Design of 1-tape 2-symbol reversible Turing machines based on reversible logic elements

Jia Lee, Rui-Long Yang, Kenichi Morita

Chongqing Key Laboratory of Software Theory & Technology, College of Computer Science, Chongqing University, Chongqing, China
Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Japan

ARTICLE INFO

Article history:
Received 21 December 2011
Received in revised form 26 June 2012
Accepted 9 July 2012
Communicated by O. Watanabe

Keywords:
Reversible Turing machine
Reversible logic element
Reversibility
Asynchronous operation

ABSTRACT

This paper proposes a novel scheme for constructing reversible Turing machines (RTMs) via various reversible logic elements. A reversible logic element is similar to a conventional reversible logic gate, except that the element also carries a 1-bit memory that can store binary states. The usage of internal states allows much more efficient and straightforward constructions of RTMs based on reversible elements than based on reversible logic gates. In particular, a remarkable feature of our constructions is that they can operate asynchronously, whereby the clock signal, which is indispensable for synchronizing all elements as in a reversible logic circuit, can possibly be removed from the construction.

1. Introduction

A reversible Turing machine (RTM) is a Turing machine of which all possible configurations constitute a linear graph without branching. In other words [19], a RTM’s transition function is required to be bijective, such that the machine is unable to reach any certain configuration by transitions from different tape directions, or to reach a configuration from the same direction in two or more ways. Thus, from the current configuration (except the initial one), it can be uniquely determined what the previous configuration is, i.e., a RTM holds a kind of “backward determinism”.

It is known that reversible Turing machines can be built from various reversible technologies, e.g., reversible logic gate [8], the Billiard-Ball Model [17], reversible cellular automaton [22], DNA Polymer [26], etc. In addition, a reversible logic element resembles a reversible logic gate, in the sense that both of them comprise an equal number of input and output lines, except that the former also carries a 1-bit memory while the latter does not. The operation of a reversible element is determined by a bijective function between the inputs and outputs. Morita [21] proposed a reversible logic element, called the Rotary Element (RE), and demonstrated that the RE can be used to construct explicitly a certain RTM computing the function $y = 2x$. In particular, Morita’s RTM consists of a Control module which serves as a finite-state machine of the RTM, connected to the right by an (infinite) array of Tape-Cell modules, each of which represents a unique cell on a (semi-infinite) tape. Here signals can be expressed as tokens, such that the binary values 0 and 1 of any input or output in conventional circuits are represented in terms of the absence and presence of a token on the corresponding line, respectively.

Although the RE enables a much simpler and more straightforward construction [21] of the RTM than to use reversible logic gates [4,9,18,27,28], there is an obvious disadvantage in Morita’s construction with respect to computing time. Actually, for the sake of accomplishing an instantaneous transition of the RTM, a token must move back and forth within the construction composed by REs, between the Control module and a Tape-Cell module that corresponds to the cell being...
scanned by the RTM’s head. The distance between the Control module and the Tape-Cell module at the destination, however, may become arbitrarily large and even unbounded (e.g., [11]), along with the progress of the computation. Thus, it makes sense to build an alternative construction of RTMs using reversible elements, which can work out any function in a much more efficient fashion.

In this paper, we propose a novel scheme for decomposing RTMs systematically into various reversible logic elements. For this purpose, instead of focusing on a specific RTM, our design scheme focuses on how to build a general reversible Turing machine out of reversible elements in a straightforward way. To realize a RTM, our scheme exploits a one-dimensional array of identical reversible modules that are interconnected locally and uniformly (see also [15]). In addition, each instantaneous transition of the RTM invokes at most one operation of a module at any time. To this extent, we show that the reversible module can be constructed using reversible logic elements with much simpler functionalities, involving a pair of mutually inverse elements which take a minimal number of input and output lines [12].

This paper is organized as follows: Sections 2 and 3 give overviews on reversible Turing machines and reversible logic elements, respectively. Section 4 describes our scheme for constructing a general RTM based on reversible elements. This paper finishes with the conclusions given in Section 5.

2. Reversible Turing machines

A Turing machine is a system which, in general, consists of an infinite one-dimensional tape divided into cells, and a read-write head that accesses a single cell on the tape at any time. Each cell is able to take a symbol from a finite set of symbols. At any time, the TM is in any one of a finite set of states, and executes a transition in accordance with the machine’s current state and the symbol in the cell being scanned by the head.

