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a b s t r a c t

In Spescha and Strahm (2009) [15], a system PET of explicit mathematics in the style of
Feferman (1975, 1978) [6,7] is introduced, and in Spescha and Strahm (in press) [16] the
addition of the join principle to PET is studied. Changing to intuitionistic logic, it could
be shown that the provably terminating operations of PETJi are the polytime functions on
binarywords. However, although strongly conjectured, it remained openwhether the same
holds true for the corresponding theory PETJ with classical logic. This note supplements a
proof of this conjecture.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In Spescha and Strahm [15], a system PET of explicitmathematics in the style of Feferman [6,7] is presented. PET, a natural
extension of the first order applicative theory PT introduced and analyzed by Strahm [17,18], formalizes aweak explicit type
system with restricted elementary comprehension so that its provably terminating operations coincide with the functions
on binary words that are computable in polynomial time. In Spescha [14] and Spescha and Strahm [16] the addition of the
join principle to PET is studied. Changing to intuitionistic logic, it could be shown that the provably terminating operations
of PETJi are the polytime functions on binary words. However, although strongly conjectured, it remained open whether
the same holds true for the corresponding theory PETJwith classical logic. This note supplements a proof of this conjecture.
More precisely, we show that for each term t ,

PT ⊢ t ∈ (Wn
→ W) ⇐⇒ PETJ ⊢ t ∈ (Wn

→ W),

where t ∈ (Wn
→ W) is short for (∀x1, . . . , xn ∈ W)(tx1 · · · xn ∈ W). By [17], we then know that PETJ ⊢ t ∈

(Wn
→ W) iff there exists a polytime function F : Wn

→ W on the standard words so that for all w1, . . . , wn ∈ W,
PT ⊢ F (w1, . . . , wn) = tw1 · · · wn.

PT is an applicative theory that formalizes a combinatory algebra featuring the combinators k and s, and additionally
describes the structure of binary words (W, ϵ, 0, 1, S0, S1, +, ×, ⊑) equipped with the two successor functions Si(w) = wi
(i ∈ {0, 1}), word concatenation, wordmultiplication and an initial subword relation. This is implemented by adding a unary
relation symbol W to recognize words, and terms to perform the indicated operation and to decide the subword relation.
Further, s ≤ t := 0 × s ⊑ 0 × t and s ≤W t := W(s) ∧ s ≤ t .
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Further, the theory PT is equipped with the following induction principle: if g ∈ (W → W), B is positive andW-free and
X := {x : (∃y ≤W gx)B(g, x, y)}, then

Prog@(X) → W ⊆ X, (Σb
W-I)

where Prog@(X) := ϵ ∈ X ∧ (∀x ∈ W)(x ∈ X → s0x ∈ X ∧ s1x ∈ X). This partly technically motivated induction
principle allows us to prove that each polytime function can be represented by a term tF ∈ (Wn

→ W). We consider it more
convenient to work with the induction principle (S-I) instead, which states induction for so-called simple formulas: if A is
a positive formula that does not contain the variable v, then Av is simple, where Av is obtained from A by replacing each
occurrence of W(s) by s ≤W v. Accordingly, for each word b, the class X := {x : Ab(x)} is called simple. The word b is also
referred to as a bound for X . The theory PTS is obtained from PT by replacing its induction principle by induction on notation
for simple classes. We will see that PTS proves each instance of the induction principle of PT and still has the same provably
terminating operations.

However, more important to the determination of the provably total operations of PETJ is the observation that the
provably terminating operations of PTS are not affected by a further strengthening with the bounding principle (BP) which
asserts that each simple class X ⊆ W is bounded by some word w: for each simple formula Av(u) of the language L of PT,

(∀b ∈ W)(∃c ∈ W)[∀x(Ab(x) → x ∈ W) → ∀x(Ab(x) → x ≤ c)]. (BP)

To formulate the theory PET, the language of PT is enriched by second order variables intended to range over types, which
are tied to the first order part by a naming relation R(U, s), stating that s is a name of the typeU . Further, there are additional
constants to generate names of types. The type existence principles of PET are such that each simple class is a type. Therefore,
it is straightforward to extend a model of PTS to a model of PET where each type is simple. However, if a is a name and
(∀x ∈̇ a)∃XR(X, gx), then the additional join principle of PETJ claims that X := {(x, y) : x ∈̇ a ∧ y ∈̇ gx} is a type. Now each
sequence (wx : x ∈̇ a) of bounds for the types (gx : x ∈̇ a) may be unbounded inW and X may not be simple. Yet, as we shall
show, for eachmodel E′ of PT+ (BP) there is an elementary equivalent model E that extends to a model of PETJwhere each
type is simple. This validates the aforementioned conjecture.

The provably terminating operations of PT+ (BP) are determined considering the auxiliary theory PTĎS+ I, which proves
each instance of (BP) and whose provably total functions coincide with those of PT. Thereby, PTĎS extends PTS by asserting
that exponentiation is not a total operation on words, i.e. exp /∈ (W → W), where exp is a fixed term so that exp ϵ = 0
and exp(wi) = expw+ expw for each word w and i ∈ {0, 1}. And the induction principle (I) applies also to classes that
are defined by searching for a word in the downset X↓ of some simple class X ⊆ W, where X↓ := {x : (∃y ∈ X)(x ≤W y)}.
PTĎS+ I then entails (BP): the strengthening of PTS by the assertion exp /∈ (W → W) ensures that W is not simple, for
otherwise, also Y := {x : (∃y ∈ W)(exp x = y)} would be simple, and exp ∈ (W → W) would follow by (S-I). And
exp /∈ (W → W) in conjunction with (I) ensures that no simple class X ⊆ W is unbounded, for otherwise, X↓ = W and the
progressivity of Y together with (I) would implyW ⊆ Y .

