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Abstract 

Schmid, U., The average CRI-length of a controlled ALOHA collision resolution algorithm, 

Theoretical Computer Science 108 (1993) 291-310. 

We investigate the expected CRI-length (collision resolution interval) of a hybrid collision resolution 

algorithm based on slotted ALOHA with controlled retransmission probability, e.g., we study the 

average number of slots necessary for the resolution of an initial collision of multiplicity n. An 

algorithm similar to binary exponential backoff for adjusting the retransmission probability w.r.t. 

the channel load is used prior to the application of the ALOHA resolution algorithm, thus operating 

it in the region of nonexponential behaviour. Mellin-transform techniques are used for the deriv- 

ation of an asymptotic expression for the desired quantity, which turns out to be O(n log n), 

1. Introduction 

This paper deals with the analysis of a collision resolution algorithm (CRA) for 

networks based on random multiple access channels. With this type of networks, all 

stations (i.e., transmitting/receiving units) share a single communication channel. 

Data are sent in packets, without any centralized channel arbitration mechanism. 

Thus, a distributed algorithm for resolving conflicts arising from simultaneous trans- 

mission attempts of multiple stations is needed. 

The whole subject came up with the development of the ALOHA system at the Univer- 

sity of Hawaii in the late 1970s. Since this time, a number of varieties of the original 

ALOHA algorithm and, most important, a family of tree algorithms have been proposed, 

which offer better characteristics, e.g., average packet throughput; cf. [4] for an overview. 
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An example is the well-known slotted ALOHA algorithm, which works as follows: 

If a station has been involved in a collision, it transmits its packet in each subsequent 

slot with a fixed probability p until a successful transmission of the packet occurs. 

Packets are assumed to have fixed size and fit into exactly one slot. Note that as 

a collision causes the destruction of all packets sent, it may be detected by all stations 

via certain checksumming methods. 

It is well-known that ALOHA-based algorithms lack a very important feature: 

stability. A network built on ALOHA possibly reaches a state where the retransmis- 

sion activity drops the useful throughput to zero. In order to circumvent such instable 

behaviour, a method for controlling the retransmission activity seems to be reason- 

able. A suitable idea for slotted ALOHA is to adjust the retransmission probability 

according to the number of conflicting stations. 

The collision resolution algorithm proposed in this paper is based on this idea. It 

falls in the category of hybrid algorithms. The resolution of an initial collision of 

n stations is performed in two phases: 

(1) Estimation. First, an adaptive estimation strategy is employed in order to 

determine an estimated number of colliders n’, which is close to n almost surely. 

(2) Collision resolution. If n is estimated, the ordinary slotted ALOHA algorithm 

with retransmission probability p= l/n’ is used to resolve the collision. 

We shall investigate the (average) CRI-length L, of this collision resolution algo- 

rithm. The CRI-length (collision resolution interaal) equals the number of slots neces- 

sary for resolving an initial collision of n transmitters. Note that new packets, i.e., 

those generated during a resolution process, are assumed to get delayed until its 

completion. In this case, the CRI-length is not influenced by the underlying packet- 

generating process. It permits a model-independent estimation of the performance of 

a CRA. We should mention that this parameter is well known from the throughput 

analysis of tree algorithms; see [6] for a survey. The analysis of the CRI-length of the 

ordinary slotted ALOHA algorithm, which provides some necessary results for this 

paper, is contained in 181. 

The paper is organized as follows: The introduction in Section 1 is followed by 

a detailed description of our controlled ALOHA collision resolution algorithm and 

a discussion of our final results in Section 2. Sections 3 and 4 are devoted to some 

preliminaries and methodological notes, especially concerning the Mellin-transform 

techniques. The analysis of the estimation algorithm is contained in Section 5, and the 

treatment of the resolution algorithm may be found in Section 6. Several technical 

lemmas are given in Section 7, and some conclusions contained in Section 8 complete 

the paper. 

2. The controlled ALOHA algorithm and final results 

Our hybrid controlled ALOHA collision resolution algorithm uses an estimation 

algorithm already introduced in [S] for determining the multiplicity of the initial 
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collision n. It may be viewed as a slight modification of the binary exponential backoff 

policy suggested by Metcalfe and Boggs for the Ethernet; see [7] for a survey. It works 

as follows: Starting from an idle channel, each station may send a newly generated 

packet immediately in the next slot, with a fixed initial (re)transmission probability. At 

the end of each subsequent collision slot, the retransmission probability is de- 

cremented by multiplying it with a fixed backqfi until the first noncollision slot occurs. 

