,, d) and the middle vertical arrows 
denote functions which assign to each module its isomorphism class. 

It follows from Lemma 3.2 and the definitions of H and G that Cox(lK,) 
exists and is uniquely determined by IK, up to a natural equivalence. 
Moreover, since any semiperfect right peak ring R has the form R z R,, then 
any schurian right peak ring with the constant dimension property admits a 
Coxeter scheme. 

Remarks. (5) If IK, has infinitely many pairwise nonisomorphic 
indecomposable objects the Coxeter scheme of IK, can be defined 
analogously. In this case we replace the ring Ri by an appropriate factor of 
the tensor category of the species (Fj, jKj”) with an obvious commutativity 
condition (see [ 201). 

(6) The notion of the vector space category and its Coxeter scheme 
admit useful generalizations. The obvious one we get by taking instead of the 
division ring F a product of division rings. In this case the corresponding 
ring R, has a projective and essential right socle. A particular case of it was 
considered in [ 141. A more interesting generalization we get by taking for F 
a hereditary artin algebra (compare [25]). 

We denote by mod,(R) (resp. by mod,,(R)) the factor category of 
mod,(R) modulo the ideal consisting of all maps which admit a 
factorization through a projective (resp. sp-injective) module. The 
corresponding Horn functor is denoted by Horn and Horn, respectively. 
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THEOREM 3.9. Let Cox(lK,) be the Coxeter scheme of a schurian 
artinian vector space category IK, for which R, has the constant dimension 
property. Then 

(1) The ring Ri has the constant dimension property and (IR,, d”‘) is 
isomorphic to (I,,, d) for every i. 

(2) If A is an indecomposable object in T(lKi) then 
A: H,(A) z Gi S’ (A) and H,(A) z A; GiS+ (A) provided the terms are 
nonzero. 

(3) The functors S’ Gi, Hi and His-, Gi induce two equivalences of 
categories 

b; - 
mod,(Ri) 1 modsp(Ri+ 1) A ,y 

each inverse to the other. Moreover A: N E z:N and A;M r_d; M for 
every module N in mod,,(R,) and every M in mod,,(R,+ ,). 

(4) All categories mod,,(R,) have the same number of indecom- 
posables. 

(5) Let N and M be indecomposable modules in mod,,(R,). Then 

(i) A: N = 0 if and only if N is projective. If A,? N # 0 then 

A;AtNzN and End(N)/J* z End(A+ N)/J*. 

(ii) A,:-, N = 0 if and only if N is sp-injective. If A,:- 1 N # 0 then 

A,+_,A,,Nz N and End(N)/J’ g End(A,: i N)/J’. 

(iii) If (IRIK, d) has no oriented cycles, A: N # 0 (resp. A; ,N # 0) 
and the modules V-‘D-‘AZ~ N, A: N (resp. V -ID-‘N, A,:, N) have perfect 
projective covers then 

cdn(A; N) = G(cdn(N)) and Horn, i(M, N) z Horn, ii ,(A : M, A r N), 

(resp. cdn(A, IN) = G(cdn(N)) and Hom#f, N) z Hom,i~l(A,;, M, 
A,, N)) provided A t M # 0 (resp. A ; 1 M # 0). 

Proof Since Ri, , = (Ri), then (1) follows form the remark after the 
definition of G because R,, has the constant dimension property. 

(2) follows immediately from the definition of A+ and A-. 

(3) Denote by ‘Xi (resp. by Si) the two-sided ideal in the category 
Y(IKi) (resp. in %(IKi)) consisting of maps having a factorization through a 
direct sum of objects of the forms (F, 0, 0), (0, Kj, 0) and (IX], X, id). It is 
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easy to see that an indecomposable object A in P"(IKi) is of one of the forms 
(IKit, Kj, id), (F, 0,O) if and only if H,(A) is nonzero projective. Then by 
Theorem 3.3 Hi induces an equivalence 

Next we note that an indecomposable object B in Z!(IKi) is of one of the 
forms (F, 0, 0), (I Kj(, Kj, id) if and only if H(A *) is nonzero projective in 
mod,&;). Since there is a commutative diagram 

(mod,,(R,Kr>>oP -J-% (mod,,@ p”))“” 

