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Abstract

Let τD(Z) be the first exit time of iterated Brownian motion from a domain D ⊂ Rn started at z ∈ D and
let Pz[τD(Z) > t] be its distribution. In this paper we establish the exact asymptotics of Pz[τD(Z) > t]
over bounded domains as an extension of the result in [R.D. DeBlassie, Iterated Brownian motion in an
open set, Ann. Appl. Probab. 14 (3) (2004) 1529–1558], for z ∈ D:

Pz[τD(Z) > t] ≈ t1/2 exp
(

−
3
2
π2/3λ

2/3
D t1/3

)
, as t → ∞.

We also study asymptotics of the life time of Brownian-time Brownian motion (BTBM), Z1
t = z+ X (Y (t)),

where X t and Yt are independent one-dimensional Brownian motions.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and statement of main results

Properties of iterated Brownian motion (IBM) analogous to the properties of Brownian motion
have been studied extensively by several authors [1–3,6–8,11,13,16,18,22,24]. Several other
iterated processes including Brownian-time Brownian motion (BTBM) have also been studied [1,
2,19]. One of the main differences between these iterated processes and Brownian motion is that
they are not Markov processes. However, these processes have connections with the parabolic
operator 1

8∆2
−

∂
∂t , as described in [2,13].
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To define the iterated Brownian motion Z t started at z ∈ R, let X+
t , X−

t and Yt be three
independent one-dimensional Brownian motions, all started at 0. Two-sided Brownian motion is
defined by

X t =

{
X+

t , t ≥ 0
X−

(−t), t < 0.

Then the iterated Brownian motion started at z ∈ R is

Z t = z + X (Yt ), t ≥ 0.

In Rn , one requires X± to be independent n-dimensional Brownian motions. This is the
version of the iterated Brownian motion due to Burdzy; see [6].

In what follows, we will write f ≈ g and f . g to mean that, for some positive C1 and C2,
C1 ≤ f/g ≤ C2 and f ≤ C1g, respectively. We will also write f (t) ∼ g(t), as t → ∞, to mean
that f (t)/g(t) → 1, as t → ∞.

Let τD be the first exit time of Brownian motion from a domain D ⊂ Rn . The large time
behavior of Pz[τD > t] has been studied for several types of domains, including general cones
[5,12], parabola-shaped domains [4,21], twisted domains [14] and bounded domains [23]. Our
aim in this article is to do the same for the exit time of IBM over bounded domains in Rn and for
the exit times of BTBM over several domains in Rn .

In particular, the large time asymptotics of the lifetime of Brownian motion in general cones
have been studied by several people including Burkholder [9], DeBlassie [12] and Bañuelos and
Smits [5]. Let D be an open cone with vertex 0 such that Sn−1

∩ D is regular for the Laplace-
Beltrami operator L Sn−1 on the sphere Sn−1. Then, for some p(D) > 0 (see [12] and [5]),

Px [τD > t] ∼ C(x)t−p(D), as t → ∞.

Now let D ⊂ Rn . Let τD(Z) = inf{t ≥ 0 : Z t 6∈ D} be the first exit time of Z t from D. When
D is a generalized cone, using the results of Bañuelos and Smits, DeBlassie [13] obtained, for
z ∈ D, as t → ∞,

Pz[τD(Z) > t] ≈


t−p(D), p(D) < 1
t−1 ln t, p(D) = 1
t−(p(D)+1)/2, p(D) > 1.

For parabola-shaped domains, the study of exit time asymptotics for Brownian motion was
initiated by Bañuelos, DeBlassie and Smits [4] to answer the question: Are there domains in
Rn for which the distribution of the exit time is sub-exponential? They showed that, for the
parabola P = {(x, y) : x > 0, |y| < A

√
x}, A > 0, there exist positive constants A1 and A2

such that, for z ∈ P ,

−A1 ≤ lim inf
t→∞

t−
1
3 log Pz[τP > t] ≤ lim sup

t→∞

t−
1
3 log Pz[τP > t] ≤ −A2.