Formally, a Turing machine can be defined as \((Q, \Sigma, q_0, q_f, F)\) where \(Q\) and \(\Sigma\) are non-empty finite sets of states and tape symbols, respectively, \(q_0 \notin Q\) is the start state and \(q_f \notin Q\) is the final (halt) state. For simplicity, let \(Q^{+} = Q \cup \{q_f\}\) and \(Q^{-} = Q \cup \{q_0\}\). Moreover, \(F \subseteq Q \times \Sigma \times \Sigma \cup Q^{-} \times \{/\} \times \{L, R\} \times Q^{+}\) is a set of transitions. Assume \(a, b \in \Sigma\) and \(d \in \{L, R\}\). A transition \([p, a, b, q] \in F\) means that when the TM is in state \(p\) and reads symbol \(a\) from the cell currently being scanned by the head, the TM writes a new symbol \(b\) on the cell, and updates its state to \(q\). For convenience, transitions given in such form are called stationary. Likewise, a transition \([p, /, d, q] \in F\) expresses that if the TM is in state \(p\), then the TM shifts its head one cell in the left (or right) direction when \(d = L\) (resp. \(d = R\)), and changes its state to \(q\). Hence, such transitions are called moving transitions.

Assume \(p \in Q^{+}\) and \(q \in Q^{-}\). For convenience, let \(p \vdash q\) denote \(\exists(u, v) \in \Sigma^{2} ([p, u, v, q] \in F)\) or \(\exists d \in \{L, R\} ([p, /, d, q] \in F)\). Moreover, let \(p \vdash^{+} q\) represent that either \(p = q\), or there are \(p_1, \ldots, p_n \in Q\) (\(n \geq 0\)) such that \(p \vdash p_1 \vdash \cdots \vdash p_n \vdash q\). Assume \(M_i = \{q \in Q \mid q \vdash^{+} q_i\}\) and \(M_f = \{q \in Q \mid q \vdash^{+} q_f\}\). If \(M_i \subset Q\), it is easy to verify that for each state \(q' \in Q \setminus M_i\), \(q'\) is unreachable from the state \(q_i\). Similarly, for any state \(q'' \in Q \setminus M_f\), \(q''\) is unable to reach the final state \(q_f\). Thus, it is reasonable to assume \(Q = M_i = M_f\).

The quadruple form of transitions in \(F\) allows a straightforward definition on the reversibility of a TM [2,20]. Let \(\alpha_1\) and \(\alpha_2\) be two distinct transitions in \(F\), i.e.,

\[
\alpha_1 = [p_1, u_1, v_1, q_1] \\
\alpha_2 = [p_2, u_2, v_2, q_2].
\]

In this case, \(\alpha_1\) and \(\alpha_2\) is said to overlap in domain iff \(p_1 = p_2\) and the following (i) or (ii) holds:

(i) \(u_1 = u_2\);

(ii) \(u_1 = /\) or \(u_2 = /\).

Moreover, \(\alpha_1\) and \(\alpha_2\) is said to overlap in range iff \(q_1 = q_2\) and the following (iii) or (iv) holds:

(iii) \(v_1 = v_2\);

(iv) \(u_1 = /\) or \(u_2 = /\).

Thus, a TM \((Q, \Sigma, q_0, q_f, F)\) is called deterministic if no pair of transitions in \(F\) overlap in domain. In addition, a deterministic TM is called reversible if no pair of transitions in \(F\) overlap in range.

From the above definition, a shift of the read-write head of a RTM depends solely on the local state but not on the symbol read from the tape. Morita et al. [20] showed that any arbitrary reversible Turing machine can be converted systematically into an equivalent RTM which employs merely two symbols, i.e., \(\Sigma = \{0, 1\}\). Besides, we further provide several conditions on the transitions of a RTM given in quadruple form, which can remarkably affect the efficient construction of the RTM using reversible logic elements. Let \((Q, \Sigma, q_0, q_f, F)\) be such a RTM that holds the following conditions:

(C1) For each \(p, q \in Q\) and \(a, b \in \Sigma\),

\([p, a, b, q] \in F \implies a \neq b\).

i.e., a stationary transition must change the tape symbol on a cell.
(C2) For each \(p_1, q_1 \in Q, q_2 \in Q^+, a, b \in \Sigma \) and \(u, v \in \Sigma \cup \{/, \ L, R\} \),

\[
[p_1, a, b, q_1] \in F \land \{q_1, u, v, q_2\} \in F \implies u = /.
\]

That is, a stationary transition must be followed by a moving transition.