I 
D 

I 

D 

mod0 is, 1) x mod&? i+ ,) 

then by Proposition 2.6 H(A *) is projective if and only if G,(A) is sp- 
injective. Consequently Gi induces an equivalence 

~(‘Ki)Pi* mod,,@i+ 1) 

which together with the equivalence Y? ‘(lKi)/VIi z %(lKi)/Bi induced by St 
(see Lemma 3.1) proves the statements (3), (4) and (i), (ii) in (5). The 
isomorphisms of appropriate endomorphism rings modulo J2 in (i) and (ii) 
follow from Theorems 3.3 and 3.6, and an obvious observation that if X is 
an indecomposable nonprojective (resp. non-sp-injective) module then any 
endomorphism of X which can be factored through a projective (resp. sp- 
injective) module belongs to J2 End(X). 

In order to prove (iii) suppose A: N # 0. Then S’## 0 and from the 
definition of St it follows that 

s,+,(cdn(N))= 6,+,(cdn(@)=cdn(S+@= cdn O(S+@*. 

Thus (iii) follows from Theorem 3.6 and the theorem is proved. 
From the proof of Theorem 3.9 immediately follows 

COROLLARY 3.10. Let IK, be a vector space category. If R,, is an 
artinian PI-ring then the statements (2), (3), (4) and (5)(i)-(ii) are true. 

We finish this section by a useful characterization of schurian vector 
space K-categories of finite representation type which extends the result of 
Drozd [8]. 

THEOREM 3.11. Let IK, be a schurian vector space category such that 
the ring R,, is a finite-dimensional algebra over a field K. Then the value 
scheme (IRIK, d) is symmetrizable and the quadratic form q associated to 
(I,,,, d) is weakly positive (i.e., q(x) > 0 for any nonzero x E Z”+’ with 
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nonnegative coordinates) tf and on& if 2 (IK,) is of Jnite representation type. 
Moreover, if q is weakly positive then: 

(a) For every indecomposable module X in mod,(R,) there is an 
indecomposable projective R,,module Pj such that End(X) z End(Pj) z Fj. If 
in addition X and A +X are exact then 

cdn(d+X) = G(cdn(X)) and Hom(N, X) z Hom(A+N, A+X) 

for every indecomposable module N in mod,,(R,) with A +N # 0. 

(b) IfX is an indecomposable module in mod,,&) with End(X) z Fj 
then q(cdn(X)) =fj. 

(c) For every indecomposable module X in mod,(R,) there is an 
integer j such that A+jX is either projective or is not exact (note that in 
Cox(lK,) A: = A’for all i). 

(d) Every indecomposable module in mod,&) is uniquely determined 
by its composition factors. 

Proof Suppose that %(IK,) is of finite representation type. Given 
s=(sl,...,s,,s,+,)E Nn+l we consider the algebraic variety 

X, = Homn,,(PS,’ @ . . . @ P>, Q”n+l) 

where Q is the injective envelope of the simple projective module P,, ]. 
There is an obvious action of the algebraic group 

6,= GZ(Qsn+‘) x GZ(P” @ -.- @ Pz) 

on X,. Note that f, g E X, belong to the same 8,-orbit if and only if the R,, 
modules Im f and Im g are isomorphic. Since by Theorem 3.3 mod,,&) is 
of finite representation type then there is only finitely many 8,orbits in X,. 
Hence we conclude that dim 8, > dim X, and therefore q(s) > 0 (we take for 
Ji in the form q the dimension of the division ring Fi = End(P,) over the 
field K). 

Suppose conversely that q is weakly positive. In view of Theorems 3.3, 3.6 
and 3.9 the statements (a)-(c) can be proved by applying arguments of 
Drozd [8]. In particular one can show that every exact module in mod,,&) 
has a perfect projective cover (compare [8, Lemma 21). Next we conclude 
from (b) that mod,,&,) is of finite representation type because the set of 
indecomposable modules N in mod,,(R,) with q(cdn(N)) =& is finite (see 
[8, Appendix]). Furthermore, N is determined up to isomorphism by cdn(N). 
Then (d) follows from the equality 

i-l 

Xi = Si + C d:jsj, 
j=l 

i < n, 
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established in the proof of Theorem 3.6, where dim N = (x, ,..., x, + 1), because 
without loss of generality we can suppose that N is exact and therefore N has 
a perfect projective cover by a remark above. The theorem is proved. 