We would like to point out that a similar strengthening for applicative theories is used in Probst [13] to prove the
existence of pseudo-hierarchies in subsystems of explicit mathematics. There, the subsystem EMA of explicit mathematics
which formalizes a Mahlo universe is strengthened to EMAĎ by the assertion ¬TI▹(|T|), stating that transfinite induction up
to the proof-theoretic ordinal of EMA fails (which by the way is ϕω00 as shown in Jäger and Strahm [12]). That the provably
total operations of PT and PTĎ coincide can be seen as an analog to the observation that EMA and EMAĎ have still the same
proof-theoretic ordinal (cf. Jäger and Probst [11]).

The paper is organized as follows: Section 2 recalls the theory PT, Section 3 takes a first glance at the theory PETJ, and in
Section 4 we present the boundedness principle (BP) and the auxiliary theory PTĎS+ I which proves each instance of (BP).
The interlude in Section 5 elaborates on the observation that PT0 and PT prove the same positive ∃-sequents (sequents
without ∀-quantifiers), where PT0 is PT with induction restricted to formulas without ∀-quantifiers. In Section 6, we show
that PTĎS+ I and PT+ (UP) prove the same positive sequents, where (UP) denotes Cantini’s uniformity principle (cf. [4]) that
claims for each positive formula A(u, v),

∀x(∃y ∈ W)A(x, y) → (∃y ∈ W)∀xA(x, y). (UP)

Further, we prove that PTĎS+ I and PT0 derive the same positive ∃-sequents; in particular they still have the same provably
terminating operations. In Section 7 we then conclude with a transformation of a model of PT into a model of PETJ which
preserves the validity of first order formulas.

2. The theory PT

The theory PT is introduced and analyzed in Strahm [17]. Among other things, it is shown there that each polytime
function can be represented by a term of PT, and further, by providing a realization interpretation of PT in the open term
model M(λη), that the provably total operations of PT are the operation on words computable in polynomial time. As
introduced in [17], the underlying logic of PT is the logic of partial terms due to Beeson [1,2]. From a conceptual point
of view, it is natural to regard terms as possibly non-terminating operations, yet from a technical viewpoint it is simpler to
deal with the extension PT+ (tot) which claims that application is total (i.e. ∀x, y(x · y)↓) so that each term has a value. This
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allows us to formulate a corresponding theory that we also denote by PT, but whose underlying logic is classical predicate
logic. The presentation of this theory is the purpose of this section.

The theory PT is an applicative theory that formalizes a combinatory algebra featuring the combinators k and s, and
in addition, specifies the structure (W, ϵ, 0, 1, S0, S1, +, ×, ⊑), where W = {0, 1}∗ is the set of finite binary words, ϵ is
the empty word, S0(w) = w0 and S1(w) = w1 are the two successor functions, v+w = vw is word concatenation and
v×w is word multiplication which concatenates v the length |w| of w times with itself. Further, v ⊑ w states that v is
an initial subword of w, that is, w is of the form vv′ for some word v′. PT is formulated in the first order language L that
contains the constants k, s (combinators), p, p0, p1 (pairing and projections) dW (definition by cases on binary words), ϵ
(empty word), s0, s1 (binary successors), pW (binary predecessor), +, × (word concatenation and multiplication), and c⊑

(initial subword relation). Further, L is equipped with a unary relation symbolW (binary words), a binary relation symbol =
(equality) and a binary function symbol · (application). The lower case letters a, b, c, x, y, z, u, v, w, g, h, . . . (possibly with
subscripts) are used to denote variables. The terms of L, usually denoted by r, s, t, . . ., are inductively generated from the
variables and the constants by means of application ·. We keep writing st or s(t) for ·(s, t), and similarly s+t and s×t for
+st and ×st . The formulas A, B, C, . . . are built from the atoms s = t , W(s) and the negated atoms ∼(s = t), ∼W(s) by
closing under conjunction, disjunction and quantification. Positive formulas are build from (positive) atoms only. ∼(s = t)
is usually written as s ≠ t and negation is defined using de Morgan’s law and the law of double negation. The connectives
→ and ↔ are defined in the usual way. Formulas that do not contain the relation symbolW are calledW-free. As usual, we
write t[s⃗/u⃗] and A[s⃗/u⃗] for the term and formula obtained from t and A by substituting all occurrences of the terms s⃗ for
the variables u⃗. If a formula was introduced as A(u⃗), then A(s⃗) is short for A[s⃗/u⃗]. Further, 0 := s0ϵ, 1 := s1ϵ, (s, t) := pst ,
(s1, . . . , sn, sn+1) := (s1, (s2, . . . , sn+1)), (s)0 := p0s, (s)1 := p1s, s ⊑ t := c⊑st = 0, s ≤ t := 0×s ⊑ 0×t , and
W(t1, . . . , tn) and t1, . . . , tn ∈ W are shorthand notations for W(t1), . . . ,W(tn). Finally, s ≤W t := W(s) ∧ s ≤ t .

The underlying logic of PT is classical logic. Following Strahm [17], we formulate PT in Gentzen’s classical sequent
calculus LK. We assume that the reader is familiar with LK as it is presented, for example, in Girard [10]. Sequents are
formal expressions of the form Γ ⇒ ∆, where Γ , ∆, . . . range over finite sequences of formulas of L. As usual, the intended
interpretation of a sequent A1, . . . , Am ⇒ B1, . . . , Bn is that


1≤i≤n Ai entails


1≤i≤m Bi. Further, if Γ = A1, . . . , An, then

SET(Γ ) = {A1, . . . , An}. Instead of ∅ ⇒ Γ and Γ ⇒ ∅, we just write Γ and Γ ⇒, respectively. Also, we just mention the
main formulas of the axioms, that is, if Γ ⇒ ∆ is a displayed sequent in a subsequent list of axioms, then also Γ ′

⇒ ∆′ is
an axiom if SET(Γ ) ⊆ SET(Γ ′) and SET(∆) ⊆ SET(∆′). Similarly for rules: the inference

Γi ⇒ ∆i (i ∈ I)
Γ ⇒ ∆

!u!

indicates that
Γ ′

i ⇒ ∆′

i (i ∈ I)
Γ ′ ⇒ ∆′

is a rule provided

(i) u /∈ FV(Γ ′, ∆′),
(ii) SET(Γi) ⊆ SET(Γ ′

i ) and SET(∆i) ⊆ SET(∆′

i) (i ∈ I),
(iii) SET(Γ ) ∪


i∈I(SET(Γ

′

i ) − SET(Γi)) ⊆ SET(Γ ′),
(iv) SET(∆) ∪


i∈I(SET(∆

′

i) − SET(∆i)) ⊆ SET(∆′).

