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SUMMARY

Circadian rhythms govern a large array of metabolic
and physiological functions. The central clock
protein CLOCK has HAT properties. It directs acety-
lation of histone H3 and of its dimerization partner
BMAL1 at Lys537, an event essential for circadian
function. We show that the HDAC activity of the
NAD+-dependent SIRT1 enzyme is regulated in a cir-
cadian manner, correlating with rhythmic acetylation
of BMAL1 and H3 Lys9/Lys14 at circadian pro-
moters. SIRT1 associates with CLOCK and is
recruited to the CLOCK:BMAL1 chromatin complex
at circadian promoters. Genetic ablation of the Sirt1
gene or pharmacological inhibition of SIRT1 activity
lead to disturbances in the circadian cycle and in
the acetylation of H3 and BMAL1. Finally, using
liver-specific SIRT1 mutant mice we show that
SIRT1 contributes to circadian control in vivo. We
propose that SIRT1 functions as an enzymatic rheo-
stat of circadian function, transducing signals origi-
nated by cellular metabolites to the circadian clock.

INTRODUCTION

The epigenetic basis of many developmental, physiological,

and metabolic processes is manifest. Epigenetic mechanisms

control gene expression by potentially reversible changes in

DNA methylation and chromatin structure. The remodeling of

chromatin is largely elicited by enzyme-catalyzed posttransla-

tional modifications of the core histone N-terminal tails (Kouzar-

ides, 2007; Li et al., 2007a; Peterson and Laniel, 2004; Strahl

and Allis, 2000). These include acetylation, poly(ADP-ribosyla-

tion), ubiquitination, methylation, and phosphorylation and rep-

resent critical regulatory events of a large array of nuclear re-

sponses. Unique combinations of these modifications, for

which the ‘‘histone code’’ hypothesis has been formulated

(Strahl and Allis, 2000), induce conformational changes of chro-

matin, rendering it permissive to transcription, silencing, DNA
replication, and repair (Cheung et al., 2000a; Kouzarides,

2007; Kurdistani and Grunstein, 2003; Li et al., 2007a; Strahl

and Allis, 2000).

Histone acetylation is recognized as one of the most promi-

nent epigenetic marks leading to activation of gene expression

(Strahl and Allis, 2000). Acetylation of the 3-amino groups of spe-

cific lysine residues in the N termini of core histones is generally

associated with transcription activity, as it is thought to induce

an open chromatin conformation that allows the transcription

machinery access to promoters (Cheung et al., 2000a; Li et al.,

2007a; Struhl, 1998). Indeed, acetylation of lysines in histones

neutralizes the positive electric charge between the negatively

charged DNA backbone and tips the balance toward relaxing

chromatin. Deacetylation, on the other hand, would shift the bal-

ance back to condensing chromatin and silencing gene expres-

sion. The enzymes that elicit these critical transitions are histone

acetyltransferases (HAT) and histone deacetylases (HDAC).

HDAC-mediated deacetylation of histones correlates with gene

silencing (Grunstein, 1997; Struhl, 1998; Wade and Wolffe, 1997;

Workman and Kingston, 1998). HDACs have also been impli-

cated in the reversible acetylation of nonhistone proteins, includ-

ing p53 (Luo et al., 2001; Vaziri et al., 2001), Hsp90 (Kovacs et al.,

2005), MyoD (Mal et al., 2001), and E2F1 (Martinez-Balbas et al.,

2000). Mammalian HDACs have been classified into four classes

based on their structure and regulation (Yang and Seto, 2008).

There are seven mammalian enzymes constituting class III; these

are homologs of yeast Sir2 (silencing information regulator) and

are known as SIRT1 to SIRT7. These proteins are structurally dis-

tinct from the other HDACs and have the property of dynamically

sensing cellular energy metabolism (Bordone and Guarente,

2005). Indeed, unlike other HDACs, SIRT proteins catalyze a

unique reaction that requires the coenzyme NAD+ (nicotinamide

adenine dinucleotide). In this reaction, nicotinamide (NAM) is liber-

ated from NAD+ and the acetyl group of the substrate is trans-

ferred to cleaved NAD+, generating the metabolite O-acetyl-ADP

ribose (Sauve et al., 2006). Due to the NAD+ dependency, SIRTs

are thought to constitute one of the functional links between

metabolic activity and genome stability and, finally, aging (Bishop

and Guarente, 2007).

In yeast, the Sir2 complex mediates transcriptional silencing at

telomeres and regulates the pace of aging (Chopra and Mishra,
Cell 134, 329–340, July 25, 2008 ª2008 Elsevier Inc. 329

https://core.ac.uk/display/82081865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:psc@uci.edu


2005; Oberdoerffer and Sinclair, 2007). Because of the NAD+ re-

quirement for Sir2 deacetylase activity, it is evident that silencing

is likely coupled to the metabolic cycle of cells. In C. elegans, one

of the Sir2 orthologs, Sir2.1, has been shown to prevent aging

(Tissenbaum and Guarente, 2001).

SIRT1, the mammalian ortholog of Sir2, is a nuclear protein

that occupies a privileged position in the cell and governs critical

metabolic and physiological processes. SIRT1 helps cells to be

more resistant to oxidative or radiation-induced stress (Brunet

et al., 2004; Luo et al., 2001), promotes mobilization of fat from

white adipose tissues, an event that contributes to extending

the life span (Picard et al., 2004), and mediates the metabolism

of energy sources in metabolically active tissues (Lagouge

et al., 2006; Rodgers et al., 2005). At the level of chromatin,

SIRT1 enzymatic activity preferentially targets histone H3 at

Lys9 and Lys14 and histone H4 at Lys16 (Imai et al., 2000). In ad-

dition, a number of nonhistone proteins, including p53 (Luo et al.,

2001; Vaziri et al., 2001), FOXO3 (Brunet et al., 2004; Motta et al.,

2004), PGC-1a (Nemoto et al., 2005; Rodgers et al., 2005), and

LXR (Li et al., 2007a), are regulated by SIRT1-mediated deacety-

lation, stressing the pivotal function that this regulator plays in

cellular control and responses.

A remarkable array of metabolic and physiological processes

display daily oscillations (Panda et al., 2002; Storch et al., 2002;

Ueda et al., 2002), and an intimate interplay exists between

circadian clocks and metabolic rhythms in all organisms (Wijnen

and Young, 2006). The discovery that a core element of the

circadian clock machinery, the protein CLOCK, is an enzyme

with HAT activity (Doi et al., 2006) revealed the crucial role that

chromatin remodeling plays in the circadian regulation of gene

expression (Hardin and Yu, 2006; Nakahata et al., 2007).

More recently, the finding that CLOCK specifically also acety-

lates nonhistone targets, such as its own partner BMAL1, sug-

gested that it may control a number of physiological cellular

functions (Hirayama et al., 2007). The intrinsic nature of SIRT1

as a NAD+-dependent HDAC prompted us to explore the possi-

bility that SIRT1 could participate in circadian control by regulat-

ing the HAT function of CLOCK. This would uncover a unique

example of control of gene expression by metabolites (Ladurner,

2006).

Here we report that the HDAC activity of SIRT1 is regulated in

a circadian manner in cultured cells and in the liver. SIRT1 phys-

ically associates with CLOCK and contributes to the acetylated

state of CLOCK targets, such as Lys9/Lys14 in the tail of histone

H3 and Lys537 in the BMAL1 protein. CLOCK, BMAL1, and

SIRT1 colocalize in a chromatin-associated regulatory complex

at promoters of clock-controlled genes. Pharmacological inhibi-

tion of SIRT1 activity by NAM and the drug splitomicin causes

a loss in stringency of circadian gene expression, an effect

equally observed in mouse embryo fibroblasts (MEFs) derived

from Sirt1 null mice. Importantly, this effect is paralleled by a sig-

nificant reduction in the oscillation of H3 and BMAL1 acetylation.