To be more specific, any transmitter involved in the initial collision performs the 

following steps in order to execute the (distributed) algorithm: 

k:=Q; 

repeat 

k:=k+ 1; 

Transmit with probability Ck 

until “no collision” 

Note that the (truly distributed!) algorithm performs a repeated test of the hypo- 

thesis n>uk since the expected number of active transmitters in the kth iteration is 

namk, and any collision supports the hypothesis. That is, the algorithm supplies 

a power of a fixed backoff 1 <a < cc, which is close to n with high probability, i.e., 

almost surely. 

Transmission attempts for new packets, i.e., packets generated during the estima- 

tion and resolution of a (previous) initial collision, are considered to get delayed until 

the whole process is complete. In fact, they probably will cause the next initial 

collision. Due to this assumption, all stations performing the estimation algorithm 

coincide in obtaining the same retransmission probability p = cKk for the subsequent 

slotted ALOHA algorithm, where c is an arbitrary positive constant and Ck is the 

inverse of the estimation of n supplied by the estimation algorithm. This adjusted 

probability is used for the retransmission of the packet in each subsequent slot until 

a successful transmission occurs. 

The following theorems state our final results. The first one deals with the estima- 

tion algorithm only. It turns out that the expected number of iterations of the repeat- 

loop E,, which equals the number of slots wasted for the estimation of n, is O(log n). 

Theorem 2.1 (Estimation algorithm). The auerage number ofslots E, which are wasted 

for the estimation of the multiplicity of an initial collision of n stations by our estimation 

algorithm with backoff a > 1, is given by 

E J”*(o) - log, n + 
A (log, 4 

” loga log a 
log, n + O(l), 

where 
2kzi 

n(U)= 1 ~~*(Xk)cPzkKi” with Xk=log, 
kf0 

A*(s)= s a, (1 +x)e-” n (1-e-““‘(1 +xaj))xs-’ dx. 
0 j>l 
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On the other hand, the expected number L, of slots occupied for the subsequent 

ALOHA resolution is shown to be O(n log n). Thus, the overhead resulting from the 

estimation algorithm is negligible; the asymptotic order of the CRI-length IV, of the 

whole controlled ALOHA algorithm is O(nlogn), too. 

Theorem 2.2 (Controlled ALOHA). The average CRI-length W, for the resolution of 

an initial collision of n stations by our controlled ALOHA algorithm with backofla > 1 

and initial transmission probability c a, 0 <c < 1, is given by 

w =$*(O)+a$*(- 1) nlog 
n a 

n+ yYo(log,n)+a~-_(log,n) nlog 
a 

n 
C c 

l (O*(O)+ +- 
cloga 

ao*(-l)+(y-1)(11/*(0)+alCI*(-l)))n 

+a!KI((log,n)))n+O(n”) 

with y denoting Euler’s constant, E>O arbitrary, and the abbreviations 

2krci 
YJu)= C $*(t+Xk)e-2k”‘” with Xk=p 

k+O loga’ 

G*(s)= J 2 eexia n (1 -ePxa’(l +xaj))xs-ldx, 
0 j>O 

a,(u)= c w*(t+Xk)e-2k”i”, 

k+O 

J 

x 
w*(s)= e -X’ah(cx/a) n (1 -e-““‘(1 +xaj))x”-‘dx, 

0 j30 

This result, whose type is well known from the analysis of various computer science 

problems (tree-based data structures, for example), requires additional remarks. 

(1) The CRI-length of any of the various “tree” algorithms is shown to be O(n) (see 
[6] for details), which establishes the worse performance of ALOHA-type algorithms 

once more: Our result shows that, despite the improvement w.r.t. the ordinary slotted 

ALOHA algorithm, our controlled algorithm is unstable, too. 

(2) The restriction c< 1 is necessary for keeping the whole formula valid. The 

minimal asymptotic CRI-length is obtained by the choice c= 1, but the precision of 

the expansion is reduced to 

w =li/*(0)+ati*(-l)nlog 
n a 

n+YO(log,n)+ay-l(log,n)nlog 
(I 

n+O(n) 

C C 
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in this case. For c> 1, one obtains exponentially increasing W, as n-co; we shall not 

treat this case in detail. 

These results are a consequence of operating the ALOHA resolution process at 

a limit. A little increase of the parameter c causes the whole system coming into 

a region of exponential behaviour, hence we may conclude, that the system is very 

sensitive to statistical fluctuations of the estimation process, too. Details about the 

behaviour may be found by the analysis of higher moments of the CRI-length. 