The logical rules of LK are listed below. t ranges over terms, A over atoms and B, C range over formulas of L:

⇒

A ⇒ A
⇒ B

¬B ⇒
(¬L)

B ⇒

⇒ ¬B
(¬R)

⇒ B B ⇒

⇒

⇒ B, C
⇒ B ∨ C

B, C ⇒

B ∧ C ⇒

⇒ B ⇒ C
⇒ B ∧ C

B ⇒ C ⇒

B ∨ C ⇒

⇒ B(t)
⇒ ∃xB(x)

⇒ B(u)
⇒ ∀xB(x)

!u!
B(u) ⇒

∃xB(x) ⇒
!u!

B(t) ⇒

∀xB(x) ⇒

⇒ B, C
⇒ C, B

B, C ⇒

C, B ⇒

⇒ B, B
⇒ B

B, B ⇒

B ⇒
.

Next, we present the non-logical axioms of PT−, i.e. PTwithout induction. Sequents are separated by ‘‘;’’ and r, s, t range
over terms of L. The theory PT− comprises the axioms listed below.

(i) s = s; s = t ⇒ t = s; s = t, t = r ⇒ s = r; s = t,W(s) ⇒ W(t).
(ii) kst = s; srst = (rt)(st); p0(s, t) = s; p1(s, t) = t .
(iii) W(r),W(s), r = s ⇒ dWt1t2rs = t1; W(r),W(s) ⇒ r = s, dWt1t2rs = t2.
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(iv) W(ϵ); pWϵ = ϵ; W(s) ⇒ W(sis) (i ∈ {0, 1}); W(s) ⇒ W(pW(s)).
W(s) ⇒ pW(sis) = s (i ∈ {0, 1}); W(s) ⇒ ϵ = s, s0(pWs) = s, s1(pWs) = s.
W(s), s0s = s1s ⇒; W(s), s0s = ϵ ⇒; W(s), s1s = ϵ ⇒.

(v) W(r),W(s) ⇒ c⊑rs = 0, c⊑rs = 1; W(s), c⊑sϵ = 0 ⇒ s = ϵ and c⊑ϵϵ = 0.
W(r),W(s), c⊑rs = 0 ⇒ c⊑r(pWs) = 0, r = s.
W(r),W(s), c⊑r(pWs) = 0 ⇒ c⊑rs = 0.

(vi) W(r),W(s) ⇒ W(r+s),
W(s) ⇒ s+ϵ = s; W(r),W(s) ⇒ r+(sis) = si(r+s) (i ∈ {0, 1}).

(vii)W(r),W(s) ⇒ W(r×s),
W(s) ⇒ s×ϵ = ϵ and W(r),W(s) ⇒ r×(sis) = (r×s)+s (i ∈ {0, 1}).

We point out that the main formulas of all non-logical axioms and rules (including equality) are positive, so that a
standard partial cut-elimination argument allows us to restrict to derivations where all cut-formulas are positive. If we are
only interested in positive sequents, then also both ¬-rules are admissible. We write

∗
Γ ⇒ ∆ to indicate that Γ ⇒ ∆ is

the end-sequent of a derivation where all cut-formulas are positive and no ¬-rule is used.

Lemma 1 (Partial Cut-Elimination). If Γ ⇒ ∆ is a positive sequent of L formulas, then PT ⊢ Γ ⇒ ∆ iff PT
∗

Γ ⇒ ∆.

The following two lemmas are folklore, too.

Lemma 2 (λ-Abstraction). For each L term t and all variables u there is an L term λx.t[x/u] with FV(λx.t[x/u]) = FV(t)−{u},
so that PT− proves (λx.t[x/u])u = t.

Lemma 3 (Recursion). There exists a closed term rec of L so that PT− proves recfx = f (recf )x.

One of the design goals of PT has been that the provably total functions on words are exactly the polytime functions on
words as characterized by Cobham [5]. Depending on constants c⃗ = c1, . . . , cm, meant to denote words, we inductively
define a setPTc⃗ of function symbols. In a second step, we assign to each function symbol F n

∈ PTc⃗ (where the superscript n

indicates that F is an n-ary function symbol) a function F : Wn
→ W on the standard words and an L term f ∈ (Wn

→ W)
that represents F , i.e. for all w⃗ ∈ W,

PTc⃗ ⊢ F (w⃗) = f (w1, . . . , wn),

where Tc⃗ denotes the theory T + W(c⃗), ϵ := ϵ, and wi := siw (i ∈ {0, 1}). The set PTc⃗ contains the 0-ary function symbols
ci (1 ≤ i ≤ m), function symbols Pn

i (n > i) for projections, and binary function symbols for +, × and the characteristic
function CHR2

⊑
of ⊑ restricted to words. Further, if Gm, F n

1 , . . . , F n
m ∈ PTc⃗ , then CMP(G, F1, . . . , Fm) is an n-ary function

symbol which is in PTc⃗ , and if F n+2
0 , F n+2

1 ,Gn, Bn+1
∈ PTc⃗ , then BRC(F ,G, B) is an n+1-ary function symbol which is in

PTc⃗ . If c⃗ = ϵ, 0, 1, then we just write PT for PTc⃗ , and if c⃗ = ϵ, 0, 1, α, then we write PTα instead. In the following, α will
denote a non-standard word so that expα /∈ W.