Finally, using tissue-specific mutant mice, in which the Sirt1 gene

is mutated uniquely in the liver, we demonstrate that SIRT1 con-

tributes to circadian regulation in vivo. We propose that SIRT1

functions as an enzymatic rheostat of CLOCK function, thereby

transducing signals originated by cellular metabolites to the

circadian machinery.
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RESULTS

SIRT1 Deacetylase Activity Is Circadian
The CLOCK protein is one of the few core circadian regulators

whose levels do not oscillate in most settings (Lee et al., 2001).

Thus, we predicted that its HAT activity would oscillate in a circa-

dian manner, thereby explaining the physiological remodeling of

chromatin (Doi et al., 2006). An alternative scenario implicates

a regulated HDAC, whose activity may function as rheostat of

the HAT’s function of CLOCK.

To assess whether SIRT1 may be regulated in a circadian man-

nerwe preparedRNA and proteinextracts from serum-stimulated

cultured MEFs and from mouse liver at various Zeitgeber times

(ZT). In both cases, the transcript and protein levels of SIRT1 re-

mained constant, as determined using two anti-SIRT1-specific

antibodies (Figure 1A; see also later, Figure 7B) and reverse tran-

scription (RT)-PCR (Figures 1B and 1C, where dbp is shown as

a control from the same RNA preparations). We have also deter-

mined the levels of SIRT1 in nuclear fractions prepared in various

manners. Again SIRT1 protein levels showed either modest or no

oscillation (Figure S1 available online). Thus, we turned to deter-

mining whether SIRT1 deacetylase activity may oscillate.

We found that the endogenous liver SIRT1 obtained by immu-

noprecipitation from entrained mice, although constant in levels,

displays circadian HDAC activity that peaks at ZT15 (Figure 1D),

a time that remarkably parallels the minimal transcriptional levels

of various clock-controlled genes in the liver (such as dbp,

Figure 1C).

To confirm that equal levels of SIRT1 could still generate circa-

dian HDAC function, we complemented cellular extracts with

equal amounts of recombinant SIRT1 protein and acetylated

p53 peptide as SIRT1 substrate (Luo et al., 2001; Vaziri et al.,

2001). This assay likely reflects the intracellular relative concen-

trations of NAD+ and NAM, or of yet undefined circadian metab-

olites, whose ratio determines SIRT1 activity (Imai et al., 2000;

Luo et al., 2001). Extracts from wild-type (WT) MEFs were pre-

pared every 6 hr post-serum shock (Figure 1E), and liver extracts

were prepared at four different ZT from entrained mice (Fig-

ure 1F). Also, under these conditions we found that SIRT1 deace-

tylase activity is rhythmic, peaking 24 hr post-serum shock in

MEFs (Figure 1E) and at ZT15 in the liver (Figure 1F). Importantly,

the peak of SIRT1 deacetylase activity is consistent with the cy-

clic acetylation of histone H3 at promoters of clock-controlled

genes; at 24 hr, this acetylation is at its lowest levels (see later,

Figure 4).

SIRT1 Contributes to the Stringency
of Circadian Gene Expression
The finding that SIRT1 activity is regulated in a circadian manner

prompted us to investigate its role in clock gene expression and

chromatin remodeling. MEFs generated from WT and Sirt1 null

mice were serum-shocked, RNA was prepared at various times,

and quantitative RNase protection assay was used to monitor

dbp circadian gene transcription (Figure 2A). The analysis

reveals that genetic ablation of SIRT1 causes changes in circa-

dian gene expression, including an overall increase in the tran-

scription levels and a broadening of the oscillation cycles, with

earlier onsets of increasing transcription and later decreases.



Figure 1. SIRT1 Deacetylase Activity Is Circadian in Serum-Shocked MEFs and in the Liver

(A) Endogenous SIRT1 and BMAL1 expression in MEFs after serum shock were determined by western blot.

(B and C) Sirt1 (B) and Dbp (C) genes expression in liver was analyzed by quantitative PCR. The highest expression time point was set to 1.

(D) Endogenous SIRT1 proteins from livers of entrained mice at indicated time points were immunoprecipitated and subjected to deacetylation assays. The value

at ZT15 was set to 1. Top panel shows the amount of immunoprecipitated SIRT1.

(E) Cell extracts prepared from serum-shocked MEFs at indicated time points were complemented with recombinant SIRT1 protein and acetylated p53 peptide

as substrate and subjected to deacetylation assay. Value at time 0 was set to 1.

(F) Liver extracts prepared from entrained mice were complemented with recombinant SIRT1 protein and acetylated p53 peptide as substrate and subjected

to deacetylation assay. Values at ZT15 were set to 1. All data presented are the means ± standard errors of the mean (SEM) of three independent samples.
Importantly, the expression of a nonoscillating gene (clock) is not

affected (Figure 2A). These observations are consistent with

SIRT1 having a role in controlling the stringency of circadian

gene expression and being involved in the oscillatory silencing

that periodically follows a transcriptional peak. These results

were confirmed by quantitative RT-PCR and reproduced also

on the Per2 gene (Figure 2B). Finally, a point-by-point circadian

analysis of the differential transcription of both dbp and per2 be-

tween WT and Sirt1�/� MEFs confirms that the lack of Sirt1 in-

duces a significantly higher transcriptional efficacy at specific

times that normally precede and follow each circadian expres-

sion peak (Figure 2C).

The effect of Sirt1 genetic ablation on circadian gene expres-

sion was confirmed with pharmacological treatments using

SIRT1 inhibitors (splitomicin and NAM) (Figure 3A), which had

no effect on the Sirt1�/� MEFs (not shown). Analysis of dbp ex-

pression levels in WT MEFs treated with either inhibitors re-

vealed a pattern highly similar to the one obtained with the

Sirt1 null cells, basically displaying a significantly broader

phase and higher amplitude in the oscillation (Figure 3A).
SIRT1 Controls Circadian Histone Acetylation
The finding that CLOCK is a HAT revealed that chromatin remod-

eling is intimately connected to circadian physiology (Doi et al.,

2006; Grimaldi et al., 2007). The remarkable effect of SIRT1

on clock gene expression (Figures 2 and 3) suggested that this

effect may be mediated by changes in histone acetylation at

specific sites. We analyzed the acetylation at Lys9 and Lys14

of histone H3 because we had previously found these to be

preferential sites of CLOCK’s HAT activity (Doi et al., 2006),

and also because SIRT1 deacetylase function was described

to be targeted to these lysines (Imai et al., 2000). We performed

chromatin immunoprecipitation (ChIP) assays using WT MEFs

stimulated by a serum shock. Acetylation of H3 at the Dbp

transcription start site (TSS) follows a circadian profile (Figure 3B

and Ripperger and Schibler, 2006), presumably due to the

concerted action of CLOCK and of an HDAC. Pharmacological

treatment with the SIRT1 inhibitors (splitomicin and NAM) in-

duced a loss in the circadian oscillation of acetylation, ge-

nerating a noncyclic, high level of Lys9/Lys14 acetylation

(Figures 3C and 3D).
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Figure 2. SIRT1 Regulates Circadian mRNA Expression of dbp and per2 Genes

(A) dbp and clock mRNA expression levels in wild-type (WT) and Sirt1 null (Sirt1�/�) MEFs after serum shock were examined by RNase protection assay.

Representative results are shown and experiments were done using four independent samples.

(B) dbp and per2 mRNA expression profiles in WT and Sirt1�/�MEFs after serum shock were analyzed by quantitative PCR. Time 0 value in WT MEF for each gene

was set to 1. All data presented are the means ± SEM of three independent samples.