Remark (7). In the case R is a schurian right peak PI-ring and jM,+ 1 is 
a simple bimodule for any j= l,..., n the previous results allow us to 
introduce the notion of preprojectivity and of preinjectivity in mod,(R) in a 
way similar to that in [3,21]. Criteria for mod,,(R) to be of finite type 
similar to those in [3,21] can be given. In particular one can prove that 
mod,(R) is of finite type if and only if the preprojective component in 
mod,(R) is finite. In this case there is no oriented cycle of irreducible maps 
in mod,,(R ). 

4. A TRIANGULAR REDUCTION 

Our main purpose in this section is to describe an algorithm for the 
classification of the indecomposable subspaces of schurian vector space 
categories of finite type. The algorithm is obtained by combining the results 
in Section 3 together with the method applied by Ringel [ 17, 2.5, 2.61 
Cc;;;= 1131). 

be an artinian ring with a division ring F and an F - S-bimodule FMS. Then 
mod(R) can be identified with the category h&MS) of all triples 
X = (Xk, X;l , t) where X;l is a finite-dimensional vector space over F, Xg is a 
module in mod(S) and t: X’ @ FMS + Xi is a homomorphism of S-modules. 
The map adjoint to t is denoted by 

The category IKR = Horn&M,, mod(S)) together with the embedding 
functor I--): IKR + Mod(F) will be denoted by IK: (see [ 171). 

Suppose that IK = IKR has finitely many pairwise nonisomorphic indecom- 
posable objects and that Im I- 1 c mod(F). If R K is either an artinian PI-ring 
or is schurian with the constant dimension property we define the functor 

G+ : mod(R) --t mo4,((%M 

as the composition of two functors 

where IK, = IKi and Q(X) = (Xf;, Hom&M,,X;), F) see [ 17,2.5]). 
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If IKR has infinitely many nonisomorphic indecomposable objects the 
functor G, can be defined analogously. In this case we replace mod,,((R,),) 
by the category of socle projective representations of an appropriate species 
with a commutativity condition (see (201 and Section 6A). 

Note that there is an obvious embedding of mod(S) into mod(R). We 
denote by [mod(S)] the two-sided ideal in mod(R) consisting of those R- 
homomorphisms that admit a factorization through an S-module. The factor 
category of mod(R) modulo the ideal [mod(S)] is denoted by 
mod(R)/[mod(S)]. Finally, we denote by mi the full subcategory of mod(R) 
consisting of modules having no direct summands in mod(S). 

We have the following reduction theorem which generalizes [ 17, 2.5, 2.6) 
and 123, Proposition 2.21. 

THEOREM 4.1. (1) The functor G + is full, dense and induces a represen- 
tation equivalence 

as well as an equivalence of categories 

(2) # mod(R) = # mod(S) + # mod,&) where # means the number 
of indecomposable modules. 

(3) If X and Y are indecomposable modules in Yll~ then the map 
f: X+ Y is irreducible in mod(R) if and only if G, u) is irreducible. 

(4) Suppose f “: Xl -+ Ys( is irreducible in mod(S). If 
Hom,(M,, Xg) = 0 then (0, f “): (0, Xl, 0) + (0, Yi , 0) is irreducible in 
mod(R). If Horn&M,, X;l) # 0 and Hom,(M,, Y;) = 0 then (0, f “): 
(Horn&M,, X,“), X,N, id) + (0, Y; , 0) is irreducible in mod(R). 

ProoJ (1) It follows from Theorems 3.3 and 3.6 that G+(J) = 0 if f 
belongs to (mod(S)]. Conversely, suppose f = (f ‘, f I’): (Xf;, XG, t) + 
(Y;, Y.;, u) is a map in mod(R) such that G+(f) = 0. Without loss of 
generality we can suppose that X and Y are indecomposable and t # 0, 
u # 0. It follows from Theorems 3.3 and 3.6 that f’ = 0. Since the diagram 

is commutative then f has a facturization X + (0, Yi, 0) -+ Y, as we required. 
Since obviously G, is full and dense then it induces the equivalence required 
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in (1). Now in order to prove that G’, is a representation equivalence it is 
enough to show that the residue functor %i + mod(R)/[mod(S)] reflects 
isomorphisms. For this purpose suppose f: X+ Y is an isomorphism modulo 
[mod(S)] where X and Y are in 9JI $. Then there is an R-homomorphism 
g: Y + X such that 1 - gf and 1 - fg have a factorization through S-modules. 
It follows that 1 - gfE J(End(X)), 1 -fg E J(End(Y)) [ 19, Lemma 1.11 and 
hence gfand fg are invertible. Consequently f is an isomorphism, as required. 