With each symbol F n
∈ PT we associate a function fun(F) : Wn

→ W in the expected way. If F ,G,H are function
symbols, then we simply write F , G, H instead of fun(F), fun(G), fun(H) for the corresponding functions. To the constants
ϵ, 0, 1 we assign ϵ, 0, 1 ∈ W, Pi(w1, . . . , wn) := wi, CHR⊑(v, w) ∈ {0, 1} and CHR⊑(v, w) = 0 iff v ⊑ w, and + and
× are word concatenation and word multiplication. If F n

= CMP(Gm, F n
1 , . . . , F n

m), then F := CMP(G, F1, . . . , Fm) and if
Hn+1

= BRC(F n+2
0 , F n+2

1 ,Gn, Bn+1), then H := BRC(F0, F1, G, B). Thereby,

F (x⃗) := G(F1(x⃗), . . . , Fm(x⃗)),
H(x⃗, ϵ) := G(x⃗), and
H(x⃗, yi) := Fi(x⃗, y, H(x⃗, y))|B(x⃗, y) for i ∈ {0, 1},

where x|z denotes the truncation of x to the length |z| of z. The set of polytime functions on W is given by {F : F ∈ PT }.
To represent the polytime functions in PTc⃗ , we assign to each function symbol F n

∈ PTc⃗ a closed term f := Term(F)
of L(c⃗). Again, we write f , g, h instead of Term(F), Term(G), Term(H). For a constant ci, Term(ci) := ci, Term(Si) := si
(i ∈ {0, 1}) and chr⊑ := λx.c⊑(x)0(x)1. Further,

Term(CMP(G, F1, . . . , Fn)) := cmp(g, f1, . . . , fn),
Term(BRC(F0, F1,G, B)) := brc(f0, f1, g, b),

where cmp, brc and Term(Pi) satisfy the expected equations. PT− proves that such terms exist. Strahm [17] gives an explicit
construction of these terms. Induction on notations is required to show that for F n+2

0 , F n+2
1 ,Gn, Bn+1

∈ PTc⃗ ,

f0 ∈ (Wn+2
→ W) ∧ f1 ∈ (Wn+2

→ W) ∧ g ∈ (Wn
→ W) ∧ b ∈ (Wn+1

→ W)

→ brc(f0, f1, g, b) ∈ (Wn+1
→ W).

In particular, one has to prove that

(∀y ∈ W)(∃z ≤W b(x⃗, y))(brc(f0, f1, g, b)(x⃗, y) = z).
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Therefore, PT is equipped with the induction rule (Σb
W-I), which claims for each formula A(u) := (∃y ≤W tu)B(t, u, y),

y /∈ FV(t), B positive and W-free,

W(u) ⇒ W(tu) ⇒ A(ϵ) W(u), A(u) ⇒ A(siu)
W(s) ⇒ A(s)

!u!. (Σb
W-I)

It is detailed in [17] how this induction principle entails that f ∈ (Wn
→ W) for each F n

∈ PT . Analogously, PTc⃗ proves
f ∈ (Wn

→ W) for each F n
∈ PTc⃗ . Hence, we can assign to each such function symbol F n and each model E = (V,W, . . .)

of PTc⃗ a function F := fun(F , E) : Wn
→ W, F (w1, . . . , wn) := f E(w1, . . . , wn). Whether F is a function on the standard

words W or the words W of some non-standard model will be clear from the context or of no importance.

3. The theories PETJ

As in Spescha and Strahm [15], and Spescha [14], the first order part of PETJ is the applicative theory PT. Note that the
present version of PET also contains a constant all that serves as dual to the type-forming operation dom .

The theory PETJ is formulated in the language L2 that extends L by second order variables U, V ,W . . . X, Y , Z , a binary
relation s ∈ U (elementhood), a binary relation R(U, s) (s is a name of the type U), and fresh constants id, iw, dom , all , inv,
un, int and j to generate names of types. The additional atoms of L2 are the expressions of the form s ∈ U and R(U, s), where
s is a term of L. The formulas of L2 are then built from the atoms as before, but additionally we close under second order
quantification. The formula U = V is an abbreviation for ∀x[x ∈ U ↔ x ∈ V ]. Further, we write R(s) for ∃XR(X, s), s =̇ Z for
∃X[R(X, s) ∧ X = Z], s =̇ t for ∃X[R(X, s) ∧ R(X, t)], and s ∈̇ t for ∃X[R(X, t) ∧ s ∈ X]. The logical axioms and rules of PETJ
are those for classical second oder logic, and the non-logical axioms and rules of PETJ are those of PT without induction,
plus the following three groups of axioms concerning types. PET is PETJ without the axioms for the constant j, and PET−

and PETJ− are PET and PETJ without type induction, respectively.
The ontological axioms of PETJ:

∃xR(U, x) and R(U, u) ∧ U = V → R(V , u) and R(U, u) ∧ R(V , u) → U = V .

The type forming axioms of PETJ:

(i) id =̇ {(x, x) : x = x}.
(ii) u ∈ W → iwu =̇ {x : x ≤W u}.
(iii) R(u) → all u =̇ {x : ∀y[(x, y) ∈̇ u]}.
(vi) R(u) → dom u =̇ {x : ∃y[(x, y) ∈̇ u]}.
(v) R(u) ∧ R(v) → int(u, v) =̇ {x : x ∈̇ u ∧ x ∈̇ v}.
(vi) R(u) ∧ R(v) → un(u, v) =̇ {x : x ∈̇ u ∨ x ∈̇ v}.
(vii) R(u) → inv(u, g)) =̇ {x : gx ∈̇ u}.
(viii) R(u) ∧ g ∈ (u → R) → j(u, g) =̇ {(x, y) : x ∈̇ u ∧ y ∈̇ gx}, where g ∈ (u → R) is short for (∀x ∈̇ u)R(gx).

The induction axiom of PETJ:

Prog@(U) → W ⊆ U, (T-I)

where Prog@(U) := ϵ ∈ U ∧ (∀x ∈ W)(x ∈ U → s0x ∈ U ∧ s1x ∈ U) expresses that U is progressive.
A structure M = (E, R, . . .) for L2 consists of a structure E = (VE,WE, . . .) for L, an interpretation R ⊆ Pow(VE) × VE

of the naming relation R and interpretations id, iw, all , dom , inv, int, un, j of the constants id, iw, all , dom , inv, int, un, j.
Note that R also specifies the domain T = {X : ∃xR(X, x)} of the type variables. Then, ∈ is interpreted as the standard
elementhood relation restricted toVE×T . Occasionally,we identifyRwith its range, that is, x ∈ R is then read as∃XR(X, x).
M is a model of PETJ if it satisfies all axioms and rules of PETJ.