(C) Relative increment/decrement of dbp and per2 gene expression. Plus values on vertical lines mean increment and minus values on vertical lines indicate

decrement.
Next, we extended this analysis to the MEFs from the Sirt1�/�

mice. Again, histone H3 displays a robust cyclic acetylation at the

Dbp promoter in WT MEFs, while genetic ablation of Sirt1 results

in a constitutive, high acetylation at Lys9/Lys14 (Figures 4A and

4B). Thus, SIRT1 plays a critical role in maintaining a controlled

rhythmicity in histone acetylation, thereby contributing to circa-

dian chromatin remodeling.

SIRT1 Is in a Chromatin Complex with CLOCK:BMAL1
on the Dbp Promoter
Based on the pattern of histone acetylation associated with cir-

cadian genes (Figures 3 and 4A), it is conceivable that CLOCK

and SIRT1 converge in a coordinate manner to the same regula-

tory regions. Thus, we decided to test whether SIRT1 is recruited

to E-box elements present in the regulatory region of CLOCK:

BMAL1-controlled genes. To do so, we performed a dual cross-

linking ChIP assay and analyzed two E-box elements within the

Dbp gene. As predicted (Ripperger and Schibler, 2006), CLOCK

and BMAL1 are recruited to E-box elements in the Dbp gene in

a time-dependent manner (Figure 4D). Importantly, we found

that SIRT1 is jointly recruited to the same E-box elements in

the Dbp gene. Furthermore, the presence of SIRT1 is temporally
332 Cell 134, 329–340, July 25, 2008 ª2008 Elsevier Inc.
regulated and parallels the recruitment of the CLOCK:BMAL1

dimer (Figures 4D and 4E). Since SIRT1 is not a DNA-binding

protein, we favor a scenario in which SIRT1 recruiting to a circa-

dian promoter is mediated by the CLOCK:BMAL1 dimer. These

results indicate that CLOCK:BMAL1 and SIRT1 coexist in a chro-

matin regulatory complex that operates on circadian promoters.

Direct Interaction of SIRT1 and CLOCK
The coordinated recruiting of the CLOCK:BMAL1 dimer

and SIRT1 to circadian gene promoters suggested that these

regulators may physically interact. To test this possibility we

coexpressed SIRT1 with CLOCK in cultured cells. In coimmuno-

precipitation experiments we reveal that SIRT1 interacts with

CLOCK but not with PER2 (Figure 5A). Next, we wished to estab-

lish whether native, endogenous cellular SIRT1 interacts with

CLOCK. Native SIRT1 can be coimmunoprecipitated with both

CLOCK and BMAL1 in liver extracts, indicating that it interacts

with the CLOCK:BMAL1 complex (Figure 5B). It is unclear why

BMAL1 in transfected cells does not seem to coimmunoprecipi-

tate with the SIRT1-CLOCK complex (Figure 5A), but the results

on native proteins (Figure 5B) suggest the requirement of some

specific physiological conditions.



Figure 3. Circadian Histone H3 (Lys9/Lys14) Acetylation at dbp TSS Is Dependent on SIRT1 Activity

(A) Dbp expression levels in MEFs either treated with SIRT1 inhibitors (10 mM NAM or 120 mM splitomicin) or not were analyzed by quantitative PCR. The value at

time 20 in MEFs without treatment was set to 1.

(B–D) Crosslinked cell extracts were isolated from MEF without treatment (B) or with SIRT1 inhibitors, 10 mM NAM (C), or 120 mM splitomicin (D) at indicated time

points after serum shock, subjected to ChIP assay, and analyzed by quantitative PCR with dbp TSS primers (See Figure 4C). Results of semiquantitative PCR are

also shown at the bottom of each experiment. The value at time 16 in MEFs without treatment was set to 1. All data presented are the means ± SEM of three

independent samples.
We also followed the SIRT1-CLOCK interaction during the

circadian cycle (Figure 5C). To do so, we coimmunoprecipitated

SIRT1 from MEFs by using anti-CLOCK-specific antibody at

various times after serum shock. While it would appear that the

association undergoes some mild variations, after quantification

of three different experiments we concluded that the SIRT1-

CLOCK interaction is mostly stable during the circadian cycle

(Figure 5C). We have also found that the CLOCK-SIRT1 interac-

tion is not significantly modulated by agents known or likely to

influence SIRT1 function, including NAD+, pyruvate, resveratrol,

splitomicin, desferroxamine, and glucose (Figure S2).

Finally, the CLOCK-SIRT1 interaction does not appear to require

the HDAC function. We used a SIRT1 mutant with a single amino

acid substitution that diminishes the deacetylase activity (SIRT1-

(H363Y); Vaziri et al., 2001). The mutated protein interacts with

CLOCKwithefficacyequivalent to thatofnormalSIRT1 (Figure5D).

To identify the protein regions involved in SIRT1-CLOCK asso-

ciation, we performed GST pulldown assays (Figures 5E and 5F).

We found that the central region of CLOCK (aa 450–570) is

necessary for interaction with SIRT1. Interestingly, this region

contains the serine/threonine-rich domain, which we predicted

to be involved in regulated protein interactions (Doi et al.,
2006), and exon 19, the domain originally found to be essential

for CLOCK function (Antoch et al., 1997). In SIRT1, the N-termi-

nal region (aa 1–231) is necessary and sufficient for eliciting

efficient interaction with CLOCK (Figure 5F). This information is

of interest because the same SIRT1 domain is involved in the

interaction with other regulatory proteins. Specifically, it has

been recently found to mediate the interaction with the histone

methyltransferase SUV39H1 (Vaquero et al., 2007), a regulatory

event that results in increased levels of the H3K9me3 modifica-

tion and thereby control of heterochromatin formation.

BMAL1 Acetylation at Lys537 Is Regulated by SIRT1
Recently we have reported that BMAL1 is rhythmically acety-

lated by CLOCK and that this event is essential for control of

circadian function (Hirayama et al., 2007). We have generated

an antibody that specifically recognizes acetylated BMAL1 at

Lys537 (Figure S3). Because of the interplay between CLOCK

and SIRT1, we suspected that the deacetylase that could regu-

late the dynamic levels of BMAL1 acetylation could be SIRT1.

To identify which class of HDAC is responsible for deacetylation

of BMAL1, we treated cultured cells expressing Myc-CLOCK

and Flag-Myc-BMAL1 with class I and II inhibitor, trichostatin A
Cell 134, 329–340, July 25, 2008 ª2008 Elsevier Inc. 333



Figure 4. SIRT1 Is Recruited to the E-box and Regulates Circadian Histone Acetylation on the Dbp Gene

(A and B) Histone H3 (Lys9/Lys14) acetylation at Dbp TSS is hyperacetylated in SIRT1-deficient MEFs. Crosslinked cell extracts were isolated from WT or SIRT1-

deficient MEFs at indicated time points after serum shock, subjected to ChIP assay with anti-acetyl histone H3 (Lys9/Lys14) and control IgG, and analyzed by

semiquantitative PCR (A) or quantitative PCR (B) with TSS primers. Control IgG was used as a control for immunoprecipitation. The value at time 16 in WT MEF

was set to 1.

(C) Schematic diagram of the mouse Dbp promoter and primers used for ChIP assay.

(D) Representative results of the ChIP assay analyzed by semiquantitative RT-PCR. Dual crosslinked cell extracts were isolated from MEF after 16 or 24 hr serum

shock and subjected to ChIP assay with anti-SIRT1, anti-CLOCK, anti-BMAL1, or no antibody (ctrl). No antibody and 30R primers were used as controls for

immunoprecipitation and PCR, respectively.