Subsequently, Lifshits and Shi [21] found that the above limit exists for parabola-shaped domains
Pα = {(x, Y ) ∈ R × Rn−1

: x > 0, |Y | < Axα}, 0 < α < 1 and A > 0, in any dimension, for
z ∈ Pα ,

lim
t→∞

t
−

(
1−α
1+α

)
log Pz[τα > t] = −l, (1.1)
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where

l =

(
1 + α

α

)  π
2/α
(n−3)/2

A22(3α+1)/α((1 − α)/α)(1−α)/α

Γ 2
(

1−α
2α

)
Γ 2

(
1

2α

)


α
(α+1)

. (1.2)

Here (n−3)/2 denotes the smallest positive zero of the Bessel function J(n−3)/2 and Γ is the
Gamma function.

Using the results for Brownian motion in parabola-shaped domains we established in [22]
with l given by (1.2), for z ∈ Pα ,

lim
t→∞

t
−

(
1−α
3+α

)
log Pz[τα(Z) > t] = −

(
3 + α

2 + 2α

) (
1 + α

1 − α

)(
1−α
3+α

)
π

(
2−2α
3+α

)
l

(
2+2α
3+α

)
.

For many bounded domains D ⊂ Rn , the asymptotics of Pz[τD > t] are well-known (see
[23] for a more precise statement of this). For z ∈ D,

lim
t→∞

eλD t Pz[τD > t] = ψ(z)
∫

D
ψ(y)dy, (1.3)

where λD is the first eigenvalue of 1
2∆ with Dirichlet boundary conditions and ψ is its

corresponding eigenfunction.
In [13], DeBlassie proved in the case of iterated Brownian motion in bounded domains for

z ∈ D,

lim
t→∞

t−1/3 log Pz[τD(Z) > t] = −
3
2
π2/3λ

2/3
D . (1.4)

The limits (1.3) and (1.4) are very different, in that the latter involves taking the logarithm
which may kill many unwanted terms in the exponential. It is then natural to ask if it is possible
to obtain an analogue of (1.3) for IBM. That is, to remove the log in (1.4). In this paper we prove
the following theorem.

Theorem 1.1. Let D ⊂ Rn be the bounded domain for which (1.3) holds pointwise and let λD
and ψ be as above. Then, for z ∈ D,

2C(z) ≤ lim inf
t→∞

t−1/2 exp
(

3
2
π2/3λ

2/3
D t1/3

)
Pz[τD(Z) > t]

≤ lim sup
t→∞

t−1/2 exp
(

3
2
π2/3λ

2/3
D t1/3

)
Pz[τD(Z) > t] ≤ πC(z),

where C(z) = λD
√

2π/3(ψ(z)
∫

D ψ(y)dy)2.

We also obtain a version of the above Theorem 1.1 for another closely related process,
the so called Brownian-time Brownian motion (BTBM). To define this, let X t and Yt be
two independent one-dimensional Brownian motions, all started at 0. BTBM is defined to be
Z1

t = x + X (|Yt |). Properties of this process and its connections to PDEs have been studied
in [1,2] and [19]. Analogous to Theorem 1.1, we have the following result for this process.



908 E. Nane / Stochastic Processes and their Applications 116 (2006) 905–916

Theorem 1.2. Let D ⊂ Rn , λD and ψ be as in the statement of Theorem 1.1. Let τD(Z1) be the
first exit time of BTBM from D. Then, for z ∈ D,

lim
t→∞

t−1/6 exp
(

3
2

2−2/3π2/3λ
2/3
D t1/3

)
Pz[τD(Z

1) > t] = C(λD)ψ(z)
∫

D
ψ(y)dy,

where C(λD) = π−1/6213/63−1/2λ
1/3
D . This limit is uniform on compact subsets of D.

Notice that the limits in Theorems 1.1 and 1.2 are different, even at the exponential level.
We obtain the following inequality between distributions of τD(Z) and τD(Z1).

Theorem 1.3. Let D ⊂ Rn . Then, for all z ∈ D and all t > 0,

Pz[τD(Z) > t] ≤ 2P0[τD(Z
1) > t].

Remark 1.1. Notice that, from the theorems proved in this paper, the reverse inequality in
Theorem 1.3 cannot hold for all large t , in the case of domains D ⊂ Rn considered (i.e. bounded
domains with regular boundary, parabola-shaped domains, twisted domains).