4. Extensions of PT and the bounding principle (BP)

The theory PTS is obtained from PT by replacing the induction rule (Σb
W-I) by an induction rule (S-I) that claims induction

on notation for so-called simple formulas. If A is a positive formula of L and u does not occur in A, then Au is obtained from A
by replacing each occurrence of an expressionW(s) by s ≤W u. The formula B(u) := Au is then called simplew.r.t. u, and we
write B(u) ∈ S(u). The class S(u) of simple formulas w.r.t. u is closed under conjunction, disjunction and quantification of
variables different from u.1 An alternative definition of the class S(u) is given below.

Lemma 4. For each variable u, the class of simple formulas w.r.t. u, denoted by S(u), is inductively defined as follows:

(i) If u /∈ FV(s = t) and u /∈ FV(r), then s = t and r ≤W u are in S(u).
(ii) If A and B are in S(u), then A ∧ B and A ∨ B are in S(u).
(iii) If A is in S(u), then ∀xA[x/v] and ∃xA[x/v] are in S(u).

1 Simple formulas are essentially Σb
T formulas (cf. Spescha and Strahm [15]) with ∀-quantifiers.
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The induction rule of PTS states that for each L formula A(u, w) ∈ S(w),

⇒ A(ϵ, w) A(u, w) ⇒ A(siu, w) (i ∈ {0, 1})
W(w),W(s) ⇒ A(s, w)

!u!. (S-I)

Further, we say that a class X is simple, if there is a formula A(u, v) ∈ S(v) and a word a so that X = {x : A(x, a)}.

Lemma 5. PTS proves each instance of (Σb
W-I).

Proof. As shown in Spescha [14], there is a closed term max of L (which is a feasible functional in the sense of Cook and
Kapron) so that PTS proves

t ∈ (W → W) → (∀x, y ∈ W)[x ⊑ y → tx ≤W maxtx ≤W maxty].

Let X := {x : (∃y ≤W tx)B(y, t, x)} and assume that y /∈ FV(t), B positive and W-free, and Prog@(X). If s is a word, then

Y := {x : c⊑xs = 1 ∨ (x ⊑ s ∧ (∃y ≤W maxts)(y ≤ tx)B(y, t, x))}

is also progressive and simple, thus s ∈ Y . But this implies s ∈ X . �

Without affecting the provably total operations of PTS, we can extend PTS by the bounding principle (BP) which asserts
that each simple class X ⊆ W is bounded by some word w: for each formula A(u, v) ∈ S(v), referred to below as Av(u),

(∀b ∈ W)(∃c ∈ W)[∀x(Ab(x) → x ∈ W) → ∀x(Ab(x) → x ≤ c)]. (BP)

We shall see in Section 7 that for each model E of PT+ (BP), there is an elementary equivalent model E′
≡ E so that the

simple classes of E′ are the types of a model (E′, R) of PETJ.
To handle the theory PT+ (BP) we have a look at the extension PTĎS+ I of PTS which proves that each simple subclass of

W is bounded inW, but cannot provemore operations to be total than PTS. To introduce PTĎS+ I, we fix an L term exp so that,
provably in PT−, exp ϵ = 0 and exp(wi) = expw+ expw for each word w and i ∈ {0, 1}. Further, if T is an L theory, then
TĎ is formulated in the language L(α), comprises the axioms of T adjusted to the new language L(α), and, in addition,

⇒ W(α) and W(expα) ⇒ . (¬(exp))

PTĎS+ I extends PTĎS by the induction rule

A(u, w) ⇒ W(u) ⇒ C(ϵ, w) C(u, w) ⇒ C(siu, w)

W(w),W(s) ⇒ C(s, w)
!u! (I)

where a A(u, w) ∈ S(w) and C(u, w) := ∃y[A(y, w) ∧ ∃z(z ≤W y ∧ B(u, w, y, z))] with B positive and W-free.

Lemma 6. PTĎS+ I proves each instance of (BP).

Proof. Suppose that X ⊆ W is simple but unbounded. Then

Y := {x : ∃y(y ∈ X ∧ ∃z(z ≤W y ∧ z = exp x))}

is progressive. Applying (I) yields exp ∈ (W → W). A contradiction! �

5. Interlude: positive theories and ∀-quantifiers

This section elaborates on the following observation made in Strahm [17]. For the theory PT, universal quantifiers do
not play a role in the sense that the only non-logical rule that may contain universal quantifiers, the induction rule (Σb

W-I),
can be restricted to formulas that do not contain universal quantifiers, and the resulting theory still has the same provably
total operations as PT. The question suggests itself, whether a tailored fragment without universal quantifiers of a theory
whose non-logical axioms can be presented by positive sequents still proves the same positive sequents without universal
quantifiers as the full theory.

Let L1 be a first order language, that besides other function and relation symbols, contains constants (ei : i ∈ N). The
idea is that in all theories under consideration below, the constants ei are free: that is, if Γ ⇒ ∆ is an axiom, then so is
Γ [s/ei] ⇒ ∆[s/ei], for each term s, and accordingly for rules. In otherwords, when consideringmodels, we are free to assign
any value to a constant ei. Positive formulas are built from (positive) atoms only, by closing under∧,∨ and quantifications. A
sequent Γ ⇒ ∆ is positive if it contains only positive formulas. Further, a ∃-sequent does not contain universal quantifiers,
and a sequent Γ ⇒ ∆ is good if it is positive and, in addition, Γ does not contain universal quantifiers. A theory T is good,
if all its axioms and rules can be presented by good sequents. Note that a good theory can comprise Cantini’s uniformity
principle (cf. [4]) if it is presented as a rule: for each positive formula A(u, v),

Γ ⇒ ∀x(∃y ∈ W )A(x, y), ∆

Γ ⇒ (∃y ∈ W )∀xA(x, y), ∆
.
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A restriction � is a substitution that replaces each universally bound variable in a formula by a constant ei so that variables
bound by the same ∀-quantifier are replaced by the same constant. LKe is LK without both ¬-rules, and with all logical
axioms and rules restricted to positive ∃-sequents. As a substitute for the left ∀-rule, we take all its restrictions,

Γ , A(s) ⇒ ∆

Γ , A(ei) ⇒ ∆
, for each constant ei. (ei-left)

The right ∀-rule is dropped as all its restrictions are admissible. LK∃ is LKe without the ei-rules.
To a positive theory Twe assign a theory Te that derives positive ∃-sequents as follows: the underlying logic of Te is LKe,

and its non-logical axioms and rules are all the restrictions of the non-logical axioms and rules of T. Further, T∃ is Te with
the underlying logic LK∃. In this section, we will prove the following theorem.