(E) Quantification of ChIP by quantitative PCR. Quantitative PCR was performed on the same samples as described in (D). All data presented are the means ±

SEM of three independent samples.
(TSA), and/or class III inhibitor, NAM, for 6 hr and 16 hr, respec-

tively. Acetylation of BMAL1 at Lys537 is significantly increased

by NAM treatment but not by TSA treatment (Figure 6A).

We then coexpressed BMAL1 with CLOCK and confirmed that

the anti-AcBMAL1 antibody readily recognizes CLOCK-induced

acetylation at Lys537 (Figure 6B). In the same assay, coexpres-

sion of SIRT1, but not SIRT2 and SIRT3, induced specific deace-

tylation of BMAL1 (Figure 6B), indicating that SIRT1 specifically

deacetylates BMAL1. We also confirmed that SIRT1 readily de-

acetylates BMAL1 in an in vitro deacetylation assay (Figure S4).

Importantly, the SIRT1(H363Y) enzymatically deficient mutant

did not affect the acetylation state of BMAL1 (Figure 6C).

Furthermore, BMAL1 deacetylation by SIRT1 is responsive to

NAD+ and significantly attenuated by NAM (Figure 6D), suggest-

ing that the acetylation of BMAL1 is an event regulated by cellular

metabolism.

SIRT1 Contributes to Circadian Control In Vivo
To determine the effect of SIRT1 on the cyclic acetylation of

BMAL1 we first compared MEFs from WT mice and Sirt1�/�
334 Cell 134, 329–340, July 25, 2008 ª2008 Elsevier Inc.
animals. Upon serum shock, acetylation at Lys537 is cyclic in

WT cells, whereas it is sustained and mostly constant in Sirt1�/�

MEFs (Figure 7A). Interestingly, lack of acetylation appears to

also influence BMAL1 phosphorylation levels (Figure 7A). As

phosphorylation has been linked to BMAL1 stability (Cardone

et al., 2005; Kondratov et al., 2003), it is interesting to observe

that BMAL1 appears indeed to be expressed at higher levels in

the absence of SIRT1. These results suggest that SIRT1-

controlled acetylation could constitute a critical regulatory step

in the control of BMAL1 protein stability.

Next we sought to demonstrate the role of SIRT1 in vivo. To do

so, we used tissue-specific Sirt1�/�mice in which the loxed gene

was selectively deleted by albumin promoter-driven Cre recom-

binase in the liver. The original mutant mice have the unique

deletion of exon 4 of the Sirt1 gene, which encodes the con-

served SIRT1 catalytic domain (Cheng et al., 2003). Livers

were collected from mice entrained at different times of the cir-

cadian cycle and used to analyze BMAL1 acetylation and gene

expression levels. Paralleling the results obtained with the

Sirt1�/� MEFs (Figure 7A), BMAL1 acetylation is significantly



Figure 5. Interaction of SIRT1 with CLOCK

(A) JEG3 cells were cotransfected with a series of expression vectors as described. Flag-tagged SIRT1 proteins were immunoprecipitated by FLAG antibody, and

abundance of coimmunoprecipitated proteins was determined by western blotting using anti-Myc antibody (top right panel) and anti-SIRT1 antibody (bottom

right panel). Left panels show the immunoblotting results of total cell lysates as an input.

(B and C) SIRT1 and CLOCK interaction in vivo. Endogenous CLOCK:BMAL1 and SIRT1 interactions in the mice liver (B) and in cultured MEFs after serum shock

(C) were determined by coimmunoprecipitation assays.

(D) The deacetylase-deficient (H363Y) mutant SIRT1 interacts with CLOCK as well as WT SIRT1.

(E) CLOCK (aa 450–570) is required for the interaction with SIRT1. In vitro-translated [35S]-labeled truncated CLOCK proteins were pulled down by GST-SIRT1.

(F) SIRT1 N terminus (aa 1–231) is required for CLOCK interaction. In vitro-translated [35S]-labeled full-length CLOCK proteins were pulled down by truncated

GST-SIRT1.
increased and only mildly rhythmic in the livers from the mutant

mice (Figure 7B). BMAL1 phosphorylation is also slightly

increased with respect to WT mice, although not to the extent

observed in the Sirt1�/� MEFs (see also Figure S5). Finally, ex-

pression of the circadian genes Cry1 and Per2 is also signifi-

cantly altered (Figure 7C), reminiscent of the results obtained

with the Sirt1�/� MEFs (Figure 2).

DISCUSSION

A large array of metabolic processes follows the rhythmicity of

the circadian cycle. The presence of molecular links that reveal

functional wiring between the clock machinery and metabolic

pathways has been invoked (Rutter et al., 2002; Schibler and

Sassone-Corsi, 2002), and much compelling evidence has ac-

cumulated (Turek et al., 2005; Wijnen and Young, 2006). We
have proposed that the HAT function of CLOCK may be con-

trolled by changing cell energy levels or, conversely, could reg-

ulate them (Doi et al., 2006; Grimaldi et al., 2007). The finding

that a core element of the clock machinery directly elicits

histone modifications underscored the link between cir-

cadian physiology and chromatin remodeling. These notions

suggested that NAD(H)-dependent energy pathways in the

cell could influence the HAT function of CLOCK:BMAL1. We

reasoned that CLOCK-mediated acetylation, and thereby tran-

scriptional activation, could be counterbalanced by transcrip-

tional silencing induced by NAD+-dependent HDACs (Imai

et al., 2000; Landry et al., 2000). Intriguingly Sir2, a NAD+-de-

pendent HDAC, had been functionally linked to Sas2 (Kimura

et al., 2002; Suka et al., 2002), a protein of the MYST family

of HATs to which CLOCK belongs (Doi et al., 2006; Nakahata

et al., 2007).
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Figure 6. SIRT1 Regulates BMAL1 Lys537 Acetylation

(A) Class III HDAC inhibitor enhances BMAL1 Lys537 acetylation. JEG3 cells transfected with Myc-CLOCK and Flag-Myc-BMAL1 were treated with HDAC I and II

inhibitor, TSA (1 mM), for 6 hr and HDAC III inhibitor, NAM (10 mM), for 16 hr before harvest. Immunoprecipitated BMAL1 proteins by FLAG antibody were

subjected to SDS-PAGE and probed with acetylated BMAL1 or Myc antibodies.

(B) SIRT1 deacetylates acetylated Lys537 in BMAL1. JEG3 cells transfected with Myc-CLOCK and Flag-Myc-BMAL1 were cotransfected with SIRT1-Flag,

SIRT2-Flag, or SIRT3-Flag. Immunoprecipitated BMAL1 proteins by FLAG antibody were probed with acetylated BMAL1 or Myc antibodies. Immunoprecipitated

SIRT proteins by FLAG antibody were probed with FLAG M2 antibody.

(C) Acetylated BMAL1 is not deacetylated by deacetylase-deficient mutant SIRT1. JEG3 cells transfected with Myc-CLOCK and Flag-Myc-BMAL1 were cotrans-

fected with WT or mutant (H363Y) SIRT1-HA. Immunoprecipitated BMAL1 proteins by FLAG antibody were probed with acetylated BMAL1 or Myc antibodies.

SIRT1 protein amount was detected by SIRT1 antibody.

(D) Deacetylation of BMAL1 by SIRT1 is NAD+ dependent manner. JEG3 cells transfected with Myc-CLOCK and Flag-Myc-BMAL1 and SIRT1-HA were treated

with 1 mM NAD+ or 10 mM NAM for 16 hr before harvest. Immunoprecipitated BMAL1 proteins by FLAG antibody were probed with acetylated BMAL1 antibody.