(3) The functions A(U), Y,(U), and Q,(u) are periodic, with period 1, mean 0 and 

small absolute values. 

(4) The function h(x) is related to an exponential integral by Ei(x) = y + log x + h(x); 

see equation (2) and [l] for additional informations. 

(5) The order of the function represented by the infinite product in the expressions 

of ICI*(s) and w*(s) is 

n (1 -e-xaJ(l +~a’))= 
i 

0(x”) for all d30, as x+0, 

j>O O(l)> as x-+00. 

(6) Discarding the low-valued functions Y,(log, n) and Q,(log, n) in the expression 

for L,, we obtain L,- - Cl II log n + CZn. Computing this constant using the double- 

precision integration routine DOlAMF from the Fortran NAG library on a CDC 

CYBER 860 computer yields the tables 1 and 2, which agree well with the results of 

a computer simulation, too. 

Table 1 
Constant C, 

c 

a 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 

3 1.35 1.42 1.50 1.59 1.68 1.80 1.92 2.07 2.25 2.45 

2 0.91 0.96 1.02 1.08 1.14 1.22 1.31 1.41 1.52 1.66 

1.5 0.65 0.68 0.72 0.76 0.81 0.87 0.93 1.00 1.08 1.18 

1.1 0.35 0.37 0.39 0.41 0.44 0.46 0.50 0.54 0.58 0.63 

1.01 0.20 0.21 0.22 0.23 0.25 0.26 0.28 0.30 0.33 0.36 

Table 2 

Constant C, 

a 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 

3 ~ 1.62 1.54 1.48 1.42 1.38 1.33 1.30 1.27 1.24 
2 ~ 1.86 1.74 1.65 1.57 1.50 1.45 1.40 1.35 1.31 
1.5 ~ 2.24 2.05 1.91 1.79 1.69 1.61 1.54 1.47 1.41 
1.1 - 4.16 3.54 3.09 2.78 2.49 2.27 2.08 1.93 1.80 
1.01 ~ 15.3 11.2 8.6 6.8 5.6 4.7 4.0 3.3 2.9 
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3. Preliminaries and methodological notes 

Since we are interested in the number of slots required for the resolution of an initial 

collision with multiplicity n, which is the sum of the contributions from the estimation 

algorithm and the ALOHA algorithm, we use further conditioning to obtain 

W, = E [CRI-length 1 n] 

= E[E [k + CRI-length ALOHA / estimation with k iterations, n] 1 n] 

= Eliterations of estimation 1 n] + E[E[CRI-length ALOHA 1 estimation 

with k iterations, n] 1 n] 

=E,+L,. 

The conditional probability pn,k, that the estimation algorithm terminates after the 

kth iteration (if at all it reached it) is the probability of having one or zero active 

transmitters in the kth step, which yields 

~~.~=(l -a-k)nP’namk+(l -umk)n. 

Thus, the probability q,,k of reaching at least the iteration k is 

(1-p,.1)(1-_p,.2)‘.‘(1-Pn,k~1) for k>12 
4n.k = 

i 1 for k= 1. 

Obviously, the unconditional probability of termination after iteration k is computed 

by qn.kPn,k =qn.k-qn.k+ 1, and the expected number of iterations of the estimation 

algorithm is 

En= 1 k&,kP~,k= 
k>l 

,;, 4n.k 

Denoting by L,, ,, the expected CRI-length of the ordinary slotted ALOHA algorithm 

with retransmission probability p, we obtain for the expected number of slots used for 

the ALOHA resolution process 

kal 

,F, qn.ktl -~-k)“Ln,..~k 
, 

This becomes clear by mentioning the fact that termination after the kth iteration 

implies a retransmission probability p = ca Pk, by convention. Section 5 deals with the 

computation of En, whereas Section 6 contains the derivation of L,. Both problems 

are solved with a similar approach introduced in [S], based on replacing qn.k+l by 

a function d(nuPk) defined by 

4(x)= n (1 -e-““‘(1 +.~a’)). 
j>O 

This follows from using the exponential approximation (1 -p)” zzemnp for large n and 

small p in the expressions of q,,k and &,k, respectively. The eXtenSiOn to an infinite 

product is only for simplification and has little influence, since the supplementary 

factors are very close to 1. 
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Rewriting our expressions, we obtain the so-called harmonic sums, e.g., sums 

looking like h(n) = Ck ukf(nbk), which are treatable by Mellin-transform techniques for 

obtaining asymptotic expansions. This integral transformation allows a “separation” 

of a harmonic sum and yields its asymptotic expansion by means of singularity 

analysis of the transform; see Section 4 for a summary. 