Since \(q_1 \xrightarrow{\ast} q \) \(q \xrightarrow{\ast} q_f \) for every \(q \in Q \), condition C2 implies that for each stationary transition \([p_1, a, b, p_2] \in F \), there are moving transitions \(\{q_1, /, d, p_1\} \in F \) and \(\{p_2, /, d', q_2\} \in F \) where \(d, d' \in \{L, R\} \). As described below, any RTM can be easily transformed into an equivalent RTM that satisfies all the above conditions.

Assume \((Q, \Sigma, q_0, q_f, F) \) is a RTM. First of all, for each stationary transition \(\alpha_1 = [p_1, a, a, p_2] \in F \), we include a new state \(p_1' (\notin Q) \) in \(Q \) and replace \(\alpha_1 \) by transitions: \([p_1, a, b, p_1'] \) and \([p_1', b, a, p_2] \) where \(b \in \Sigma \) and \(b \neq a \). After that, for each \(p \in Q \), let \(Q(p) = \{[p', a, b, p] \in F \mid a, b \in \Sigma \} \) and \(Q(p) = \{[p, a, b, p'] \in F \mid a, b \in \Sigma \} \). Then, whenever \(Q(p) \neq \emptyset \) and \(Q(p) \neq \emptyset \), we include two different states \(r(p) (\notin Q) \) and \(l(p) (\notin Q) \) in \(Q \) as well as two moving transitions: \([r(p), /, R, l(p)] \) and \([l(p), /, L, p] \) in \(F \), followed by substituting each transition \([p', a, b, p] \in Q(p) \) in \(F \) with transition \([p', a, b, r(p)] \). Hence, it is easy to verify that the resulting RTM works exactly as the original RTM, of which all transitions fulfill the conditions C1 and C2.

3. Reversible logic elements

A logic element is a module which consists of a finite number of input and output lines. Communication between an element and other elements is done via exchanging tokens through interconnection lines among them. The binary signal values 0 and 1 of conventional logic circuits can be encoded by the absence and presence of a token on a line, respectively.

A logic element can be formalized as \((\mathcal{I}, \mathcal{O}, \mathcal{A}, \lambda_0, \Psi) \), where \(\mathcal{I} \) and \(\mathcal{O} \) are finite sets of input and output lines (\(\mathcal{I} \cap \mathcal{O} = \emptyset \)), respectively. \(\mathcal{A} \) is a finite set of internal states of the element, with \(\lambda_0 \in \mathcal{A} \) being the initial state. In addition, \(\Psi \subseteq \mathcal{I} \times \mathcal{O} \times \mathcal{A} \times \mathcal{A} \) is a set of operations. Assume \(a \in \mathcal{I}, a' \in \mathcal{O}, \) and \(s, s' \in \mathcal{A} \). An operation \(a, s \rightarrow a', s' \in \Psi \) corresponds to a situation where the element, when in state \(s \) with a token appearing on its input line \(a \), then generates a token on output line \(a' \) and changes its state to \(s' \).

Assume a logic element \((\mathcal{I}, \mathcal{O}, \mathcal{A}, \lambda_0, \Psi) \). Let

\[
\begin{align*}
\theta_1 &= a_1, s_1 \rightarrow a'_1, s'_1 \\
\theta_2 &= a_2, s_2 \rightarrow a'_2, s'_2
\end{align*}
\]

be any two operations in \(\Psi \) (\(\theta_1 \) and \(\theta_2 \) may be the same). The element is called deterministic iff

\[
a_1 = a_2 \land s_1 = s_2 \implies \theta_1 = \theta_2.
\]

Moreover, the element is reversible iff it is deterministic, and

\[
a'_1 = a'_2 \land s'_1 = s'_2 \implies \theta_1 = \theta_2.
\]

Thus, each operation of a reversible element does not overlap on the left-hand side or on the right-hand side with any other operations.