SIRT1 protein amount was detected by SIRT1 antibody.
Our results indicate that SIRT1 could function as a molecular

rheostat of CLOCK-mediated HAT function, by modulating the

timing of histone lysine acetylation (Figure 7D). SIRT1 also mod-

ulates the circadian machinery by controlling the acetylation

levels of BMAL1 (Figure 6), a core circadian element whose

CLOCK-induced acetylation is important for circadian physiology

(Hirayama et al., 2007). BMAL1 is acetylated at a key, conserved

lysine at position Lys537. We have shown that Lys537 acetylation

increases the efficacy of the repressor CRY to silence CLOCK:

BMAL1-mediated transcription, an event essential to obtaining

proper circadian oscillations (Hirayama et al., 2007). Importantly,

the oscillatory acetylation patterns of H3 and BMAL1 differ in their

timing: BMAL1 acetylation is sustained at a circadian time when

H3 acetylation is at minimal levels (at 24 hr post-serum shock;

compare Figures 4A and 7A). This difference nicely fits the
336 Cell 134, 329–340, July 25, 2008 ª2008 Elsevier Inc.
scenario of a dual role for CLOCK-mediated acetylation, impli-

cated both in transcriptional activation of circadian promoters

(acetylation of H3; Doi et al., 2006) and in their subsequent down-

regulation following acetylation of BMAL1- and CRY-mediated

repression (Hirayama et al., 2007). These findings raise the fasci-

nating possibility that CLOCK and SIRT1 enzymatic activities may

be temporally regulated by additional posttranslational modifica-

tions. Interestingly, H3 Lys14 acetylation was shown to be signif-

icantly modulated by the phosphorylation of the nearby Ser10

residue (Cheung et al., 2000b; Lo et al., 2000). Of relevance to

circadian control, phosphorylation at Ser10 has been linked to

light-induced activation of clock gene expression in the supra-

chiasmatic nucleus (SCN) (Crosio et al., 2000).

Another important question relates to whether SIRT1 would

operate on other nonhistone circadian targets. CLOCK was



Figure 7. Circadian Dysfunction and BMAL1 Upregulated Acetylation in Liver-Specific SIRT1-Deficient Mice

(A) BMAL1 Lys537 acetylation profile in WT or SIRT1-deficient MEFs was investigated. Cell extracts prepared from indicated time points were immunoprecip-

itated with BMAL1 antibody and acetylation of BMAL1 was detected by probing with the acetylated BMAL1 antibody.

(B) BMAL1 Lys537 acetylation profile in WT and SIRT1Dex4 mice was investigated. Liver extracts prepared from indicated time points were immunoprecipitated by

BMAL1 antibody and acetylation of BMAL1 was detected by using the acetylated BMAL1 antibody. Acetylation of BMAL1 in the SIRT1-Dex4 mutant mice is non-

rhythmic and elevated compared to WT mice. Overall levels of BMAL1 are also higher in the SIRT1-Dex4 mutant mice. The pattern of BMAL1 phosphorylation is

also altered (see also Figure S5). The lower SIRT1 band corresponds to the SIRT1-Dex4 deletion. Levels of the CLOCK protein and actin were used as control.

(C) Altered circadian expression of Cry1 and Per2 clock genes in the livers of SIRT1Dex4 mice. Error bars represent SEM.

(D) Scheme of the NAD+-dependent regulation exerted by SIRT1 on the circadian clock machinery. SIRT1 interacts with CLOCK and thereby establishes a

functional and molecular link between energy metabolism and circadian physiology.
found to interact with some nuclear receptors, including RARa

and RXRa (McNamara et al., 2001). Since periodic availability

of nuclear hormones has been implicated in the resetting of

peripheral clocks (McNamara et al., 2001; Yin et al., 2007), and

since SIRT1 has been found to control a number of nuclear

receptors (see for example Li et al., 2007b), it is reasonable to

speculate that the CLOCK-SIRT1 interaction described in this

study represents a key event in the processes of fat and energy

metabolism. In this respect, it is worth noting that PGC-1, a tran-

scriptional coactivator that regulates energy metabolism

and that acts in combination with SIRT1 (Nemoto et al., 2005;

Rodgers et al., 2005), is rhythmically expressed in the liver and

skeletal muscle and is required for cell-autonomous clock func-

tion (Liu et al., 2007; Sonoda et al., 2007). Thus, the CLOCK-

SIRT1 interplay seems to occupy a privileged position in the

control of gene expression by metabolites.

CLOCK and SIRT1 appear to be associated at all times of the

circadian cycle (Figure 5), suggesting that they would not only

coordinately contribute to the dynamic oscillation of histone

acetylation but also regulate a number of nonhistonic targets.
The identification of additional molecular elements within the

CLOCK:BMAL1/SIRT1 complex will define its functional

features, leading to the unraveling of intracellular regulatory

pathways yet poorly understood. In this respect, a fascinating

connection is apparent between circadian metabolism, aging,

and cancer. DNA damage accumulates with age and defects

in DNA repair may lead to phenotypes reminiscent of premature

aging (Lombard et al., 2005; Saunders and Verdin, 2007).

The conceptual and functional link existing between the circa-

dian clock and the cell cycle (Hunt and Sassone-Corsi, 2007;

Chen and McKnight, 2007) has been extended to implicate the

circadian machinery in the DNA-damage response (Collis

and Boulton, 2007). The circadian genes per1 and tim have

been shown to play an important role in DNA-damage control

(Gery et al., 2006; Unsal-Kaçmaz et al., 2005), and phase reset-

ting of the mammalian circadian clock is readily obtained by

DNA-damaging agents (Oklejewicz et al., 2008). Finally, the

role of SIRT1 in the aging process (Oberdoerffer and Sinclair,

2007; Bishop and Guarente, 2007) is intriguingly paralleled by re-

cent observations of early aging and age-related pathologies
Cell 134, 329–340, July 25, 2008 ª2008 Elsevier Inc. 337



observed in BMAL1-deficient mice (Kondratov et al., 2006). The

far-reaching implications of our findings are thereby multiple, in-

cluding the identification of novel strategies for the study of dia-

betes, obesity, and aging.

EXPERIMENTAL PROCEDURES

Animals

Male BALB/c mice and liver-specific Sirt1�/� mice were housed under 12 hr

light/12 hr dark (LD) cycles over 2 weeks. All protocols using animals were

approved by the Institutional Animal Care and Use Committee of the University

of California, Irvine.

Plasmids

FLAG-tagged and Myc-tagged plasmids have been described (Doi et al.,

2006; Travnickova-Bendova et al., 2002). Full and truncated mouse Clock

ORFs were amplified by PCR and cloned in pG4MpolyII vector. Mouse

Clock(D19) was amplified by PCR from c/c MEFs. Mouse SIRT1 ORF was sub-

cloned into pcDNA3 with a FLAG epitope sequence at the 50 end. hSIRT1-Flag/

pcDNA3.1, hSIRT2-Flag /pcDNA3.1, and hSIRT3-Flag /pcDNA3.1 were kind

gifts of E. Verdin. Flag-hSIRT1/pECE, Flag-hSIRT1(H363Y)/pECE, hSIRT1-

HA/pECE, and hSIRT1(H363Y)-HA/pECE were kind gifts of A. Brunet.

Antibodies

Antibodies against acetyl-histone H3, histone H4, and SIRT1 were from Milli-

pore, antibodies against CLOCK and rabbit IgG from Santa Cruz Biotechnol-

ogy, and antibodies against Flag (M2) and b-actin from Sigma. Antibodies

against BMAL1 and Myc were described (Cardone et al., 2005). Polyclonal

acetyl-lysine 537 BMAL1antibody was generated by immunizing rabbits with

KLH-conjugates of the peptide NH2-ASSPGG[acetyl-K]KILN- (mouse BMAL1).