The remaining problem is the estimation of the error terms resulting from the 

various replacement operations. These computations are tedious but straightforward, 

and are given here for the sake of completeness. 

This is the right place for collecting the results from the analysis of the ordinary 

slotted ALOHA algorithm; see [S] for details. The expected CRI-length of the slotted 

ALOHA algorithm with arbitrary retransmission probability p has the asymptotic 

expression: 

where H, denotes the harmonic numbers and 

e(x) and 1 dB(x)b2. 

Moreover, for all values of p, we have the exact value 

L,,,=l+ i 
1 

j=2 PJ(l -P)j-’ ’ 

(2) 

(3) 

Equation (1) is the result of the application of simple asymptotic methods to 

a suitable sum involving binomial coefficients, which is related to (3). On the other 

hand, (2) is a consequence of the application of a generating-function method based on 

contour integration; the interested reader is referred to [S]. 

4. Mellin-transform techniques 

This section contains a summary of theorems concerning the Mellin integral 

transformation, which is some kind of Laplace transformtion; see [2] for a very 

complete theory. Furthermore, it is a powerful tool in the asymptotic analysis, and 

applicable to a wide variety of problems. 

We restrict ourselves to a short summary of theorems (without any proof), and refer 

to [3] for application-oriented details. 
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Definition 4.1 (Mellin Transform). The Mellin transform of a continuous, real-valued 

function f(x) is the complex-valued function 

,f*(s)=.k[f(x); s] = 
s 

O~,j-(x)xS-l dx, 

if the integral is absolutely convergent in the region a < ‘S(s) < b. This region is called 

the fundamental strip off*(s). 

Theorem 4.2 (Existence and analyticity). If there are two complex numbers a, b, with 

%(-a) <‘37(-b) and the property 

i 

0(x’) for x+0, 

f(X)= 0(x’) ,for x-+cz, 

e.g., when the order off(x) near zero is larger than its order near injnity, then the 

transform f*(s) exists in the fundamental strip ( -a, -b), and is analytic within the 
whole region. 

Lemma 4.3 (Transform). Zf the transform f*(s) of the function f(x) exists in the 

fundamental strip (a, b), we obtuin, ,for a real c>O, 

A?[f(cx);s] =c-“f *(s) within the fundamental strip (a, b). 

Theorem 4.4 (Asymptotic expansion). Given f*(s) in the fundamental strip (a, b), 
satisfying certain smallness conditions towards ice for b < S(s) < M (to the right of the 

fundamental strip), a pole of the transform 

f *(s+ (s_2;;n+l 
.for b<%(b,)<M and s-+bk 

translates into a term of the asymptotic expansion for x-a3 by 

5 -4, 
n=O n! 

(-logx)“x-bk for x-+c~). 

Moreover, the complete expansion off(x) yields 

f(x)=x term resulting from b,+O(x-“) for x+co. 
k 

We should mention that the requested smallness conditions are proved to be 

satisfied within the fundamental strip for each transform. The last theorem is a conse- 

quence of the classical inversion theorem 

f(x)=& sI:‘:/ *(s)x-“ds, 
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where c lies in the fundamental strip off*(s). The idea behind Theorem 4.4 is to extend 

the contour by a large rectangular one in the right halfplane, and to take the residues 

of the newly enclosed singularities into account. The smallness conditions ensure 

vanishing contributions resulting from the horizontal segments when expanding the 

contour to f ice. 

5 Estimation algorithm 

With the definitions and principles defined in Section 3, we investigate the expected 

number of iterations of the estimation algorithm E, by treating the harmonic sum 

en= c ~(na’-k) 
k>l 

instead, and estimating the error term afterwards. Using Lemma 4.3, the Mellin 

transform of e, yields 

e*(S)= 1 a 
k>l 

Ck - ““#tys) _ ;y(; 

Due to the easily established order of the function 

6(x)= 
i 

O(xd) for all d30, as x-+0 

O(1) as x+co, 

Theorem 4.2 yields the fundamental strip (-co, 0). To find the major term of the 

asymptotic expansion, we need a meromorphic continuation of $*(s) to the right of 

the fundamental strip. Since we are interested in terms of order larger than O(l), we 

have to take into account singularities of the function with s(s)=0 only. The 

continuation is easily provided by introducing the function. 

%(x)=~(ux)-+(x)=(1 +x)e-” n (1 -e-““‘(1 +xaj)), 
j2 1 

which is of order 

A(x) = 
i 

Wd) for all db0, as x+0 

O(xed) for all d30, as x-+cO. 