The paper is organized as follows. In Section 2 we give some preliminary lemmas to be used
in the proof of the main results. Theorem 1.1 is proved in Section 3. Section 4 is devoted to prove
Theorem 1.2 and some other results on the exit time asymptotics of BTBM over several domains.
In Section 5, we compare the exit time distributions of IBM and BTBM. In Section 6, we prove
several asymptotic results to be used in the proof of the main results.

2. Preliminaries

In this section we state some preliminary facts that will be used in the proof of the main
results.

The main fact is the following Tauberian theorem ([15, Laplace transform method,1958,
Chapter 4]). Laporte [20] also studied this type of integral. Let h and f be continuous functions
on R. Suppose that f is non-positive and has a global max at x0, f ′(x0) = 0, f ′′(x0) < 0 and
h(x0) 6= 0 and

∫
∞

−∞
h(x) exp(λ f (x)) < ∞ for all λ > 0. Then, as λ → ∞,

∫
∞

0
h(x) exp(λ f (x))dx ∼ h(x0) exp(λ f (x0))

√
2π

λ| f ′′(x0)|
. (2.1)

It can easily be seen from the Laplace transform method that, as λ → ∞,

∫
∞

0
exp(−λ(x + x−2))dx ∼ exp(−3λ2−2/3)

√
24/3π

3λ
. (2.2)

Similarly, as t → ∞,∫
∞

0
exp

(
−

at

u2 − bu

)
du ∼

√
π

3
22/3a1/6b−2/3t1/6 exp(−3a1/3b2/32−2/3t1/3). (2.3)

This follows from Eq. (2.2) and after making the change of variables u = (atb−1)1/3x .
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Finally, we obtain, as t → ∞,∫
∞

0
u exp

(
−

at

u2 − bu

)
du ∼ 2

√
π

3
a1/2b−1t1/2 exp(−3a1/3b2/32−2/3t1/3). (2.4)

3. Iterated Brownian motion in bounded domains

If D ⊂ Rn is an open set, write

τ±

D (z) = inf{t ≥ 0 : X±
t + z 6∈ D},

and if I ⊂ R is an open interval, write

ηI = η(I ) = inf{t ≥ 0 : Yt 6∈ I }.

Recall that τD(Z) stands for the first exit time of iterated Brownian motion from D. As in
DeBlassie [13, Section 3], we have by the continuity of the paths for Z t = z + X (Yt ), if f
is the probability density of τ±

D (z),

Pz[τD(Z) > t] =

∫
∞

0

∫
∞

0
P0[η(−u,v) > t] f (u) f (v)dvdu. (3.1)

The proof of Theorem 1.1. The following is well known:

P0[η(−u,v) > t] =
4
π

∞∑
n=0

1
2n + 1

exp
(

−
(2n + 1)2π2

2(u + v)2
t

)
sin

(2n + 1)πu

u + v
, (3.2)

(see [17, pp. 340–342]).
Let ε > 0. From Lemma 6.1, choose M > 0 so large that

(1 − ε)
4
π

e−
π2t

2 sinπx ≤ Px [η(0,1) > t] ≤ (1 + ε)
4
π

e−
π2t

2 sinπx, (3.3)

for t ≥ M , uniformly x ∈ (0, 1). Letting 0 < δ < 1/2, from the Jordan inequality for the sine
function in the interval (0, π/2],

2x ≤ sinπx ≤ πx, x ∈ (0, δ]. (3.4)

For a bounded domain with a regular boundary, it is well known (see [23, pp. 121–127]) that
there exists an increasing sequence of eigenvalues, λ1 < λ2 ≤ λ3 · · ·, and eigenfunctions ψk
corresponding to λk such that,

Pz[τD ≤ t] =

∞∑
k=1

exp(−λk t)ψk(z)
∫

D
ψk(y)dy. (3.5)

From the arguments in [13, Lemma A.4],

f (t) =
d
dt

Pz[τD ≤ t] =

∞∑
k=1

λk exp(−λk t)ψk(z)
∫

D
ψk(y)dy. (3.6)

Finally, choose K > 0 so large that

A(z)(1 − ε) exp(−λDu) ≤ f (u) ≤ A(z)(1 + ε) exp(−λDu)
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for all u ≥ K , where

A(z) = λ1ψ1(z)
∫

D
ψ1(y)dy = λDψ(z)

∫
D
ψ(y)dy.