(3) It follows from (1) that the kernel of the surjection 

Hom,K Y)-+ Hom(G+(X), G+(Y)) 

induced by G, is contained in J’(X, Y). Hence there is an isomorphism 

Hom,(Z Y)/J*(-K Y) E Hom(G+(X), G+(Y))/J’(G+(X), G+(Y)) 

and (3) follows. 
Since (2) is a consequence of (l), the first part of (4) is proved in [ 17,2.6] 

and the second one can be easily verified using the definition of the 
irreducible map, then the theorem is proved. 

Now suppose that R is an artinian right peak ring. It follows that S is a 
right peak ring and soc(M,) is projective. Note also that an R-module 
X = (X;, Xi, t) has a projective socle if and only if Xi has a projective socle 
and t is injective. 

Let IR: be the category IR” = Hom,(M,, mod,,(S)) together with the 
embedding functor I- (: IK” + Mod(F). Suppose that IR = lKR has finitely 
many pairwise nonisomorphic indecomposable objects and that 
Im (-1 C_ mod(F). If Ri-, is either an artinian PI-ring or is schurian with the 
constant dimension property we define the functor 

G+ : mod,(R) + mod,,(R&) 

as the composition of two functors 

mod,(R) 3 %(lK,) 3 mod,((R&) 

where IR, = IRF and @‘(A) = Q(X). Finally, we denote by @Ii,” the full 
subcategory of YJI: consisting of socle projective modules. 

Using the same type of arguments as in the proof of Theorem 4.1 we can 
prove the following result. 

THEOREM 4.2. (1) The fun&or 6, is full and induces a representation 
equivalence 

f?; : ‘@Ii -+ mod;((R&) 
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as well as an equivalence of categories 

where lRF = IKF and mod,((R,&) denotes the full subcategory of 
mod,,((Ri-,),) consisting of modules having no injective summand. 

(2) # mod,,(R) = # mod,,(S) + ip! mod,&) - 1. 

(3) If X and Y are indecomposable modufes in @i then the map 
f: X -+ Y is irreducible in mod,,(R) if and only if G+(f) is irreducible. 

(4) Let f”: Xi+ Y: be an irreducible map in mod,,(S). If 
Horn&M,, Xi) = 0 then (0, f “): (0, Xl, 0) -+ (0, Yl , 0) is irreducible in 
mod,(R 1. If Hom,(M, , Xi) # 0 and Horn@, , Y;) = 0 then 
(0, f “): (Horn&M,, Xg), Xi, id) + (0, Yi , 0) is irreducible in mod,,(R). 

As an immediate consequence of Theorem 4.1 and Remark 2.9 we get 

COROLLARY 4.3. If the ring R in Theorem 4.1 is such that the right peak 
ring R,, with IK, = IK:! is isomorphic to the incidence ring FI* of some finite 
partially ordered set I* then G, induces a commutative diagram 

mod(R) “+ ) I-sp 

\ =jG. 

moWYbW)l 

where 7~ is the residue class functor and G, is an equivalence of categories. 

Now we consider an artinian ring /i of the form 

where F is a division ring and SN, is an S - F-bimodule such that dim NF is 
finite. Then we have a vector space category 

ITi = mod(S) @ SN, 

and we define a functor 

H, : mod(A) + mod,JRn), T,=T;?, 

as the composition of two functors 

mod@) 4 ?-(lrt) 5 mod,,(R,) 

where !P(X; , X; , t: X’ 0 S NF + Xi) = (Xi, X’ @ S N,, t). 
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Using the same type of arguments as in the proof of Theorem 4.1 one can 
prove the following 

THEOREM 4.1’. The functor H, is full, dense and there is a commutative 
diagram 

mod(A) H, mod&b) 

\ JR+ 

modGMmoW)l 
where 71 is the residue class jiinctor and I?, is an equivalence of categories. 
The statement (2~(4) in Theorem 4.1 with R, IK, G and A, K, H 
interchanged are also true. 