Thus, i*(s) has the fundamental strip (-co, + co), e.g., the transform is an entire 

function. Applying Lemma 4.3 to the definition of i(x), we obtain 

/2*(S)=a-“$*(s)-C$*(s), 

which yields the Laurent expansion 

2kxi 
with xk=- 

logu’ 
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The singularities are poles of first order, resulting from zeros of the denominator. 

Computing the residues is straightforward and, hence, suppressed. We finally obtain 

1 +. 

Because of the smallness of i*(s) and the discreteness of the poles resulting from the 

denominator, there are no problems in establishing the smallness conditions necessary 

for Theorem 4.4. 

The main term comes from the double pole, which contributes a term of order log n 

to the expansion; the remainder is O(l), e.g., 

en=C- ‘*(Xk)lognn-““-i*(0)log n+A(logan)log n+ql) 

k log2a 
-- 

loga u loga a ’ 

with the abbreviation 

/1(u)= 1 A*(&)e-2k”i”. 
k#O 

The last problem is the estimation of the error term resulting from investigating e, 

instead of E,. Using the bounds concerning &,k and +(na’ -k) from Lemmas 7.1 and 

7.2 in the Appendix, we obtain for 1: =rlog, nj 

En-en= c (qn,k-ddna’-k)) 

k21 

which finally proves Theorem 2.1. 

6. Resolution algorithm 

This section deals with an asymptotic expansion of the expected number L, of slots 

necessary for resolving an initial collision of multiplicity n. From Section 3, we have 

the expression 

L,=n c q,,k~-k(l-a-k)“-lL,_~,,,~k+ 
k21 

,;, qn,k(l -a-k)“Ln,ca-k. 

/ 

This quantity depends on the parameter c, and easy considerations show that the 

restriction cd 1 is necessary for obtaining a nonexponential behaviour of L,. Using 

the asymptotic expansion of L,,, for large p from (1) yields 

G n,c,,-k=(l -&yL.,,,_._$ 1-u-k ( 1 n-1 
l- 
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for small values of k. Because 

1 -amk 

l-ca-k 

we obtain exponentially increasing contributions to the sum for L,. Thus, we have to 

restrict the choices of the free parameter c to the range cd 1. 

Replacing L,_ l,p by L,,, according to (3), we obtain 

L,=n 2 qn,ka-k(l-a-k)n-lLn,ok+ 
kB1 

kT, %,k(l -a-k)“Ln,ca-k 

-= ( 

1-a-k n-1 4 k n. 
k>l 1 -camk > 

=(n- 1) 1 qn,ka-k(l -a-k)n-lLn,Camk 
kB1 

+ c qn,k(l-a-k)n-lL,,,,~*+O(logn) 

k21 
(5) 

with O(log n) coming from the result CkB 1 qn,k = O(logn) in Section 5. Similar to the 

previous derivations, we replace q,,k with ~(PIu’~“) and, by using the exponential 

approximation and the expansion of L,, p for small p from (l), G,, c, (1 - L with 

(6) 

and consider the resulting expression 1, instead. The error term is computed later, 

a significant contribution results (in the case c = 1) from discarding the remainder of 

L,,Ca-k only. We obtain 

1,=(n- l)(H,- l)cP’ao(n)-(n- l)H,a,(n)+(n- l)c-‘bO(n) 

+(H,-l)c-‘a_l(n)-H,aO(n)+c-‘b_l(n), 

with the abbreviations 

a,(n)= C ~(na’-k)e-“U-ka-‘k, 
k&l 

b,(n)= C ~(na’-k)e-““-kh(nca-k)a-‘k. 
kB1 

Both sums are harmonic; hence, the Mellin-transform techniques are applicable for 

obtaining asymptotic expansions. We start with rewriting 

a,(n)= 1 $(nal-k)a-‘k with $(x)=4(x)e-“‘“. 
kll 

Due to the easily established bounds 

‘(x)= 

for all d>O, as x+0, 

for all d30, as x-co, 
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and by Theorem 4.2 the transform I/Y*(S) is an entire function. We obtain 

a:(S)=(/*(S) C u(k-l)s-t“=u-t & 
kB1 

= _a-‘ti*(t+ilk) 1 2krri 

log a S-_(t+Xk) 

+0(l) with Xk=- 
loga’ 