We further assume that t is so large that K < δ
√

t/M . Define A for δ < 1/2, K > 0 and M > 0
as

A =

{
(u, v) : K ≤ u ≤ δ

√
t

M
,

1 − δ

δ
u ≤ v ≤

√
t

M
− u

}
.

On the set A, since δ < 1/2, we have v ≥ ( 1
δ
−1)u > u > K and u +v > u

δ
; this gives u

u+v
≤ δ.

By Eqs. (3.3) and (3.4), Pz[τD(Z) > t] = P[η(−τ−

D (z),τ
+

D (z))
> t] is

≥ C1
∫ δ

√
t/M

K

∫ √
t/M−u

(1−δ)u/δ

u

(u + v)
exp

(
−

π2t

2(u + v)2

)
exp(−λD(u + v))dvdu,

where C1
= C1(z) = 4(4/π)A(z)2(1 − ε)3. Changing the variables x = u + v, z = u, the

integral is

= C1
∫ δ

√
t/M

K

∫ √
t/M

z/δ

z

x
exp

(
−
π2t

2x2

)
exp(−λDx)dxdz,

and, reversing the order of integration,

= C1
∫ √

t/M

K/δ

∫ δx

K

z

x
exp

(
−
π2t

2x2

)
exp(−λDx)dzdx

= C1/2
∫ √

t/M

K/δ

1
x

exp
(

−
π2t

2x2

)
exp(−λDx)(δ2x2

− K 2)dx

≥ δ2C1/2
∫ √

t/M

K/δ
x exp

(
−
π2t

2x2

)
exp(−λDx)dx − I,

where

I = (C1/2)K 2
∫

∞

0

1
x

exp
(

−
π2t

2x2

)
exp(−λDx)dx .

From the Laplace transform method, Eq. (2.1), there exists C0 > 0 such that, as t → ∞,

I ∼ C0t−1/6 exp
(

−
3
2
π2/3λ

2/3
D t1/3

)
. (3.7)

From Eq. (2.4), as t → ∞,∫
∞

0
x exp

(
−
π2t

2x2

)
exp(−λDx)dx ∼ 2

√
π

3

(
π2

2

)1/2

λ−1
D t1/2 exp

(
−

3
2
π2/3λ

2/3
D t1/3

)
.

(3.8)

Now, for some c1 > 0,∫ K/δ

0
x exp

(
−
π2t

2x2 − λDx

)
dx
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≤ e−π2δ2t/2K 2
∫ K/δ

0
x exp(−λDx)dx . e−c1t , (3.9)

and ∫
∞

√
t/M

x exp
(

−
π2t

2x2

)
exp(−λDx)dx ≤

∫
∞

√
t/M

x exp(−λDx)dx

= (
√

t/Mλ−1
D + λ−2

D ) exp(−λD
√

t/M). (3.10)

Now, from Eqs. (3.7)–(3.10), we get

lim inf
t→∞

t−1/2 exp
(

3
2
π2/3λ

2/3
D t1/3

)
Pz[τD(Z) > t]

≥ δ2(C1/2)2

√
π

3

(
π2

2

)1/2

λ−1
D . (3.11)

For the upper bound for P[τD(Z) > t] from Eq. (3.10) in [13],

Pz[τD(Z) > t] = 2
∫

∞

0

∫
∞

u
P u

u+v

[
η(0,1) >

t

(u + v2)

]
f (u) f (v)dvdu. (3.12)

We define the following sets that make up the domain of integration:

A1 = {(u, v) : v ≥ u ≥ 0, u + v ≥
√

t/M},

A2 = {(u, v) : u ≥ 0, v ≥ K , u ≤ v, u + v ≤
√

t/M},

A3 = {(u, v) : 0 ≤ u ≤ v ≤ K }.

Over the set A1 we have, for some c > 0,∫ ∫
A1

P u
u+v

[
η(0,1) >

t

(u + v)2

]
f (u) f (v)dvdu

≤

∫ ∫
A1

f (u) f (v)dvdu ≤ exp(−c
√

t/M). (3.13)

The Eq. (3.13) follows from the distribution of τD from Lemma 2.1 in [22].
Since on A3, t/(u + v)2 ≥ M ,∫ ∫

A3

P u
u+v

[
η(0,1) >

t

(u + v)2

]
f (u) f (v)dvdu

≤

∫ K

0

∫ K

0
exp

(
−

π2t

2(u + v)2

)
f (u) f (v)dvdu.