Cell Culture

MEFs were generated from WT or homozygous Sirt1�/� sibling mice and cul-

tured in DMEM (4.5 g/l glucose) supplemented with 7.5% newborn bovine

serum, 2.5% FBS, and antibiotics. JEG3 cells were grown in Basal Medium

Eagle supplemented with 10% FBS and antibiotics.

Preparation of Cell Extracts and Nuclear Extracts

from Cultured Cell Lines

Cells were washed twice with phosphate-buffered saline (PBS) and lysed in

RIPA buffer (50 mM Tris/HCL [pH 8.0], 150 mM NaCl, 5 mM EDTA, 15 mM

MgCl2, 1% NP40, 13 protease inhibitor cocktail [Roche], 1 mM DTT, 1 mM

trichostatin A [TSA], 10 mM NAM, 10 mM NaF, 1 mM PMSF). For nuclear

extracts (Andrews and Faller, 1991), after washing cells with cold PBS, cells

were lysed with hypotonic buffer (10 mM HEPES-KOH [pH 7.9], 1.5 mM

MgCl2, 10 mM KCl, 13 protease inhibitor cocktail [Roche], 1 mM DTT, 1 mM

TSA, 10 mM NAM, 10 mM NaF, 1 mM PMSF). Following a brief centrifugation,

pellet was resuspended in hypertonic buffer (20 mM HEPES-KOH [pH 7.9],

25% glycerol, 420 mM NaCl 1.5 mM MgCl2, 0.2 mM EDTA, 13 protease inhib-

itor cocktail [Roche], 1 mM DTT, 1 mM TSA, 10 mM NAM, 10 mM NaF, 1 mM

PMSF). Supernatants were recovered as nuclear extracts.

ChIP Assays

Conventional ChIP assay was used for histones from MEFs (Yamamoto et al.,

2004). For nonhistone proteins, dual crosslinking ChIP assay (Nowak et al.,

2005) was used with slight modifications. After serum shock, cells were

washed three times with room temperature PBS, then PBS/1 mM MgCl2
was added. Disuccinimidyl Glutalate (DSG) was added to a final concentration

of 2 mM for crosslinking. After 45 min at room temperature, formaldehyde was

added to a final concentration of 1%(v/v) and cells incubated for 15 min. After

dual crosslinking, glycine was added to a final concentration of 0.1 M and

incubated for 10 min to quench formaldehyde out. After harvesting, cells

were lysed in 500 ml ice-cold cell lysis buffer (50 mM Tris/HCl [pH 8.0],

85 mM KCl, 0.5% NP40, 1 mM PMSF, 13 protease inhibitor cocktail [Roche])

for 10 min on ice. Nuclei were precipitated by centrifugation (3000 g for 5 min),

resuspended in 600 ml ice-cold RIPA buffer (50 mM Tris/HCl [pH 8.0], 150 mM
338 Cell 134, 329–340, July 25, 2008 ª2008 Elsevier Inc.
NaCl, 1 mM EDTA [pH 8.0], 1% Triton X-100, 0.1% SDS, 0.1% sodium deox-

ycholate, 1 mM PMSF, 13 protease inhibitor cocktail [Roche]), and incubated

on ice for 30 min. Sonication was done to obtain DNA fragments 100–600 bp in

length.

Quantitative Real-Time RT-PCR

Each quantitative real-time RT-PCR was performed using the Chromo4 real

time detection system (BIO-RAD). The PCR primers for mDbp mRNA, mPer2

mRNA, mCry1 mRNA, 18S rRNA, Dbp UP, Dbp E-box, Dbp 30R, and mSIRT1

mRNA were described (Ripperger and Schibler, 2006; Rodgers et al., 2005;

Yamamoto et al., 2004). PCR primers for Dbp TSS were designed using

Real-Time PCR Primer Design (https://www.genscript.com/ssl-bin/app/

primer), and the sequences are available upon request. For a 20 ml PCR,

50 ng of cDNA template was mixed with the primers to final concentrations

of 200 nM and 10 ml of iQ SYBR Green Supermix (BIO-RAD), respectively.

The reaction was first incubated at 95�C for 3 min, followed by 40 cycles at

95�C for 30 s and 60�C for 1 min.

RNase Protection Assays

RNA extractions were done using TRIzol (GIBCO BRL). RNase protection as-

says (RPAs) were performed as described (Pando et al., 2002). The riboprobes

were generated using an in vitro transcription kit (Promega). Data were quan-

tified using a phosphorimager.

Recombinant Proteins, [35S] Labeling, and GST Pulldown Assay

GST-fused recombinant proteins were expressed in E. coli BL21. Recombi-

nant proteins were lysed by CelLytic B Cell Lysis Reagent (Sigma) according

to the manufacturer’s protocol and purified by glutathione Sepharose 4B

(Amersham). 35S-methionine-labeled proteins were made in vitro using the

TNT-T7 quick-coupled transcription-translation system (Promega). Twenty

microliters of in vitro-translated 35S-methionine-labeled proteins and 1 mg of

GST-mSIRT1 or GST on glutathione Sepharose were added in a 1 ml binding

buffer (50 mM Tris/HCl [pH 8.0], 150 mM NaCl, 1% NP-40), incubated over-

night at 4�C. After washing sepharose with binding buffer three times, proteins

were analyzed on SDS-PAGE.

SIRT1 Deacetylation Assay

SIRT1 deacetylase activity was determined using a SIRT1 Fluorimetric Activity

Assay/Drug Discovery Kit (AK-555; BIOMOL International) following the man-

ufacturer’s protocol. Extracts from serum-stimulated MEFs and liver from

entrained mice lysed by RIPA buffer were used for measuring SIRT1 deacety-

lase activity. Complementation assays were performed by adding recombi-

nant E. coli-generated SIRT1, and they included 1 U/reaction of SIRT1 protein

and 25 mM of substrate (acetylated p53) in a 50 ml final volume. Endogenous

SIRT1 from liver was obtained by immunoprecipitation and then incubated in

deacetylase buffer with the substrate and 0.1 mM NAD+ for 1 hr at 37�C.

SUPPLEMENTAL DATA

Supplemental Data include five figures and can be found with this article online

at http://www.cell.com/cgi/content/full/134/2/329/DC1/.

ACKNOWLEDGMENTS

We thank F. Alt, A. Brunet, S. Masubuchi, D. Gauthier, S. Katada, S.B. Curto,

E. Verdin, S. Dilag, and all members of the Sassone-Corsi laboratory for help,

reagents, and discussions. This work was supported by grants of the Cancer

Research Coordinating Committee of the University of California and of the

NIH (R01-GM081634-01) to P. S.-C.

Received: March 20, 2008

Revised: April 27, 2008

Accepted: July 8, 2008

Published: July 24, 2008

https://www.genscript.com/ssl-bin/app/primer
https://www.genscript.com/ssl-bin/app/primer
http://www.cell.com/cgi/content/full/134/2/329/DC1/


REFERENCES

Andrews, N.C., and Faller, D.V. (1991). A rapid micropreparation technique for

extraction of DNA-binding proteins from limiting numbers of mammalian cells.

Nucleic Acids Res. 19, 2499.

Antoch, M.P., Song, E.J., Chang, A.M., Vitaterna, M.H., Zhao, Y., Wilsbacher,

L.D., Sangoram, A.M., King, D.P., Pinto, L.H., and Takahashi, J.S. (1997).

Functional identification of the mouse circadian Clock gene by transgenic

BAC rescue. Cell 89, 655–667.

Bishop, N.A., and Guarente, L. (2007). Genetic links between diet and lifespan:

shared mechanisms from yeast to humans. Nat. Rev. Genet. 8, 835–844.