We suppress the derivation of the Laurent expansion around the simple-pole singular- 

ities s = t + Xk, which is straightforward. Applying Theorem 4.4 yields, for an arbitrary 

but fixed M, 

4(n) =c ‘-‘$*@+Xk) n-(t+xk,+O(n-~) 

k log a 

0$*(t) _‘+ a-’ 
=logan - Y’,(log,n)n-‘+O(n-“), 

log a 

with the abbreviation 

y,(u)= 1 $*(t+Xk)e-2kK’“. 
kd0 

The same procedure is used for treating the harmonic sum for b,(n), e.g., 

b,(n) = 2 o(nu’ -k)a-tk with O(X)= @(x)edXiah(xc/a). 
kZ1 

Using (2), we obtain the bounds 

Wd) for all d>O, as x+0, 

o(x) = 0(x-‘) for c=l, as x-+co, 

O(xmd) for all d>O and ccl, as x+03. 

Thus, the transform $*(s) is analytic for cd 1 within the plane to the left of 93(s)= 1, 

and even entire for c < 1. In addition to the remarks at the beginning of the chapter we 

should note the case c> 1, which is not treatable by this technique, because the 

fundamental strip of the transform becomes empty. Similar to the previous deriv- 

ations, we obtain 

bf(s)=o*(s) 2 &l)S-fk=,-t ,~~$ 
k>l 

am’w*(t+xk) 2kxi 
=- 

log a 
s_(tl+Xk)+O(l) with xk=- 

loga’ 
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Applying Theorem 4.4 yields for a fixed E > 0 

h(n)=~ u-‘w*(t+~k)n-(t+x~)+O(n”-l) 
k log a 

a-%0*(t) _ a-’ 

= loga 
Iz ‘+p 

log a 
Q,(log,n)n-‘+O(n”-‘) 

with the abbreviation 

n,(u) = c w*(t + Xk)e-2k”i”, 
kf0 

The order of the remainder is determined by the restriction for analyticity of the 

transform o*(s) in the case c= 1. If c< 1, we obtain a remainder O(neM) for an 

arbitrary but fixed M. 

Substituting our results in the expression for I, and discarding the terms of smaller 

order yields 

l  =nw-l) 
n logaw*(O)+4*(-1))+ n~(P,(log,n)+oY-1(log.n)) 

+- clongn (w*(o)+uo*(- 1))+& (Qo(loga 4 + aQ - 1 (log, 4) + Wf) 

=i*(o)+a$*w~nlog n+~o(log,n)+~~-l(log,n)nlog n 
a u 

C c 

+ & (w*(o)+ ao*(-l)+(r-l)($*(o)+a$*(-l)))n 

+- l (~o(log,n)+~~-l(log,n)+(l!-l)(Yo(log,n) 
cloga 

where we used the well-known expansion H, =log n + y + 0(1/n) with y denoting 

Euler’s constant. 

Finally, we estimate the errors resulting from the replacement operations. We shall 

show, by some tedious computations, that L,- I, = O(d), with a fixed E>O, thus 

covered by the remainder already established (if c < 1). If c = 1, we find an O(n), error 

term mainly by neglecting the O(enP) term in the expansion of L,,,. 

For the sake of simplification, we use the abbreviations q, 4, G, g, and e for qn,k, 

4b’ -k), G,,,,. -k, g,,_-k, and (n- l)uPk+ 1, respectively. Recalling (5), we obtain 

IL-LI< c IeqG-e4gl+O(logn). 
k&l 
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With u=rlog,nl, we find 

k& led-w@ = c eld-W+W-$gI 
kB1 

d C elq-#lG+ c 4G+ 2 4s 
k>l kiril.9 kcvj1.9 

+ 1 4lG-gl 
k>u/1.9 

=F,+F,+F,+F,. 

Splitting the range of summation at k = u/1.9 is justified later in this section; note that 

1.9 is arbitrarily chosen; any number ~2 would do it as well. We start with using (1) 

for large p to establish the bound 

G .,,,O-k=(l -a-k)“-rL,,,,+=O (““(GY-‘)=O (C) (7) 

for c < 1. Thus, it suffices to estimate 

‘%@)= c (%k+l-~(na-k)bfk, 

k30 

because the desired quantity F, is computed to be 

F,=O(Sl(n))+O 

Splitting the range of summation into two parts and using the bounds from Section 7, 

we obtain 

= O(n’- 1 +&) with 6 >O. 

The last step is established by noting that 

a’,/iGA - _ (a’ log. n)l/&z = n’/v’LG= o@e). 