Theorem 7. Let T be a good L1 theory. If Γ ⇒ ∆ is a positive ∃-sequent, then

T ⊢ Γ ⇒ ∆ =⇒ T∃
⊢ Γ ⇒ ∆.

We start with the following observation.

Lemma 8. Let T be a positive theory and Γ ⇒ ∆ a positive sequent of L1 formulas. If T ⊢ Γ ⇒ ∆, then Te
⊢ Γ � ⇒ ∆� for all

restrictions �.

Proof. By induction on the depth of the proof. In the case of a left ∀-rule, the I.H. and an application of a left e-rule yield
the claim. In the case of a right ∀-rule, we have T

n
Γ ⇒ A(u), ∆. Then, also T

n
Γ ⇒ A(ei), ∆ for each i. By I.H.

Te n
Γ � ⇒ A(ei0)�, ∆� for an i0 so that ∀xA(x)� = A(ei0)�. In the case of the other rules, the I.H. applies directly. �

If T is a good theory, then the system Te
σ derives so-called annotated sequents. An annotated sequentΣ ⇒ ∆ is a sequent,

where a natural number is assigned to each occurrence of a constant ei in Σ . For instance, we write A(eni ) ⇒ to indicate
that the number n is assigned to the displayed occurrence of ei. Further, we just write ei instead of e0i . A sequent Σ ⇒ ∆ is
an axiom of Te

σ iff deleting all annotations yields an axiom of Te and each constant ei in Σ is annotated by 0. Further, a rule
is a rule of Te

σ iff the corresponding rule with the annotations deleted is a rule of Te and the annotations remain unchanged
except for the following cases. The annotation of the constant ei introduced by an ei-rule has to be bigger than all annotations
in the term t that is substituted by ei, i.e.

A(t(en1i1 , . . . , enkik )) ⇒

A(eni ) ⇒
where n > ni for 1 ≤ i ≤ k.

In the case of contraction and a context sharing rule, the bigger annotation is kept,

A(en1i1 , . . . , enkik ), A(em1
i1

, . . . , emk
ik

) ⇒

A(el1i1 , . . . , e
lk
ik
) ⇒

and
A(en), B ⇒ A(em), C ⇒

A(el), B ∨ C ⇒
,

where for 1 ≤ i ≤ k, li = max(ni,mi) and l = max(n,m). The weight of an annotated formula is the sum of all its
annotations. T

n
k Γ ⇒ ∆ states that the depth of the derivation is n and that the cut-rule is only applied if the weight of

the cut-formula is less than k or if no constant ei occurs in the cut-formula.

Lemma 9 (e-Substitution). If Γ ⇒ ∆ is a positive ∃-sequent and t an e-free term, then

Te
σ

n
k Γ ⇒ ∆ =⇒ Te

σ k Γ [t/e0i ] ⇒ ∆[t/ei].

Proof. By induction on n. If for instance Σ, A(eni ) ⇒ ∆ is obtained from Σ, A(s) ⇒ ∆ by a left ei-rule, then the I.H. yields
Σ[t/e0i ], A(s[t/e0i ])[t/e

0
i ] ⇒ ∆[t/ei], and now the left ei-rule yields Σ[t/e0i ], A(eni )[t/e

0
i ] ⇒ ∆[t/ei]. If Σ ⇒ B ∧ C, ∆ is

obtained from Σl ⇒ B, ∆ and Σr ⇒ C, ∆, where Σl and Σr differ only w.r.t. the annotation, then the I.H. yields

Σl[t/e0i ] ⇒ B[t/ei], ∆[t/ei] and Σr [t/e0i ] ⇒ C[t/ei], ∆[t/ei].

Observe that a formula A(e0i )may be inΣl and A(e1i )may be the corresponding formula inΣr . In this case, after applying the
∧-rule, A(t)[t/e0i ], A(e1i )[t/e

0
i ] are side formulas in the conclusion of this rule. An application of the ei-rule and contraction

help to obtain the claim. �

Lemma 10. Suppose that Te
σ

m
k Σ, A(eni ) ⇒ ∆. Then there are e-free terms t1, . . . , tl and n′ < n so that

Te
σ k Σ, A(t1), . . . , A(tl), A(en

′

i ) ⇒ ∆.

Proof. A simple induction on the depth of the derivation. �

Lemma 11 (e-Cut Elimination). Suppose that Σ ⇒ ∆ is an ∃-sequent which is e-free:

Te
σ

n
k Σ ⇒ ∆ =⇒ Te

σ 0 Σ ⇒ ∆.
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Proof. Main induction on the weight k, side induction on the depth n. The only case where the I.H. does not apply directly
is if

Te
σ

n
k′ Σ, A(em) ⇒ ∆ Te

σ

n
k′ Σ ⇒ A(e), ∆

Te
σ

n+1
k Σ ⇒ ∆

,

where we have picked an annotated constant em in A with m > 0. Lemma 10 yields Te
σ k Σ, A(t1), . . . , A(tl), A(em

′

) ⇒ ∆

and the I.H. and the e-substitution lemma imply that Te
σ 0 Σ ⇒ A(s), ∆ for each e-free term s. A couple of cuts yield

Te
σ m Σ ⇒ ∆. Sincem < k, the claims follow by the I.H. �

The theorem follows: if T is good and Γ ⇒ ∆ is a positive ∃-sequent so that T ⊢ Γ ⇒ ∆, then Te
σ 0 Γ ⇒ ∆. As

Γ ⇒ ∆ is e-free, no use of a left e-rule was made. Therefore, T∃
⊢ Γ ⇒ ∆.