≤ exp
(

−
π2t

8K 2

) ∫ K

0

∫ K

0
f (u) f (v)dvdu ≤ exp

(
−
π2t

8K 2

)
. (3.14)

Let C1 = C1(z) = 2π(4/π)A(z)2(1 + ε)3. For the integral over A2 we get,∫ ∫
A2

P u
u+v

[
η(0,1) >

t

(u + v)2

]
f (u) f (v)dvdu

≤ C1

∫ K

0

∫ √
t/M−u

K
f (u) exp

(
−

π2t

2(u + v)2
− λDv

)
dvdu
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+ C1

∫ 1/2
√

t/M

K

∫ √
t/M−u

u

u

u + v
exp

(
−

π2t

2(u + v)2
− λD(u + v)

)
dvdu

= I + I I. (3.15)

Changing variables u + v = z, u = w,

I =

∫ K

0

∫ √
t/M−u

K
exp

(
−

π2t

2(u + v)2

)
f (u) exp(−λDv)dvdu

≤

∫ K

0

∫ √
t/M

w+K
exp

(
−
π2t

2z2

)
f (w) exp(−λDz) exp(λDw)dzdw

≤ exp(λD K )
∫ K

0
f (w)dw

∫
∞

0
exp

(
−
π2t

2z2

)
exp(−λDz)dz

. t1/6 exp
(

−
3
2
π2/3λ

2/3
D t1/3

)
. (3.16)

Eq. (3.16) follows from Eq. (2.3), with a = π2/2, b = λD .
Changing variables u + v = z, u = w,

I I = C1

∫ 1/2
√

t/M

K

∫ √
t/M−u

u

u

(u + v)
exp

(
−

π2t

2(u + v)2
− λD(u + v)

)
dvdu

≤ C1

∫ 1/2
√

t/M

K

∫ √
t/M

2w

w

z
exp

(
−
π2t

2z2 − λDz

)
dzdw

= C1

∫ √
t/M

2K

∫ z/2

K

w

z
exp

(
−
π2t

2z2 − λDz

)
dwdz (3.17)

≤ C1/8
∫ √

t/M

2K
z exp

(
−
π2t

2z2 − λDz

)
dz

≤ (1 + ε)(C1/8)2

√
π

3

(
π2

2

)1/2

λ−1
D t1/2

(
−

3
2
π2/3λ

2/3
D t1/3

)
. (3.18)

Eq. (3.17) follows by changing the order of the integration. Also, Eq. (3.18) follows from
Eq. (2.4).

Now, from Eqs. (3.13), (3.14), (3.16) and (3.18) we obtain

lim sup
t→∞

t−1/2 exp
(

3
2
π2/3λ

2/3
D t1/3

)
Pz[τD(Z) > t]

≤ (1 + ε)

(
C1

8

)
2

√
π

3

(
π2

2

)1/2

λ−1
D . (3.19)

Finally, from Eqs. (3.11) and (3.19) and letting ε → 0, δ → 1/2,

2C(z) ≤ lim inf
t→∞

t−1/2 exp
(

3
2
π2/3λ

2/3
D t1/3

)
Pz[τD(Z) > t]

≤ lim sup
t→∞

t−1/2 exp
(

3
2
π2/3λ

2/3
D t1/3

)
Pz[τD(Z) > t] ≤ πC(z),

where C(z) = λD
√

2π/3(ψ(z)
∫

D ψ(y)dy)2. �
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4. The process Z1
t ; Brownian-time Brownian motion

In this section we study Brownian-time Brownian motion (BTBM), Z1
t started at z ∈ R. Let

X t and Yt be two independent one-dimensional Brownian motions, all started at 0. BTBM is
defined to be Z1

t = x + X (|Yt |). In Rn , we require X to be independent one-dimensional iterated
Brownian motions. If D ⊂ Rn is an open set, write

τD(z) = inf{t ≥ 0 : X t + z 6∈ D},

and if I ⊂ R is an open interval, we write

ηI = inf{t ≥ 0 : Yt 6∈ I }.