Bordone, L., and Guarente, L. (2005). Calorie restriction, SIRT1 and metabo-

lism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6, 298–305.

Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran,

H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., et al. (2004). Stress-dependent

regulation of FOXO transcription factors by the SIRT1 deacetylase. Science

303, 2011–2015.

Cardone, L., Hirayama, J., Giordano, F., Tamaru, T., Palvimo, J.J., and

Sassone-Corsi, P. (2005). Circadian clock control by SUMOylation of

BMAL1. Science 309, 1390–1394.

Chen, Z., and McKnight, S.L. (2007). A conserved DNA damage response

pathway responsible for coupling the cell division cell cycle to the circadian

and metabolic cycles. Cell Cycle 6, 2906–2912.

Cheng, H.L., Mostoslavsky, R., Saito, S., Manis, J.P., Gu, Y., Patel, P., Bron-

son, R., Appella, E., Alt, F.W., and Chua, K.F. (2003). Developmental defects

and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl.

Acad. Sci. USA 100, 10794–10799.

Cheung, P., Allis, C.D., and Sassone-Corsi, P. (2000a). Signaling to chromatin

through histone modifications. Cell 103, 263–271.

Cheung, P., Tanner, K.G., Cheung, W.L., Sassone-Corsi, P., Denu, J.M., and

Allis, C.D. (2000b). Synergistic coupling of histone H3 phosphorylation and

acetylation in response to epidermal growth factor stimulation. Mol. Cell 5,

905–915.

Chopra, V.S., and Mishra, R.K. (2005). To SIR with Polycomb: linking silencing

mechanisms. Bioessays 27, 119–121.

Collis, S.J., and Boulton, S.J. (2007). Emerging links between the biological

clock and the DNA damage response. Chromosoma 116, 331–339.

Crosio, C., Cermakian, N., Allis, C.D., and Sassone-Corsi, P. (2000). Light in-

duces chromatin modification in cells of the mammalian circadian clock.

Nat. Neurosci. 3, 1241–1247.

Doi, M., Hirayama, J., and Sassone-Corsi, P. (2006). Circadian regulator

CLOCK is a histone acetyltransferase. Cell 125, 497–508.

Gery, S., Komatsu, N., Baldjyan, L., Yu, A., Koo, D., and Koeffler, H.P. (2006).

The circadian gene per1 plays an important role in cell growth and DNA

damage control in human cancer cells. Mol. Cell. 22, 375–382.

Grimaldi, B., Nakahata, Y., Sahar, S., Kaluzova, M., Gauthier, D., Pham, K.,

Patel, N., Hirayama, J., and Sassone-Corsi, P. (2007). Chromatin remodeling

and circadian control: Master regulator CLOCK is an enzyme. Cold Spring

Harb. Symp. Quant. Biol. 72, 105–112.

Grunstein, M. (1997). Histone acetylation in chromatin structure and transcrip-

tion. Nature 389, 349–352.

Hardin, P.E., and Yu, W. (2006). Circadian transcription: passing the HAT to

CLOCK. Cell 125, 424–426.

Hirayama, J., Sahar, S., Grimaldi, B., Tamaru, T., Takamatsu, K., Nakahata, Y.,

and Sassone-Corsi, P. (2007). CLOCK-mediated acetylation of BMAL1

controls circadian function. Nature 450, 1086–1090.

Hunt, T., and Sassone-Corsi, P. (2007). Riding tandem: circadian clocks and

the cell cycle. Cell 129, 461–464.

Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcrip-

tional silencing and longevity protein Sir2 is an NAD-dependent histone

deacetylase. Nature 403, 795–800.
Kimura, A., Umehara, T., and Horikoshi, M. (2002). Chromosomal gradient of

histone acetylation established by Sas2p and Sir2p functions as a shield

against gene silencing. Nat. Genet. 32, 370–377.

Kondratov, R.V., Chernov, M.V., Kondratova, A.A., Gorbacheva, V.Y., Gudkov,

A.V., and Antoch, M.P. (2003). BMAL1-dependent circadian oscillation of nu-

clear CLOCK: posttranslational events induced by dimerization of transcrip-

tional activators of the mammalian clock system. Genes Dev. 17, 1921–1932.

Kondratov, R.V., Kondratova, A.A., Gorbatcheva, V.Y., Vykhovanets, O.V., and

Antoch, M.P. (2006). Early aging and age-related patologies in mice deficient

in BMAL1, the core component of the circadian clock. Genes Dev. 20,

1868–1873.

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128,

693–705.

Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.T., Nicchitta, C.V.,

Yoshida, M., Toft, D.O., Pratt, W.B., and Yao, T.P. (2005). HDAC6 regulates

Hsp90 acetylation and chaperone-dependent activation of glucocorticoid

receptor. Mol. Cell 18, 601–607.

Kurdistani, S.K., and Grunstein, M. (2003). Histone acetylation and deacetyla-

tion in yeast. Nat. Rev. Mol. Cell Biol. 4, 276–284.

Ladurner, A.G. (2006). Rheostat control of gene expression by metabolites.

Mol. Cell 24, 1–11.

Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin,

F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., et al. (2006). Resveratrol

improves mitochondrial function and protects against metabolic disease by

activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122.

Landry, J., Sutton, A., Tafrov, S.T., Heller, R.C., Stebbins, J., Pillus, L., and

Sternglanz, R. (2000). The silencing protein SIR2 and its homologs are NAD-

dependent protein deacetylases. Proc. Natl. Acad. Sci. USA 97, 5807–5811.

Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, A.S., and Reppert, S.M.

(2001). Posttranslational mechanisms regulate the mammalian circadian

clock. Cell 107, 855–867.

Li, B., Carey, M., and Workman, J.L. (2007a). The role of chromatin during

transcription. Cell 128, 707–719.

Li, X., Zhang, S., Blander, G., Tse, J.G., Krieger, M., and Guarente, L. (2007b).

SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol.

Cell 28, 91–106.

Liu, C., Li, S., Liu, T., Borjigin, J., and Lin, J.D. (2007). Transcriptional coactiva-

tor PGC-1alpha integrates the mammalian clock and energy metabolism.

Nature 447, 477–481.

Lo, W.S., Trievel, R.C., Rojas, J.R., Duggan, L., Hsu, J.Y., Allis, C.D., Marmor-

stein, R., and Berger, S.L. (2000). Phosphorylation of serine 10 in histone H3 is

functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine

14. Mol. Cell 5, 917–926.

Lombard, D.B., Chua, K.F., Mostoslavsky, R., Franco, S., Gostissa, M., and

Alt, F.W. (2005). DNA repair, genome stability, and aging. Cell 120, 497–512.

Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and

Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival

under stress. Cell 107, 137–148.

Mal, A., Sturniolo, M., Schiltz, R.L., Ghosh, M.K., and Harter, M.L. (2001). A role

for histone deacetylase HDAC1 in modulating the transcriptional activity of

MyoD: inhibition of the myogenic program. EMBO J. 20, 1739–1753.

Martinez-Balbas, M.A., Bauer, U.M., Nielsen, S.J., Brehm, A., and Kouzarides,

T. (2000). Regulation of E2F1 activity by acetylation. EMBO J. 19, 662–671.

McNamara, P., Seo, S.P., Rudic, R.D., Sehgal, A., Chakravarti, D., and FitzGer-

ald, G.A. (2001). Regulation of CLOCK and MOP4 by nuclear hormone recep-

tors in the vasculature: A humoral mechanism to reset a peripheral clock. Cell

105, 877–889.

Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma,

Y., McBurney, M., and Guarente, L. (2004). Mammalian SIRT1 represses

forkhead transcription factors. Cell 116, 551–563.
Cell 134, 329–340, July 25, 2008 ª2008 Elsevier Inc. 339



Nakahata, Y., Grimaldi, B., Sahar, S., Hirayama, J., and Sassone-Corsi, P.