Let us apply the theorem. PT0 is the theory PTwith induction restricted to formulas without universal quantifiers. Then,
PT∃ is contained in PT0.

Corollary 12. If Γ ⇒ ∆ is a positive ∃-sequent so that PT ⊢ Γ ⇒ ∆, then also PT0 ⊢ Γ ⇒ ∆.

6. The provably terminating operations of PT†
S+ I

In this section, we show that the provably terminating operations of PTĎS+ I are still the polytime functions. Actually, we
prove a bit more, namely that PT0 and PTĎS+ I prove the same positive ∃-sequents, and that PT + (UP) and PTĎS+ I + (UP)
prove the same positive sequents, where (UP) is Cantini’s uniformity principle (cf. [4]) that claims for each positive formula
A(u, v),

∀x(∃y ∈ W)A(x, y) ⇒ (∃y ∈ W)∀xA(x, y). (UP)

To obtain this result, we translate a sequent Γ ⇒ ∆ which is provable in PTĎS+ I into a sequent which is provable in PT. This
translation is inspired by a realizability interpretation in the style of Cantini [3] and Strahm [17]. However, in contrast to
the realizability interpretation applied in [3,17] our translation does not depend on an open term model M(λη) of PT, and
allows us to handle extensions of PT that are consistent but no longer true in M(λη), such as PTĎS+ I.

To define the realizability interpretation we fix closed L terms pair,wl,wr so that (provably in PT) pair ∈ (W2
→ W),

and for s, t ∈ W, wl(pairst)) = s and wr(pairst) = t . To be specific, we let pair be such that for all words w0, w1,
pairw0w1 = w∗

000w
∗

1 , where ϵ∗
:= ϵ and wi∗ := w∗1i for i ∈ {0, 1}.

Definition 13. To each positive L(α) formula A, we assign a positive andW-free formula u r Awith an additional fresh free
variable u. To increase readability, we write ⟨s, t⟩ for pairst , u = ⟨w0, w1⟩ ∧ A(w0, w1) for u = ⟨wlu,wru⟩ ∧ A(wlu,wru),
and, similarly, u = ⟨i, w⟩ ∧ A(i, w) is to abbreviate u = ⟨wlu,wru⟩ ∧ wlu = i ∧ A(wlu,wru).

(i) u r W(t) := u = t ,
(ii) u r s = t := u = ϵ ∧ s = t ,
(iii) u r A ∧ B := u = ⟨w0, w1⟩ ∧ w0 r A ∧ w1 r B,
(iv) u r A ∨ B := u = ⟨i, w1⟩ ∧ [(i = 0 ∧ w1 r A) ∨ (i = 1 ∧ w1 r B)],
(v) u r ∀xA(x) := ∀x(u r A(x)),
(vi) u r ∃xA(x) := ∃x(u r A(x)).

To a positive sequent Γ ⇒ ∆ with Γ = A0, . . . , Am−1 and ∆ = B0, . . . , Bn−1, we then assign the sequent

u0 r A0, . . . , um−1 r Am−1 ⇒


0≤i<n

[u = ⟨base2(i), w1⟩ ∧ w1 r Bi],

where base2(i) is w for w the binary representation of the number i. Moreover, the variables u, u0, . . . , um−1 are pairwise
different and do not occur free in Γ , ∆. The left hand part of the sequent displayed above is often abbreviated as u⃗ r Γ , and
the formula on the right as u r ∆.

By a simple induction on the build-up of positive formulas, the following observation is made.

Lemma 14. If A is a positive L formula, then PT−
⊢ (∃x ∈ W)(x r A) → A.

The converse direction fails.When trying to prove the claimby induction on the build-up of A, in the case that A = ∀yB(y),
the I.H. yields that ∀y(∃x ∈ W)(x r B(y)), yet we cannot infer (∃x ∈ W)∀y(x r B(y)), that is (∃x ∈ W)(x r ∀yB(y)), unless
we employ (UP).

Lemma 15. PT−
+ (UP) ⊢ A ↔ (∃x ∈ W)(x r A), for each positive L formula A.

Recall that Tα extends a theory T by the assertion W(α). For instance, if T is PTS, then Tα is PTĎS without the axiom
W(expα) ⇒. Because Tα only states that α is a word, Tα ⊢ Γ ⇒ ∆ implies T ⊢ Γ [0/α] ⇒ ∆[0/α]. An induction on
the depth of the derivation also yields that TĎ ⊢ Γ ⇒ ∆ implies Tα ⊢ Γ ⇒ ∆,W(expα).
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Theorem 16. Suppose that A0 . . . , Am−1 ⇒ B0, . . . , Bn−1 is a positive sequent of L. If PTĎS+ I + (UP)
∗

A0 . . . , Am−1 ⇒

B0, . . . , Bn−1 and u⃗ = u0, . . . , um−1, then there is an Fm
∈ PTα so that

PTĎ ⊢ W(u0), . . . ,W(um−1), u⃗ r A0, . . . , Am−1 =⇒ f (u⃗) r B0, . . . , Bn−1.

In the above theorem,we can replace PTĎS and PTĎ by PTS,α and PTα , since the axiomW(expα) ⇒ is only needed to derive
the sequent W(u), u r W(expα) ⇒.

Corollary 17. Let Γ ⇒ ∆ be a positive and Γ ′
⇒ ∆′ a positive ∃-sequent of L. Then

(i) PTĎS+ I + (UP) ⊢ Γ ⇒ ∆ implies PT + (UP) ⊢ Γ ⇒ ∆,
(ii) PTĎS+ I + (UP) ⊢ Γ ′

⇒ ∆′ implies PT0 ⊢ Γ ′
⇒ ∆′.