The reduction procedure given by one of the functors G, , c?+ and H, 
will be called a triangular reduction. 

DEFINITION. A right peak ring R is called sp-representation finite if 
mod,,(R) is of finite representation type. 

THEOREM 4.4. Let R be a basic nonsemisimple schurian right peak PI- 
ring. The following conditions are equivalent: 

(a) R is sp-representation finite. 

(b) R is artinian and there is a ring isomorphism 

where S is sp-representation jinite right peak PI-ring, G is a division ring 
and RR with IzG = 6; is sp-representation finite schurian PI-ring. 

(c) There are sp-representation finite schurian right peak PI-rings S, 
R’ and a proper ring epimorphism R -+ S such that 

mod,,(R)/[mod,(S)] E modSi( 

(d) There are a sequence 0 = VI,, C_ 3, c ..a c ?I,,, = mod,,(R) of full 
subcategories of mod,,(R), division PI-rings Gi, Gf and Gi - G;-bimodules 
N”’ with (dimGi N”‘)(dim N$) < 3 such that 
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Proof: First we will prove by induction on r = # mod,,(R) that (a) 
implies (b) as well as the following condition: 

(e(R)) End(X) is a division PI-ring for every indecomposable module X 
in mod,,(R). 

Since r is finite then any bimodule jM,+l in the matrix presentation of R 
in Proposition 2.2 is simple (see [7]). Moreover, since F,,, , is injective for 
all i and j then dim,,(,MJ and dim(iA4j),j. are finite and therefore R is 
artinian. Now we conclude from Proposition 2.3 that R has the form 
required in (b) and # mod,(S) < r. By the inductive assumption (e(S)) 
holds and therefore the category 1°K: is schurian. Note also that the 
dimension of Horn&M,, Y,) over G is finite for any indecomposable 
module YS in mod,(S) because otherwise one can construct infinitely many 
pairwise nonisomorphic indecomposable modules in mod,,(R) of the form 
(G’, Horn&M,, Y,), u,), t = 1,2 ,.... Then we are in the position of 
Theorem 4.2 and therefore # mod,(Rg) < r provided S is not a division ring. 
Thus (e(Rg)) holds and hence (b) and (e(R)) follow from Theorem 4.2. If S 
is a division ring then (b) and e(R)) follow from [7]. 

The implication (a) 2 (d) can be proved similarly. Since (b) =S (c) follows 
from Theorem 4.2 and each of the conditions (b)-(d) implies (a) the theorem 
is proved. 

COROLLARY 4.5. Let R be a schurian artinian PI-ring with soc(R,) 
projective. Then R is offinite representation type if and only if 

where G is a division ring, S is of finite representation type, soc(S,) is 
projective and the ring R,, with IK, = IK: is schurian and sp-representation 
finite PI-ring. In particular, mod(R) is schurian when R is offinite represen- 
tation type. 

Proof: Use Theorem 4.1 and apply arguments in the proof of 
Theorem 4.4. 

Note that Theorems 3.11 and 4.4 describe two different algorithms for 
solving schurian vector space PI-categories of finite representation type and 
for calculating their indecomposable subspaces. It follows from Theorem 4.4 
that if P(IK,) is of finite type then functors H and 6, allow us to reduce in a 
finite number of steps the classification of indecomposables in P(IK,) to the 
well-known classification of indecomposable modules over hereditary PI- 
rings of the form 

481/92/2-I9 
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where G and F are division PI-rings and (dim,N)(dim ZVF,) < 3. Note also 
that Theorems 4.1 and 4.4 describe a constructive method for the 
classification of indecomposable modules over a large class of triangulated 
PI-rings of finite representation type including schurian factors of hereditary 
PI-rings. The method is illustrated by Corollary 4.5. 

We finish this section by giving useful criteria for IKf to be a vector space 
category. 