Apparently, reversing the input and output lines, as well as the left-hand and right-hand sides of each operation of a reversible logic element gives rise to another reversible element, which has the inverse functionality of the former (e.g. [24]). In this paper, we focus on reversible elements each of which has a minimal number of states, i.e., \(|\mathcal{A}| = 2 \). Fig. 1 gives some useful reversible elements, among which the RT and IRT are mutually inverse to each other, so as the RD and IRD. In addition, it can be verified that the inverse element of an RE is still an RE. The case for an CDR is the same.

4. Realization of reversible Turing machines by reversible logic elements

4.1. A novel reversible element capable of realizing reversible Turing machines

Let \(\mathcal{A} = (Q, \{0, 1\}, q_s, q_f, F) \) be a reversible Turing machine that satisfies both the conditions C1 and C2 given in Section 2. For convenience, let \(M_R, M_L, S_D, S_R \) be subsets of \(Q \) defined as follows:

\[
\begin{align*}
M_R &= \{q \in Q \mid \{p, /, R, q\} \in F\} \\
M_L &= \{q \in Q \mid \{p, /, L, q\} \in F\} \\
S_D &= \{q \in Q \mid \{p, s, t, q\} \in F \land s, t \in \{0, 1\}\} \\
S_R &= \{p \in Q \mid \{p, s, t, q\} \in F \land s, t \in \{0, 1\}\}. \\
\end{align*}
\]

As mentioned in Section 2, it is obvious that \(S_D \subseteq M_L \cup M_R \) due to the condition C2. Let \(M_R^* = M_R \setminus S_D \) and \(M_L^* = M_L \setminus S_D \), i.e., \(M_R^* \) and \(M_L^* \) contain those states in either of which the RTM’s head, when moving to a cell in the right or left direction,

\[\text{If } Q(p) \neq \emptyset \text{ and } Q(p) \neq \emptyset, \text{ then } [p, /, d, q] \notin F \text{ and } [q, /, d, p] \notin F \text{ for any } q \in Q \cup \{q_s, q_f\} \text{ and } d \in \{L, R\}, \text{ due to the reversibility of transitions.} \]
will simply go on shifting without accessing the symbol on that cell. Moreover, because $S_R \cap (M_R \cup M_I) = \emptyset$ and $q_e \vdash q$ for each $q \in Q$, we obtain $Q = M_L \cup M_R \cup S_R$.

For simplicity, let $N(L)$, $N(R)$, $n(L)$, $n(R)$ be integers and $d \in \{L, R\}$, such that $N(d) = |M_d|$ and $n(d) = |M_d \cap S_d|$. Without loss of generality, assume that $M_d \cap S_d = \{q_1^d, q_2^d, \ldots, q_{n(d)}^d\}$ and $M_d^R = \{q_{n(d)+1}^d, \ldots, q_{N(d)}^d\}$.

The RTM A can be simulated by a one-dimensional array of identical reversible elements, called RCU (Reversible Cell Unit), that are interconnected locally in a uniform way. Here an RCU is formulated as $(I_A, O_A, \{0, 1\}, 0, \Psi_A)$, (see Fig. 2), where

$$I_A = \{I_1^d, \ldots, I_{N(L)}^d, I_1^R, \ldots, I_{N(R)}^R\} \cup \{\text{begin}\},$$

$$O_A = \{O_1^L, \ldots, O_{N(L)}^L, O_1^R, \ldots, O_{N(R)}^R\} \cup \{\text{end}\}.$$

Also, the set of operations Ψ_A is defined in the following way.

(i) For each $c, d \in \{L, R\}$, $1 \leq j \leq n(d)$, $1 \leq k \leq N(c)$, $s, t \in \{0, 1\}$ ($s \neq t$) and $p' \in S_R$, if $[q_j^d, s, t, p'] \in F$ and $[p', c, q_k^c] \in F$ (condition C2), then include the next operation in Ψ_A:

$$l_j^d, s \rightarrow O_k^c, t.$$
For every \(d, e \in \{L, R\}, n(d) < i \leq N(d), \) and \(1 \leq l \leq N(e) \), if \([q^d_i, /, e, q^e_j] \in F\) (i.e., \(q^d_i \in M^R_A\)), then for each \(s \in \{0, 1\} \), include the following operation to \(\Psi_A \):

\[
I^d, s \rightarrow O^d, s.
\]