Let τD(Z1) stand for the first exit time of BTBM from D. We have, by the continuity of paths,

Pz[τD(Z
1) > t] = P[η(−τD(z), τD(z)) > t]. (4.1)

Theorem 4.1. Let 0 < β. Let ξ be a positive random variable such that

− log P[ξ > t] ∼ ctβ , as t → ∞.

If ξ is independent of the Brownian motion Y , then

− log P[η(−ξ,ξ) > t] ∼ 2−
2β

2+β

(
2 + β

2

)
c2/(2+β)β−β/(2+β)π2β/(2+β)tβ/(2+β),

as t → ∞.

Proof. The proof follows similar to the proof of Theorem 3.1 in [22], by integration by parts,

P[η(−ξ,ξ) > t] =

∫
∞

0

d
du

P0(η(−u,u) > t)P[ξ > u]du. (4.2)

We use the distribution of η(−u,u) given in (3.2). We use the asymptotics from Eq. (6.1) on the
set A = {u > 0 : K ≤ u ≤

√
t/M}. For the lower bound we use Lemma 2.4 in [22], but for the

upper bound we use the deBruijn Tauberian Theorem as in [22, Lemma 2.2]. �

From Theorem 4.1 we obtain similar results for the asymptotic distribution of the first exit
time of Z1 from the interior of several open sets D ⊂ Rn .

Corollary 4.1. Let 0 < α < 1. Let Pα = {(x, Y ) ∈ R × Rn−1
: x > 0, |Y | < Axα}. Then, for

z ∈ Pα ,

lim
t→∞

t
−

(
1−α
3+α

)
log Pz[τα(Z

1) > t] = −2

(
2α−2
3+α

) (
3 + α

2 + 2α

) (
1 + α

1 − α

)(
1−α
3+α

)
π

(
2−2α
3+α

)
l

(
2+2α
3+α

)
,

where l is the limit given by (1.2).

Corollary 4.2. Let D ⊂ R2 be a twisted domain with growth radius γ r p, γ > 0, 0 < p < 1.
Then, for z ∈ D,

lim
t→∞

t
−

(
1−p
p+3

)
log Pz[τD(Z

1) > t] = −2

(
2p−2
3+p

) (
3 + p

2 + 2p

) (
1 + p

1 − p

)(
1−p
3+p

)
π

(
2−2p
3+p

)
l

(
2+2p
3+p

)
1 ,

where l1 is the limit given by the limit in [14, Theorem 1.1].
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Remark 4.1. Notice that there is only a constant difference in the limit of the asymptotic
distribution of τD(Z) and in that of τD(Z1) (compare with the results in Nane [22]).

Proof of Theorem 1.2. From Eqs. (3.2), (3.6) and (4.1),

Pz[τD(Z
1) ≤ t] =

∫
∞

0
P0[η(−u,u) > t] f (u)du

=
4
π

∞∑
k=1

∞∑
n=0

(−1)n

2n + 1
λkψk(z)

∫
D
ψk(y)dy

∫
∞

0
exp

(
−
(2n + 1)2π2t

8u2 − λku

)
du. (4.3)

From Eq. (2.3), for each n, k we have, with a =
(2n+1)2π2

8 and b = λk ,∫
∞

0
exp

(
−
(2n + 1)2π2t

8u2 − λku

)
du

∼ π5/621/63−1/2(2n + 1)1/3λ−2/3
k t1/6 exp

(
−

3
2
(2n + 1)2/3π2/3λ

2/3
k 2−2/3t1/3

)
.

With this, Eq. (4.3) becomes∫
∞

0
P0[η(−v,v) > t] f (v)dv

∼
4
π

∞∑
k=1

∞∑
n=0

(−1)n

2n + 1
λkψk(z)

∫
D
ψk(y)dy

×π5/621/63−1/2(2n + 1)1/3λ−2/3
k t1/6 exp

(
−

3
2

2−2/3(2n + 1)2/3π2/3λ
2/3
k t1/3

)
. (4.4)

To get the desired result, we must prove that the following series converge absolutely, which
implies that the first term in the series in (4.4) is the dominant term,

∞∑
k=1

∞∑
n=0

(2n + 1)−2/3λ
1/3
k exp

(
−

3
2

2−2/3(2n + 1)2/3π2/3λ
2/3
k δ/2

)
< ∞.