LEMMA 4.6. Let R be an artinian ring of the form 

where S is a ring of finite representation type and let iK: = 
Hom,bM,, mod(S)). Then the ring R, with IK = IKF is left artinian. R, is 
an artinian right peak ring if and only if the dimension of the right vector 
space Horn&M,, X,) over F is finite for any indecomposable module X, in 
mod(S). 

Proof. Since S is of finite representation type then End (X) is an artinian 
ring for any module X in mod(S) and the left End(X)-module Hom,(Y, X) is 
artinian for any X and Y in mod(S) ( see [21, Sect. 21). It follows that the 
ring E is artinian and the left E-module EK (in the notation of Section 3) is 
artinian. Hence R,, is left artinian and the required equivalence easily 
follows. 

LEMMA 4.7. Suppose F is a division PI-ring, S is an artinian PI-ring 
and FMS is an F - S-bimodule such that FM and M, are both finitely 
generated. Then dim Horn&M,, X,), is finite for any X, in mod(S) and 
IK, = Horn&M,, mod(S)) is a vector space category. If, in addition, S is of 

finite representation type then the right peak ring R m is artinian. 

Proof. The second part follows from the first one and Lemma 4.6. The 
first part will be proved by induction on m where J(S)m = 0 and 
J(Sy # 0. 

If m = 1 then S is a semisimple PI-ring and the lemma follows from 
[7, Proposition 1.31. If m > 2 then we consider the exact sequence of F - S- 
bimodules 

Since S is a PI-ring then the minimal injective cogenerator in Mod(S) is 
finitely generated [ 18) and therefore it is enough to prove the lemma for X, 
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finitely generated and injective. Given such module X, we consider the 
induced exact sequence of right F-vector spaces 

0 -+ Horn&M/Z&U(S)“-‘, X) -+ Hom,G,M, X) + Hom,&.MJ(S)“-‘, X) -+ 0. 

The dimensions of the left- and of the right-hand terms in the sequence are 
finite by the inductive assumption. Hence also dim Horn&M, X), is finite 
and the proof is complete. 

5. A DIFFERENTIATION 

We show in this section how the differentiation algorithm defined for &- 
hereditary I-Gorenstein rings in [4] can be extended to right peak rings. The 
extended algorithm can be successfully applied in the investigation of 
arbitrary vector space categories. 

Let R be a basic right peak ring. We keep the notation of Section 2. 

DEFINITION 5.1 (compare [4]). An indecomposable projective right R- 
module P, is called smooth if F, is a division ring, dim,s(sM,+ i) = 
dim@%+ AF,+, = 1, there is nojfs, n+ 1 in I, with sMj#O, jM,+,#O, 
Csjn+ 1 # 0, every nonzero map clsn+ i is surjective, the right peak ring 

T=End ( jegsv 5) with s”={jEI,,jM,#O} 

has up to isomorphisms only finitely many indecomposable modules 
L I ,..., L, in mod,(T) and 

r= End(L, 0 ‘.. @L,) 

is an artinian ring with the left Morita duality. 
Note that r is a right peak ring. If T has a Morita duality then r is also a 

left peak ring. 
If P,y is smooth then R has the form 

where S = End(Bj,,v Pi) is a right peak ring and 

,M, = Horn, 
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Following [4] we consider the commutative diagram 

(mod,(~p)YP -J-+ mod,,(r’) 3 mod,(T,) 

T Y IJ 
mod,(T) 

T 
b 4Q’s) 

where r’ is the ring Morita dual to r, T, is such that Ty = r’, y is the 
Yoneda embedding given by y(L) = Horn,& L, @ . . . @ L,) and &(T,) is 
the category of sp-injective modules in mod,,(T,). It follows from 
Proposition 2.6 that 7 is an equivalence of categories. The right peak ring 

with f= End(@iGSv,,S) Pi) and sNT,=~(HO~R(O~.I~GVP~, Oiesv\(s) Pi)) is 
called the d@rential of R with respect to P,. 