(iii) Suppose \(d \in \{L, R\}, 1 \leq j \leq n(d), n(d) < i \leq N(d), s, t \in \{0, 1\} \) (\(s \neq t \)) and \(p' \in S_R \). If \([q^d_i, s, t, p'] \in F\) and \([p', /, c, q_j] \in F\), then include the next operation in \(\Psi_A \):

\[
I^d, s \rightarrow \text{end}, t;
\]

otherwise, if \([q^d_i, /, e, q_j] \in F\), for each \(w \in \{0, 1\} \), include the following operation to \(\Psi_A \):

\[
I^d, w \rightarrow \text{end}, w.
\]

(iv) Assume \(d \in \{L, R\} \) and \(1 \leq i \leq N(d) \). If \([q_s, /, d, q^d_i] \in F\), then for each \(t \in \{0, 1\} \), include the following operation to \(\Psi_A \):

\[
\text{begin}, t \rightarrow O^d, t.
\]

In order to verify the RCU's reversibility, assume

\[
\tau_1 = I^d, s_1 \rightarrow O^d, t
\]

\[
\tau_2 = I^d, s_2 \rightarrow O^d, t
\]

are two different operations in \(\Psi_A \) whose right-hand sides coincide each other (the case for overlapping on left-hand side is similar). First of all, suppose \(n(d) < i \leq N(d) \) and \(n(c) < j \leq N(c) \), whereby \(\tau_1 \) and \(\tau_2 \) are uniquely produced from the transitions \([q^d_i, /, e, q^e_j]\) and \([q^d_i, /, e, q^e_j]\) in \(F \), respectively. The reversibility of the RTM \(A \), therefore, results in \(q^d_i = q^e_j \), and hence, \(I^d = I^e \). Combined with \(s_1 = s_2 = t \) (see (ii) above), this contradicts with the assumption that \(\tau_1 \neq \tau_2 \). Next, assume \(1 \leq i \leq n(d) \) for convenience, i.e., there is \(p \in S_R \) such that \([q^d_i, s_1, t, p] \in F \) (\(s_1 \neq t \)) and \([p, /, e, q^e_j] \in F \). In this case, because \(S_R \cap M_c = \emptyset \), it is obvious that \([q^d_i, /, e, q^e_j] \notin F \) for any \(1 \leq j \leq N(c) \). Hence, we can only have \(1 \leq j \leq n(c) \) and \([q^d_i, s_2, t, p] \in F \). The reversibility between transitions \([q^d_i, s_1, t, p]\) and \([q^d_i, s_2, t, p]\), however, yields \(q^d_i = q^e_j \) as well as \(s_1 = s_2 \), and thus \(\tau_1 = \tau_2 \), which still contradicts with the assumption of the above.

Furthermore, all other cases can be verified in the similar manner. In conclusion, because of the reversibility of all transitions in \(F \) (see Section 2), no pair of operations in \(\Psi_A \) overlap on left-hand side or on right-hand side, thereby our RCU is reversible.

Fig. 3 gives an initial configuration of the RTM \(A \), beneath which a one-dimensional array of RCUs that are uniformly interconnected is illustrated. In particular, the correspondence between the RCU array and cells on the tape of \(A \) is one-to-one, whereby the symbol on each cell is encoded by the internal state of a corresponding TCU.