(2007). Signaling to the circadian clock: plasticity by chromatin remodeling.

Curr. Opin. Cell Biol. 19, 230–237.

Nemoto, S., Fergusson, M.M., and Finkel, T. (2005). SIRT1 functionally

interacts with the metabolic regulator and transcriptional coactivator

PGC-1{alpha}. J. Biol. Chem. 280, 16456–16460.

Nowak, D.E., Tian, B., and Brasier, A.R. (2005). Two-step cross-linking method

for identification of NF-kappaB gene network by chromatin immunoprecipita-

tion. Biotechniques 39, 715–725.

Oberdoerffer, P., and Sinclair, D.A. (2007). The role of nuclear architecture in

genomic instability and ageing. Nat. Rev. Mol. Cell Biol. 8, 692–702.

Oklejewicz, M., Destici, E., Tamanini, F., Hut, R.A., Janssens, R., and van der

Horst, G.T.J. (2008). Phase resetting of the mammalian circadian clock by DNA

damage. Curr. Biol. 18, 286–291.

Panda, S., Antoch, M.P., Miller, B.H., Su, A.I., Schook, A.B., Straume, M.,

Schultz, P.G., Kay, S.A., Takahashi, J.S., and Hogenesch, J.B. (2002). Coordi-

nated transcription of key pathways in the mouse by the circadian clock. Cell

109, 307–320.

Pando, M.P., Morse, D., Cermakian, N., and Sassone-Corsi, P. (2002). Pheno-

typic rescue of a peripheral clock genetic defect via SCN hierarchical

dominance. Cell 110, 107–117.

Peterson, C.L., and Laniel, M.A. (2004). Histones and histone modifications.

Curr. Biol. 14, R546–R551.

Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado

De Oliveira, R., Leid, M., McBurney, M.W., and Guarente, L. (2004). Sirt1

promotes fat mobilization in white adipocytes by repressing PPAR-gamma.

Nature 429, 771–776.

Ripperger, J.A., and Schibler, U. (2006). Rhythmic CLOCK-BMAL1 binding to

multiple E-box motifs drives circadian Dbp transcription and chromatin

transitions. Nat. Genet. 38, 369–374.

Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puig-

server, P. (2005). Nutrient control of glucose homeostasis through a complex

of PGC-1alpha and SIRT1. Nature 434, 113–118.

Rutter, J., Reick, M., and McKnight, S.L. (2002). Metabolism and the control of

circadian rhythms. Annu. Rev. Biochem. 71, 307–331.

Saunders, L.R., and Verdin, E. (2007). Sirtuins: critical regulators at the cross-

roads between cancer and aging. Oncogene 26, 5489–5504.

Sauve, A.A., Wolberger, C., Schramm, V.L., and Boeke, J.D. (2006). The bio-

chemistry of sirtuins. Annu. Rev. Biochem. 75, 435–465.

Schibler, U., and Sassone-Corsi, P. (2002). A web of circadian pacemakers.

Cell 111, 919–922.

Sonoda, J., Mehl, I.R., Ching, L.W., Nofsinger, R.R., and Evans, R.M. (2007).

PGC-1 beta controls mitochondrial metabolism to modulate circadian activity,

adaptive thermogenesis, and hepatic steatosis. Proc. Natl. Acad. Sci. USA

104, 5223–5228.

Storch, K.F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F.C., Wong, W.H.,

and Weitz, C.J. (2002). Extensive and divergent circadian gene expression in

liver and heart. Nature 417, 78–83.
340 Cell 134, 329–340, July 25, 2008 ª2008 Elsevier Inc.
Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifica-

tions. Nature 403, 41–45.

Struhl, K. (1998). Histone acetylation and transcriptional regulatory mecha-

nisms. Genes Dev. 12, 599–606.

Suka, N., Luo, K., and Grunstein, M. (2002). Sir2p and Sas2p opposingly reg-

ulate acetylation of yeast histone H4 lysine16 and spreading of heterochroma-

tin. Nat. Genet. 32, 378–383.

Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene

extends lifespan in Caenorhabditis elegans. Nature 410, 227–230.

Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M., and Sassone-Corsi,

P. (2002). Bimodal regulation of mPeriod promoters by CREB-dependent sig-

naling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 99, 7728–7733.

Turek, F.W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E.,

Laposky, A., Losee-Olson, S., Easton, A., Jensen, D.R., et al. (2005). Obesity

and metabolic syndrome in circadian Clock mutant mice. Science 308,

1043–1045.

Ueda, H.R., Chen, W., Adachi, A., Wakamatsu, H., Hayashi, S., Takasugi, T.,

Nagano, M., Nakahama, K., Suzuki, Y., Sugano, S., et al. (2002). A transcription

factor response element for gene expression during circadian night. Nature

418, 534–539.

Unsal-Kaçmaz, K., Mullen, T.E., Kaufmann, W.K., and Sancar, A. (2005).

Coupling of human circadian and cell cycles by the timeless protein. Mol.

Cell. Biol. 25, 3109–3116.

Vaquero, A., Scher, M., Erdjument-Bromage, H., Tempst, P., Serrano, L., and

Reinberg, D. (2007). SIRT1 regulates the histone methyl-transferase SUV39H1

during heterochromatin formation. Nature 450, 440–444.

Vaziri, H., Dessain, S.K., Ng Eaton, E., Imai, S.I., Frye, R.A., Pandita, T.K.,

Guarente, L., and Weinberg, R.A. (2001). hSIR2(SIRT1) functions as an NAD-

dependent p53 deacetylase. Cell 107, 149–159.

Wade, P.A., and Wolffe, A.P. (1997). Histone acetyltransferases in control.

Curr. Biol. 7, R82–R84.

Wijnen, H., and Young, M.W. (2006). Interplay of circadian clocks and meta-

bolic rhythms. Annu. Rev. Genet. 40, 409–448.

Workman, J.L., and Kingston, R.E. (1998). Alteration of nucleosome structure

as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67,

545–579.

Yamamoto, T., Nakahata, Y., Soma, H., Akashi, M., Mamine, T., and Takumi, T.

(2004). Transcriptional oscillation of canonical clock genes in mouse peripheral

tissues. BMC Mol. Biol. 5, 18.

Yang, X.J., and Seto, E. (2008). The Rpd3/Hda1 family of lysine deacetylases:

from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206–218.

Yin, L., Wu, N., Curtin, J.C., Qatanani, M., Szwergold, N.R., Reid, R.A., Waitt,

G.M., Parks, D.J., Pearce, K.H., Wisely, G.B., and Lazar, M.A. (2007). Rev-er-

balpha, a heme sensor that coordinates metabolic and circadian pathways.

Science 318, 1786–1789.


	The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control
	SIRT1 Deacetylase Activity Is Circadian
	SIRT1 Contributes to the Stringency of Circadian Gene Expression
	SIRT1 Controls Circadian Histone Acetylation
	SIRT1 Is in a Chromatin Complex with CLOCK:BMAL1 on the Dbp Promoter
	Direct Interaction of SIRT1 and CLOCK
	BMAL1 Acetylation at Lys537 Is Regulated by SIRT1
	SIRT1 Contributes to Circadian Control In Vivo
	Animals
	Plasmids
	Antibodies
	Cell Culture
	Preparation of Cell Extracts and Nuclear Extracts from Cultured Cell Lines
	ChIP Assays
	Quantitative Real-Time RT-PCR
	RNase Protection Assays
	Recombinant Proteins, [35S] Labeling, and GST Pulldown Assay
	SIRT1 Deacetylation Assay
	Supplemental Data
	Acknowledgments
	References