Following [4] we define the functor 

@, : mod,,(R) + mod,,(R;) 

as follows. Let sd,3 = t&M,). According to Proposition 2.4 any module X 
in mod,,(R) can be identified with a triple (X&, X;!, t) where Xk is and S- 
module, X;! is a module in mod,,(T) and 

t: Xk + Horn&M,, XF) z Homr,(SfirS, 7(X;()) 

is an S-monomorphism. Then the F,-linear map 

t, : Xi + HomrS(sfiT,r 7(X;)) z soc(7(X~)) 

is injective and similarly as in [4] one can find a submodule Yr of 7(X:) 

such that SOC(Y,~) = Im t,. A simple analysis shows that there ‘is a fac- 
torization 

X$-+ Hom&&,~ 7(G)) 

where Xfr is the image of Xk under the restriction functor 
mod,,(S) -+ mod,,(g). We put Q,(X) = (X&, Yr,, t’). We define as on maps 
in a natural way. If we denote by mod&(R) the full subcategory of mod,(R) 
consisting of modules having no direct summands Y with Y, = 0 then using 
the same type of arguments as in [4] one can prove 
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THEOREM 5.2. If R is a right peak ring and P, is a smooth indecom- 
posable projective right R-module then RI is a right peak ring and QS 
induces an equivalence of categories 

as well as a representation equivalence 

@; : mod&,(R) + mod,,(R;). 

We note that in contrast to the Nazarova-Rojter differentiation and to the 
differentiation of e-hereditary 1-Gorenstein rings in [4] our differentiation of 
right peak rings requires no restriction for the width of I, \sv and for the ring 
R. The only condition we need is that P, is smooth. Unfortunately, we do not 
know how to define a differentiation with respect to a non-smooth projective 
inR. 

It would be useful to have a differentiation with respect to a pair of points 
for right peak rings analogous to that one of Zavadskij [26]. It could be 
successfully used in the study of schurian vector space categories of tame 
type. 

Remark 5.3. The assumption that the ring T in the differentiation 
procedure is sp-representation finite is not essential. If T is not sp- 
representation finite then we define r as the ring (without unity) of the 
category mod,,(T) and we easily modify the definition of RI. 

6. FINAL REMARKS 

A. The results of this paper can be successfully applied in the 
investigation of tame algebras in a way similar to that in [ 171. Since in this 
case vector space categories with infinitely many indecomposable objects 
appear rather frequently we show for the convenience of the reader how the 
results of this paper can be extended to this more general case. 

Let IK, be an arbitrary vector space category. Suppose Ki, i E I, is a set of 
representatives of indecomposable objects in IK, Fi = End(Ki) and 
iKj = IK(Kj, Ki) for i, j E I. Suppose also that Fi are local rings for all i. 
Denote by I* the set I enlarged by an element m and put F,,, = F, 
iK, = Fil KiI, for i E I. Consider the species 4, = (Fi, iKj)i,jS1* with the 
commutativity condition c = (cijk) defined by the formula in the definition of 
R,, in Section 3 (see [20]). Following [20] we denote by +(R;K, c) the 
category of finitely generated representations of ,JK satisfying the 
commutativity condition c and by *&&, c) the full subcategory of ‘L(&, c) 
consisting of representations with finitely generated projective and essential 
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socle. It is easy that (Xi, i’pj)i,jsl* is an object in I&+&, c) if and only if 
dim(X,), is finite and the E;,-linear map m@i : Xi + HomF,(iKm, X,) is 
injective for all i E I. If Z is finite then there is an equivalence of categories 
‘L&K&, c) E mod,,&). Similarly as in Section 3 one can define functors 

H: 7 ‘(IK,.) + Q,(A&, c), G: W(‘K,) + Q,(M& 9 c*> 

and one can extend Theorems 3.3, 3.6 and 3.9 to this more general situation. 
A counterpart of Theorems 4.2 and 5.2 is also true. The details are left to the 
reader. 

B. By a generalized vector space category (or a vector space 
category over several division rings) we mean an additive category IK 
together with a faithful additive functor 1 -I: IK -+ mod(P) where F is a finite 
product of division rings. The categories %(lK,) and 7 '(IK,) are defined in a 
natural way. It is an easy observation that most of the results of this paper 
also remain true for generalized vector space categories if we replace right 
peak rings by semiperfect rings with essential and projective right socle. Note 
that a corresponding generalized triangular reduction derived from 
Theorem 4.2 (with a finite product of division rings instead of G) allows us 
to shorten the reduction procedure. For example, we consider the ring 

R= 

F 0 F F 

where G c F are division rings with dim F, = dim F = 2. The generalized 
triangular reduction reduces in one step the classification of indecomposable 
modules in mod,,(R) to the one in 

and in modxp 

over hereditary rings, whereas the usual reduction is longer. 
It is easy to see that a differentiation algorithm analogous to that in 

Section 5 can also be defined for semiperfect rings with essential and 
projective right socle and can be applied in the investigation of generalized 
vector space categories. The algorithm was already applied in [ 141 in the 
study of socle projective modules over hereditary algebras. 