The series in n for k fixed is
∞∑

n=0

(2n + 1)−2/3 exp
(

−
3
2

2−2/3(2n + 1)2/3π2/3λ
2/3
k δ/2

)

≤

exp
(
−

3
2 2−2/3π2/3λ

2/3
k δ/2

)
1 − exp

(
−

3
2π

2/3λ
2/3
1 δ/2

) .
Since, for δ > 0,

∞∑
k=1

exp
(

−
3
2

2−2/3π2/3λ
2/3
k δ/3

)
≤ ∞,

we are done. This follows from Weyl’s asymptotic formula for the eigenvalues λk , λk ≥

Cn,Dkn/2, see [10], where Cn,D depends only on the dimension n and the domain D, independent
of k. From the above Eq. (4.4), the constant C(λD) = π−1/6213/63−1/2λ

1/3
D , where λD = λ1 is

the first eigenvalue of the Dirichlet Laplacian in D. �
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5. Comparison of IBM and BTBM

Proof of Theorem 1.3. From Eq. (3.10) in [13], we get

Pz[τD(Z) > t] = 2
∫

∞

0

∫
∞

u
P0[η(−u,v) > t] f (u) f (v)dvdu

≤ 2
∫

∞

0

∫
∞

u
P0[η(−v,v) > t] f (u) f (v)dvdu (5.1)

≤ 2
∫

∞

0

∫
∞

0
P0[η(−v,v) > t] f (u) f (v)dvdu

= 2
∫

∞

0
P0[η(−v,v) > t] f (v)dv

= 2Pz[τD(Z
1) > t]. (5.2)

The inequality (5.1) follows from the fact that (−u, v) ⊂ (−v, v). The equality (5.2) follows
from Eq. (4.1). �

Let φ be an increasing function. If we multiply the inequality in the Theorem 1.3 by the
derivative of φ and integrate in time, we get

Ez(φ(τD(Z))) ≤ 2Ez(φ(τD(Z
1))).

In particular, for p ≥ 1,

Ez((τD(Z))
p) ≤ 2Ez((τD(Z

1))p).

6. Asymptotics

In this section we will prove some lemmas that were used in Sections 3 and 4. The following
lemma is proved in [13, Lemma A1] (it also follows from more general results on “intrinsic
ultracontractivity”). We include it for completeness.

Lemma 6.1. As t → ∞,

Px [η(0,1) > t] ∼
4
π

e−
π2t

2 sinπx, uniformly for x ∈ (0, 1).

We will next prove similar results to Nane [22, Lemma 4.2] that will be used for the process
Z1.

Lemma 6.2. Let B = {u > 0 : t/u2 > M} for M large. Then, on B,

d
du

P0[η(−u,u) > t] ∼ exp
(

−
π2t

8u2

)
π t

u3 . (6.1)

Proof. If we differentiate P0[η(−u,u) > t], which is given in (3.2), we get

d
du

P0[η(−u,u) > t] =
π t

u3

∞∑
n=0

(2n + 1)(−1)n exp
(

−
(2n + 1)2π2

8u2 t

)
.

The result follows from this. �
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[11] E. Csàki, M. Csörgő, A. Földes, P. Révész, The local time of iterated Brownian motion, J. Theoret. Probab. 9 (3)

(1996) 717–743.
[12] R.D. DeBlassie, Exit times from cones in Rn of Brownian motion, Probab. Theory Related Fields 74 (1987) 1–29.
[13] R.D. DeBlassie, Iterated Brownian motion in an open set, Ann. Appl. Probab. 14 (3) (2004) 1529–1558.
[14] R.D. DeBlassie, R. Smits, Brownian motion in twisted domains, Trans. Amer. Math. Soc. 357 (3) (2005)

1245–1274.
[15] N.G. De Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., Amsterdam, 1957.
[16] N. Eisenbum, Z. Shi, Uniform oscillations of the local time of iterated Brownian motion, Bernoulli 5 (1) (1999)

49–65.
[17] W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 1971.
[18] D. Khoshnevisan, T.M. Lewis, Stochastic calculus for Brownian motion in a Brownian fracture, Ann. Appl. Probab.

9 (3) (1999) 629–667.
[19] D. Khoshnevisan, T.M. Lewis, Chung’s law of the iterated logarithm for iterated Brownian motion, Ann. Inst. H.
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