The second part yields 

,>z _ (%,k+ 1 -4tna 
/ v’l; 

-k”u’k=k,;v,; o (uck-uj;-o+lJ) atk 
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Hence, we find S,(n) = 0 (n r-l+E) and, therefore, Fr = O(n’). In order to compute FZ, 
we recall (4) and use the exponential approximation to estimate (7) by 

Thus, it suffices to consider 

T,(n) = c C$(na’ -k)CP 
k<u/1.9 

because 

But, treating 7’,(n) is simple by noting that 4(na’ -k)= O(l), which follows from 

q,,k < 1 and Lemma 7.1. Therefore, we may estimate the sum by the finite geometric 

series 

T,(n)=0 ( ,<Sl,, u’*)=OW9). 

which finally yields 

F = 
2 

i 

OW for c< 1, 

0(n0.51 ) for c=l. 

F3 is treated in a similar manner, and we obtain 

by a crude estimation of (6) using (2). Therefore, we have 

The last problem in this section is the estimation of F4, resulting from the neglection 

of the remainder of L,,,. Let 

H,-1 H +MP) 
ln,p=--- ~ 

P nP 

denote the substitution for L,,,; see (6). Recalling (1) and using a more precise form of 

the exponential approximation, we obtain for k > u/1.9 

G n,c,a- ~-gn,c,a~k=(1-a-k)“-1(ln,ca~k+O(enca~k))-e-fla-kln,ca~~ 

=e-“‘-*(l +O(na-2k))(l,,o-r+O(e”c~~k))-e-“”-k1,,,,~k 

=O(~~-2ke-““-k~n,Ca~~)+O(c(C--l)na~”) 

=F4,1 +f’4,2. 
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The first term is evaluated with different approaches for c < 1 and c = 1, respectively. 

For c < 1, we make use of the computations at the beginning of the section to obtain 

an asymptotic expression for 

F 4,1 =O(n(n- l)(H,- l)cC’a,(n)-n(n- l)H,a3(n)+n(n- l)cC’b,(n) 

+n(H,-l)c_‘a,(n)-nH,a,(n)+c_‘nb,(n)), 

which is similar to the expression for 1,. The restriction c< 1 ensures that the 

transform b*(s) is an entire function and implies that b,(n) has the same remainder as 

a,(n). We obtain F4, 1 = O(n&) in this case. The choice c= 1 is handled by using 

na-2k=O(n-E) for k>v/1.9, which yields F4,1 =O(n-‘l,,)=O(n). Estimation of the 

second term requires the use of the Mellin transform once more. Denoting c,(n) by 

c,(n)= 2 ~(nal-k)e’c-‘)““-ka~‘k, 
k31 

we obtain 

F 4,2=0(nc,(n))+O(c,(n)). 

Rewriting the harmonic sum yields 

c,(n)= 1 a(nu’-k)um’k with ~(x)=~(x)e(c-“x’“. 
k21 

The following bounds are straightforward: 

1 

O(xd) for all d30, as x+0, 

g(x)= O(1) for c=l, as x-+co, 

O(xmd) for all d30 and ct-1, as x+co. 

Thus, the transform cr* (s) is entire for c < 1 only. In the case c = 1, we have a(x) = 4(x), 

and the results from Section 5 are valid. However, we obtain 

($(s)=(J.*(s) 1 .-k=,,~. 
k&l 

Applying Theorem 4.4 yields 

1 
O(n-‘) for c<l, or c=l and t<O, 

c,(n)= O(logn) for c=l and t=O, 

O(1) for c=l and t>O 

and, therefore, F4, 2 = O(l), and F4, 2 = O(n) for c < 1 and c = 1, respectively. We finally 

obtain 

F = O(d) for ccl, 
4 

O(n) for c=l. 
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This completes our investigations of the quantity L,; Theorem 2.2 

consequence. 
is a simple 

7. Technical lemmas 

This section contains technical lemmas concerning the probabilities ‘&,k and the 
function $(na’ -k). The function provides a very good approximation for q,,k: the 
second lemma establishes a uniform bound qn,k+ 1 - $(namk) = O(log n/n). 

Inaddition,fork>uwithv=rlog,n~,bothq,,, and 4(na-“) decrease very fast with 

increasing k, as shown by Lemma 7.1. 