It would be interesting to have a diagrammatic characterization of 
representation finite generalized vector space categories similar to that 
announced in [ 111. 
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C. Our interpretation of i?(lK,) in terms of mod,,&) allows us to 
apply the covering technique [lo] to the non-schurian vector space 
categories of finite type and connect them with the schurian ones. We will 
discuss the problem elsewhere. 

D. By a slight generalization of the results in 122, Sect. 21 we get a 
useful Kleisli category interpretation of the factor space category 7 ‘(IK,). 

Note added in proof. In this note we want to formulate some useful consequences of the 
results of the paper which are often used in applications of vector space categories. 

7.1. It is useful to consider the functor H*: #(lK,,)+ (mod,,(R,k.))“” which is the 
composed functor V(IK,) 2 ?’ ‘(lK:)Op 2 (mod,,(R,K,))“r. The functor H* is full, dense and 
Ker H* = [(O, K,,O) ,..., (0, K,,O)j. 

7.2. Suppose that I’<, is of the poset type. i.e.. I’:, is schurian and dim IKJ, = 1. 
dim,ilK,l= I for i= l,..., n. Then I=IA1,--(n+ 11 is a poset. R’*zFI*. mod,,,&)z 
mod,,((R,.),) z I-sp, and mod,,&.) z I”‘-sp (see Remark 2.9). If 

8: 7 ‘(lKF) --f I-sp, 6: #(lK,) + hp. I?*: ;//(lK ,) I”%p I + 

are the compositions of H, G, H* with the corresponding equivalences above then 122 1 yields 
the following result. Given an indecomposable object C = (UPi,, X, cp), X 2 K;’ @ @ Kz, 
such that fi(C) = (M, MJ, G(C) = (L, Li), 8*(C) = (N, Nj) are nonzero then M = L = U, , 
N = U:, and 

where uj and nj are the natural embeddings and projections, respectively. 

7.3. In the situation of Section 4 the functor 

HT = H*@: mod(R)+ (mod,,(R,K.))OP 

is full, dense and Ker HT = [mod(s)]. H T is very useful in studying modules over arbitrary 
artinian rings R. 

7.4. In view of 7.2 Corollary 4.3 can be completed as follows. Let fi: : mod(R) + 
I”“-sp be the composition of HT with the corresponding equivalence in 7.2 and let Z = 
(U,, Ys, (p) be an indecomposable right module over R = (‘, y) with U, # 0 and 
Ys g Lir@ ... @LF where L, ,..., L, are pairwise nonisomorphic indecomposable modules in 
mod(S). We put Ki = Hom,&M,, Li) and I = {I ,..., n). If G\(Z) = (M’, MO. k:(Z) = 
(N, Ni) then M’ = U, , N = r/F and 
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For a discussion of these results and covering type results for vector space categories we 
refer to the author’s note, A module-theoretical approach to vector space categories 
(“Proceedings, Conference on Abelian Groups and Modules, Udine, 1984,” Springer-Verlag, 
Vienna). 

Let us also mention that in the author’s note Representations of partially ordered sets, 
vector space categories and socle projective modules (Paderborn, 1983, pp. I-141) 
F-moduled categories IK, over an arbitrary ring F are studied as well as corresponding 
categories i’/(!K,.) and ?“(lK,) are developed. Most of the results of this paper can be 
generalized to the case of moduled categories. This allows us to get a generalization of 
Zavadskij’s 1261 differentiation with respect to a pair of points for right peak rings and to 
obtain its functorial interpretation (see the author’s note, On vector space categories and 
differentiations of right peak rings, in “Proceedings, International Conference on Represen- 
tations of Algebras IV, Ottawa, Carleton University, August 1984”). 
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