To see how the circuit in Fig. 3(b) works, for example, assume \(c, d \in \{L, R\}, 1 \leq i \leq n(d), 1 \leq j \leq N(c), s, t \in \{0, 1\} \) and \(p \in S_R \), such that \([q^d_i, s, t, p] \in F \) and \([p, /, c, q^e_j] \in F \) (i.e., \(I^d, s \rightarrow O^d, t \in \Psi_A \)). Also, suppose that the RTM \(A \) is in state \(q^d_i \) whose head scans a cell with symbol \(s \). In this case, the RCU corresponding uniquely to the cell being scanned by \(A \)'s head is in state \(s \), and it receives a single token arriving on its input line \(I^d \), which is used to encode the state \(q^d_i \) of \(A \), as demonstrated in Fig. 4. Hence, according to the operation \(I^d, s \rightarrow O^d, t \), the RCU is activated to assimilate the input token, change its state to \(t \), and finally output a token on line \(O^c \). The resulting token, therefore, will be transferred to input line \(I^d \) of the next RCU in direction \(c \), which depicts that \(A \) shifts its head to a neighboring cell in direction \(c \) and changes its state...
Fig. 3. (a) An initial configuration of reversible Turing machine \(A \). (b) One-dimensional array of RCUs, in which each output line \(O^d_j \) of an RCU where \(d \in \{L, R\} \) and \(1 \leq j \leq N(d) \) is connected to the input line \(I^d_j \) of a neighboring RCU in direction \(d \). Moreover, each RCU corresponds uniquely to a square cell on the tape of \(A \), whose state has been set beforehand to equal to the symbol on that cell. Here a token, represented by a black blob, is assigned on the input line begin of an RCU which corresponds to the cell being scanned by the RTM \(A \)'s head at the initial time.

Fig. 4. (a) A stationary transition of RTM \(A \) on a cell, which is followed immediately by a moving transition to leave that cell. (b) Simulation of the above instantaneous transitions by an operation of the corresponding RCU.

to \(q_f \). The case of pure moving transition on a cell can be verified easily in a similar manner. To this extent, each instantaneous transition of \(A \) on a cell can be exactly emulated by at most one operation of an RCU corresponding to that cell.

As shown in Fig. 3(b), simulation of \(A \) is started by assigning a token on input line \(\text{begin} \) of an TCU which corresponds to the cell initially scanned by the RTM's head. After that, the token will run around in the array, each time moving from one RCU to a neighboring RCU in the left or right direction, which actually simulates \(A \) working on individual cells, as described above. The whole process will be finished once an RCU in the array outputs a token to its line \(\text{end} \), i.e., \(A \) reaches the final state \(q_f \), whereby the RTM halts.

4.2. Decomposing RCU into simpler reversible elements

Now we proceed to decompose an RCU into much simpler reversible elements, like those elements in Fig. 1. For this purpose, let

\[\phi : S_R \cup M_L^R \cup M_R^L \cup \{q_s\} \rightarrow M_L \cup M_R \cup \{q_f\} \]
Obviously, the RT and IRT actually cover the functionalities of a Toggle and Inverse Toggle, respectively. In addition, well as their respective inverses, can be easily realized from the RE (see Fig. 9), it is able to obtain the RE-based construction.

Moreover, for each \(d \in \{ L, R \} \), and \(1 \leq i \leq n(d) \), a mapping defined as follows: For each \(p \in S_R \cup M^L_1 \cup M^R_1 \cup \{ q \} \), \(q \in M_L \cup M_R \cup \{ q \} \), and \(d \in \{ L, R \} \), we obtain

\[
[p, /, d, q] \in F \iff \varphi(p) = q.
\]

For each \(q \in M_L \cup M_R \cup \{ q \} \), there are, by definition, \(p \in Q^+ \) and \(d \in \{ L, R \} \) such that \([p, /, d, q] \in F \). Thus, we obtain \(p \not\in S_d \), and hence, \(p \in S_R \cup M^L_1 \cup M^R_1 \cup \{ q \} \) since \(S_d \subseteq M_L \cup M_R \) and \(Q^+ = S_R \cup M_L \cup M_R \cup \{ q \} \). Thus, the mapping \(\varphi \) is surjective. Furthermore, because \(p \mapsto \varphi(p) \) for each \(p \in S_R \cup M^L_1 \cup M^R_1 \cup \{ q \} \) together with the condition C2 in Section 2, the mapping \(\varphi \) is an injective function due to reversibility of the transitions in \(F \). Combined with its surjectivity, the function \(\varphi \), therefore, is bijective.

Additionally, let \(\rho \) be a mapping between \(M_L \cup M_R \cup \{ q \} \) and \(O_{\Lambda} \) the set of output lines of an RCU, such that \(\rho(q) = \Theta \) and \(\rho(q^t) = \Theta^t \) for every \(d \in \{ L, R \} \) and \(1 \leq i \leq N(d) \). Obviously, the mapping \(\rho \) is bijective. Thus, we can obtain a composite function \(\rho \circ \varphi : S_R \cup M^L_1 \cup M^R_1 \cup \{ q \} \to O_{\Lambda} \) and let \(\Gamma \varphi = \rho \circ \varphi \), which is of course bijective.