Lemma 7.1 (Smallness). For n32 and O=riOg,nl, both q,,k+l and cj(mCk) are less 
t/ian a-Wt.)(k-u+l) 

Proof. Recalling the definition of q,,k from Section 3, we estimate the jth term 1 -Pn,j 

of the product by 

1 _Pn,j= 1 _(I _a-j)“-ina-j_(l _a-j) 

< 1 -(l -a_‘)“(1 +na-j) 

<l-(l-na-‘)(l+na-j) 

=n2a-2j<a-2(j-u) \ 

In order to establish this bound for 4(naek), we use 

4(nCk)= n (l-e-““‘~k(l +nCk)) 
j30 

= fi (1 -e-“a-‘(l +na-j)) n (1 -e-“ai(l +naj)). 
j=l jB0 

(8) 

Obviously, the second product is less than 1, and the jth term in the first product is 

bounded by 

1 -e-na-j(l + na-j)G 1 -(l -a-j)“(l +na-j)<a-2(j-v), 

where we used the well-known relation e- X > (1 -x/n)” and the previous observations, 
too. Hence, we obtain 

qn,k+l = fi (1 --p,,j)< fi (1 -Pn,j)< fi .-2(j-u)=.-(k-u)(k-“+l), 
j=l j=v j=v 

and, with the same approach, ~(na-k)<u-(k-“)(k-“‘l). 0 
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Lemma 7.2 (Uniform bound). For n 3 2, the difSerence qn,k+ 1 - qb(nKk) is uniformly 

bounded by O(log n/n). 

Proof. For k 3 214 this is a trivial corollary of Lemma 7.1. Considering the other case, 

we introduce the abbreviation 

t n,kfl = fi (1 -e-““-J(l +nu-j)), 
j=l 

which corresponds to q,,k+ 1. Because of 

log n (1 -e-““‘(1 +naj))= 1 O(e-“‘(1 +I&)) 
ja0 j>O 

~0 ( e-“(n+l) C 1+ (1 -aJ)n 

ja() n+l > 

=O((n+ l)e-“)=O(e-““), 

we obtain the estimation 1 +O(e-“” ) for the second product in expression (8). 
Therefore, it suffices to establish the bound 

t n.k+l 

by providing both an upper and a lower bound for tn,k + I in terms of qn, k + l. Using the 

relation Ode-“-(1 -x/n)“<nn1x2e-” from [9, p. 2421, we obtain 

e 

by noting that emx < l/x2 for x > 0. Now we are ready for treating the upper bound 

t n,k+l d fi (1 -(I -a-j)“(l +na-j)) 
j=l 

=jQ (1 -(l-a-+(1 --a-j)“-‘na -j+(l _-a-j)n-lna-2j) 

=&,k+l fi 

( 

I+ 

(1 _a-j)“plna-2j 

j=l 
1 _(I -a-jy-(l -a-jylna-j 

1 

k 

n( 

ep(n-l)a-Jna-2j 

dh,k+l 1+ 
j= 1 

1 _(I -a-jy-(l --a-j)“-llza-j 
> 

~b,k+l 1+ 
C 

n(l _(I -a-j)n-(l _-a-j)n-lna-j) 

C > 
k 

n(l _(I -a-j)n_(l -a-jy-lna-j) ’ 
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where we used the previous estimates, too. C denotes a sufficiently large constant. 

Similarly, the lower bound yields 

n k+l 3 fi (1 -(l-a-j)“(l +na-j)-e-““~‘na~2j(l +nKj)) t. 
j=l 

C 

> 

k 

n(l _-(I -yjy-(l _a-j)nml,a-j) ’ 

by using the easily established result e -“<C/x3 for a sufficiently large C and 

substituting x= na-j. Remembering the restriction k<2u and using the exponential 

approximation yields 

( C 
1+ -n(l _(l _a-j)“_(l -a-j)“-1 na_j))*=l+o (y). 

which finally establishes the result. 0 

8. Conclusions 

We derived an asymptotic expression for the average length of a collision resolution 

interval when resolving a collision of multiplicity n for a hybrid collision resolution 

algorithm similar to the exponential backoff policy used for the well-known Ethernet. 

It consists of an estimation phase for determining the multiplicity of the initial 

collision, and the ordinary slotted ALOHA with adjusted retransmission probability 

for actual collision resolution. Unlike the usual analysis of ALOHA-type algorithms, 

which relies on queuing theory, we used certain asymptotic methods based on Mellin 

transforms to obtain our result. 

Our investigations allow an estimation of the performance of our hybrid algorithm 

w.r.t. the well-known tree algorithms: Since the latter provide a CRI-length of order 

O(n) as n+ co, they are superior to our algorithm, which yields an O(n log n) result. In 

addition, this fact gives some insight into the (already known) instability of such 

controlled ALOHA algorithms: In [6] it was shown that stability would require 

a CRI-length of order O(n) as n-+ca. Thus, even controlling the retransmission 

probability is not sufficient to guarantee stability. 
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