For convenience, denote \(S_0 \) by \(\{ p_1, p_2, \ldots, p_{N(S)} \} \) where \(N(S) = |Q| - N(L) - N(R) = n(L) + n(R) \). Let \(\mu : S_0 \times \{ 0, 1 \} \to \{ 0, 1 \} \times S_0 \) be a function such that for each \(d \in \{ L, R \} \), \(1 \leq i \leq n(d) \), \(1 \leq j \leq N(S) \), and \(s, t \in \{ 0, 1 \} \), we define

\[
[q_1^s, s, t, p_1^t] \in F \iff \mu(q_1^s, s) = (t, p_1^t) \ (i.e., \ [q_1^s, t, s, p_1^t] \in F).
\]

To verify the validness of the construction in Fig. 6, for example, suppose \(c, d \in \{ L, R \} \), \(1 \leq i \leq n(d) \), \(1 \leq k \leq N(S) \), \(1 \leq j \leq N(c) \), and \(s, t \in \{ 0, 1 \} \) (\(s \neq t \)), such that \([q_1^s, s, t, p_1^t] \) and \([q_1^t, c, q_1^t] \) are in \(F \). Hence, \(l_{ij}^d \to O_{ij}^d \), \(s \to \Psi_{\Lambda} \). In addition, assume both the m-Toggle and Inverse m-Toggle are in state \(s \), and a token arrives on input line \(l_{ij}^d \) of the construction. In this case, the token changes the state of the m-Toggle from \(s \) to \(t \), and gives rise to a token on line \(q_1^t \) that will be fed to the input line \(t, p_1^t \) of the Inverse m-Toggle because \(\mu(q_1^t, s) = (t, p_1^t) \). As a result, the token also changes the Inverse m-Token from state \(s \) to state \(t \), and finally results in a token on output line \(O_{ij}^d \). Thus, it can be verified that the construction in Fig. 6 actually behaves as an RCU.

Moreover, Fig. 6 stipulates that for the sake of decomposing an RCU, it is enough to realize an m-Toggle as well as an Inverse m-Toggle by means of simpler reversible elements. To this end, Fig. 7 shows the construction of an m-Toggle using RD and 1-Toggle (or simply Toggle), along with an Inverse m-Toggle realized by IRD and Inverse Toggle. The correctness of these constructions can be easily verified, for example, as demonstrated in Fig. 8. In addition, since both RD and Toggle, as well as their respective inverses, can be easily realized from the RE (see Fig. 9), it is able to obtain the RE-based construction of an m-Toggle through taking place of each RD as well as the Toggle in Fig. 7(a) by an RE. The case for an Inverse m-Toggle is similar.

As stated before, the simplest reversible elements include the RT and IRT, which have merely two input and two output lines. Obviously, the RT and IRT actually cover the functionalities of a Toggle and Inverse Toggle, respectively. In addition,
Fig. 6. Construction of an RCU \((J_A, \varnothing_A, \{0, 1\}, 0, \Psi_A)\) by m-Toggle and Inverse m-Toggle where \(m = n(R) + n(L) \equiv N(S)\). For convenience, positions of an RCU’s input and output lines in Fig. 2 are relocated here, and \(\varnothing_A\) is denoted in terms of \(\Gamma(q') = q \in S_R \cup M^L \cup M^R \cup \{q_s\}\) with \(\Gamma\) being a bijective mapping from \(S_R \cup M^L \cup M^R \cup \{q_s\}\) to \(\varnothing_A\). In addition, an RCU’s local states 0 and 1 are encoded, respectively, by both the m-Toggle and Inverse m-toggle being in state 0 and state 1 at the same time.

Fig. 7. (a) Realization of m-Toggle \((m > 0)\) using RD and Toggle. Here an m-Toggle’s local states 0 and 1 are represented by the internal states 0 and 1 of the Toggle, respectively. (b) Construction of Inverse m-Toggle by IRD and Inverse Toggle. Due to the reversibility of all logic elements, the Inverse m-Toggle is obtained by simply reversing the directions of all input and output lines, as well as each element’s logic functionality in the left construction of an m-Toggle.
Fig. 8. Trace of a token running around in the construction of an m-Toggle in Fig. 7(a). Roughly speaking, suppose a token arrives on an input line T_i where $1 \leq i \leq m$. This token will be fed to input line S of the i-th RD from the top, thereby it will change the RD’s state to 1 and be transferred to output line T_0 of the RD, whereas all other RDs remain in state 0 (the initial state). After that, the token will eventually arrive at the Toggle at the bottom, change its state from 0 (or 1) to 1 (resp. 0) if the (m-)Toggle is in state 0 (resp. 1), and finally return to the i-th RD from the element’s input line R_0 (resp. R_1). The token, therefore, will revert the i-th RD’s state to 0, and give rise to an output on line $T(i, 0)$ (resp. $T(i, 1)$). Thus, it is easy to verify that the construction works exactly in the same way as an m-Toggle.

Fig. 9. Realizations of (a) RD and (a’)IRD using RE. (b) Realization of (1-)Toggle by RE. For simplicity, the output lines $T(1, 0)$ and $T(1, 1)$ of a Toggle are abbreviated to T_0 and T_1, respectively. (b’) Similarly, construction of Inverse Toggle by RE.

Fig. 10. Realizations of (a) RD and (a’)IRD using RT, IRT and CDE, in either of which all RTs and IRTs being in state 0 (or 1) represents that the RD or IRD is in state 0 (resp. 1). Like the Inverse m-Toggle in Fig. 7, an IRT is obtained by exchanging the input and output lines, as well as reversing the functionality of each element in an RT’s construction, except that the inverse of a CDE remains a CDE. (b) Construction [12] of CDE by RT and IRT.

though Fig. 9 suffices to prove that an RD and IRD can be constructed from RT and IRT [12], both constructions can be made much more efficient by using these elements directly, as shown in Fig. 10, rather than based on the construction of an RE by RT and IRT. Moreover, a typical sequence of the RD processing an input token is illustrated in Fig. 11, via which the correctness of the construction in Fig. 10 can be easily verified. As a result, the RT and IRT can be used to construct an m-Toggle as well as an Inverse m-Toggle, and so as the RCU.
5. Conclusions

In this paper, we presented a new scheme for constructing reversible Turing machines with one tape and two symbols based on reversible logic elements. For this purpose, we imposed several conditions on the transitions of RTMs, which allow for decomposing any RTM into a network of reversible elements efficiently in a systematical way. In particular, our construction is composed by a linear chain of identical reversible modules that are locally and uniformly interconnected with each other, resembling a one-dimensional cellular array. Such regular and uniform construction of a RTM not only can account for the profound overhead in computing time caused by the heterogeneous structure of the previous construction [21], but also might contribute to the potential of array-structured computers [1, 25]. Furthermore, each module in the construction can be built from various reversible elements each of which has much simpler functionality than the module.

Because at most one token will run around in the construction of a RTM at all times, delays involved in the operation of any element or in the transmission of the token on any line do not disturb the correct computation of the RTM [21, 12]. Thus, our construction of a RTM can operate in a clockless (asynchronous) mode (see also [14]). Reversibility not only promises in principle the possibility of computers with zero dissipation [2, 5, 7, 16, 23], but is also essential for quantum [6] and fluctuation-based [3, 13, 14] computing. As with reversibility, asynchronicity tends to reduce power consumption and energy dissipation [10], it is yet due to different reasons: Though reversible systems reduce power consumption by preventing entropy loss, reversible systems do so by keeping all idle elements in a sleeping state.

Finally, although 1-tape, 2-symbol reversible Turing machines are indeed universal [20], it might make sense to conceive the construction of more general RTMs that can take an arbitrary number of tape symbols. Nevertheless, such construction may possibly be achieved by replacing each RCU module in the construction in Fig. 3(b) with a reversible component, provided that the component contains more internal states and more complicated operations. The use of more states, on the other hand, tends to hinder the effective decomposition of the component into reversible logic elements with 1-bit memory. As a detailed analysis of this respect is beyond the scope of this paper, further investigations are left for future studies.

Acknowledgments

We are grateful to the anonymous reviewer for the helpful comments and valuable suggestions. We also thank Dr. Ferdinand Peper at National Institute of Information and Communications Technology, Japan, for the fruitful discussions. This research work was supported by NSFC (61170036).

References