Proof. If PTĎS+ I + (UP) ⊢ Γ ⇒ ∆, then by the above Theorem there is an F ∈ PTα so that PTα + (UP) ⊢ W(u⃗), u⃗ r Γ ⇒

f (u⃗) r ∆. As Γ ⇒ ∆ is an L sequent, there is also an F ∈ PT so that PT + (UP) ⊢ W(u⃗), u⃗ r Γ ⇒ f (u⃗) r ∆. Since PT
proves that f (u⃗) is a word, the claim follows by Lemma 15. For the second claim, we use the result from the interlude that
PT0 ⊢ Γ ′

⇒ ∆′ iff PT ⊢ Γ ′
⇒ ∆′. �

Corollary 18. If t is a closed term of L (so it does not contain the constant α) and PTĎS+ I ⊢ W(v⃗) ⇒ W(t(v⃗)), then there is a
polytime function symbol F ∈ PT so that for all w⃗ ∈ W,

PT ⊢ F (w1, . . . , wn) = t(w1, . . . , wn) = f (w1, . . . , wn).

Proof. Assume that t is a closed L term and PTĎS+ I ⊢ W(v⃗) ⇒ W(t(v⃗)). Then, PTS,α+ I ⊢ W(v⃗) ⇒ W(t(v⃗)),W(expα). By
Theorem 16, there are F ,G,H ∈ PTα so that F (w⃗) = ⟨G(w⃗), H(w⃗)⟩, and

PTα ⊢ W(u⃗) ⇒ g(u⃗) = 0 ∧ t(u⃗) = h(u⃗), g(u⃗) = 1 ∧ h(u⃗) = expα.

Suppose that for w⃗ ∈ W, G(w⃗) = 1. Then, PTα ⊢ W(expα) which is impossible. Hence, G(w⃗) = 0 for all w⃗ ∈ W, and thus
for all w⃗ ∈ W, PTα ⊢ C(t, w⃗), where C(t, w⃗) := h(w1, . . . , wn) = t(w1, . . . , wn). Since t is an L term, PT ⊢ C(t, w⃗)[0/α],
and there is a function symbol H ′

∈ PT , so that h[0/α] = h′. �

Definition 19. We assign to each formula A of L(α) a rank rk(A) ∈ 0 × W. The rank of a literal is 0, the rank of A j B is
00 × (rk(A)+rk(B)+0) and the rank of QxA is rk(A).

Lemma 20. Let A(v) ∈ S(v) and B positive and W-free.

(i) PT−
⊢ w ∈ W, u r A(w) ⇒ u ≤ rk(A) × max(0, w).

(ii) PT−
⊢ u r B ⇒ u ≤ rk(B).

Proof. Both claims are shown by induction on the build up of the formula. �

Proof (Theorem 16). The proof is by induction on the depth of the derivation. Note that the handling of the ∀-right rule and
the ∃-left rule are directly by the definition of the translation and do not require a substitution lemma: for if v is different
from u⃗ and does not occur free in A0, . . . , Am−1, ∀xB0(x), . . . , Bn−1, then

PTĎ ⊢ W(u⃗), u⃗ r A0, . . . , Am−1 =⇒ f (u0 · · · um−1) r B0(v), . . . , Bn−1

entails

PTĎ ⊢ W(u⃗), u⃗ r A0, . . . , Am−1 =⇒ f (u0 · · · um−1) r ∀xB0(x), . . . , Bn−1.

Clearly, PTĎ proves the translation of the sequents ⇒ W(α) and W(expα) ⇒. And the translation of (UP) trivially holds as
u r ∀x(∃y ∈ W)A(x, y) is logically equivalent to u r (∃y ∈ W)∀xA(x, y). The logical rules and (S-I) are essentially handled as
in the proof of the realization theorem in [17]. Therefore, we just consider the case when the last rule applied is an instance
of (I).

We work informally in PTĎ and tacitly use that f ∈ (Wn
→ W) for each F n

∈ PTα and that induction for W-free and
positive formulas is available. In addition, we commit a slight abuse of notation in that we write (f (s⃗))0 and (f (s⃗))1 for
wl(f (s⃗)) and wr(f (s⃗)) if F ∈ PTα .

Assume that last rule applied is an instance of (I). Then, the I.H. provides polytime function symbols Fι, Fϵ , F0, F1 so that
PTĎ proves the sequents

W(a⃗, b), a⃗, b r Γ , A(u, w) ⇒ fι(a⃗, b) r W(u), ∆,

W(a⃗), a⃗ r Γ ⇒ fϵ(a⃗) r C(ϵ), ∆,

W(a⃗, b), a⃗, b r Γ , C(u, w) ⇒ fi(a⃗, u) r C(siu, w), ∆ i ∈ {0, 1}.

It is assumed that C(u, w) is of the form ∃y[A(y, w) ∧ ∃z(z ≤W y ∧ B(u, y, z))] with A(u, w) ∈ S(w) and B positive and
W-free. Further, we suppose that the atom w ∈ W is an element of the sequence Γ . Our task is to find a function symbol F
so that

PTĎ ⊢ W(a⃗, b), a⃗ r Γ ⇒ f (a⃗, b) r C(b), ∆. (∗)
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Recall that f (a⃗, b) is of the form ⟨i, w⟩, where i tells us which formula in the sequence on the right is realized. If i = 0, then
w r C(b), hence w = ⟨w0, ⟨⟨w1, ϵ⟩, w2⟩⟩, and there is a y so that w0 r A(y), and further w1 ≤W y and w2 r B(b, y, w1).
By Lemma 20 we know that w0 ≤ rk(A) × max(0, a⃗). Further, as shown e.g. in Ferreira [9], there is for each F ∈ PT a
function symbol F+

∈ PT with the same ariety so that for all words w⃗, v⃗, F(w⃗) ≤ F+(v⃗) provided that vi ≤ wi. It is
completely straightforward to generalize this result to function symbols F ∈ PTα . Now, let H ∈ PTα be such that for
t(a⃗) := rk(A) × max(0, a⃗), PTĎ proves

h(a⃗, b) = fϵ(a⃗) + f +

ι (a⃗, t(a⃗)) + ⟨0, f +

i (a⃗, ⟨t(a⃗), ⟨⟨f +

ι (a⃗, t(a⃗)), ϵ⟩, rk(B)⟩⟩)⟩.

Next, let F ∈ PTα be such that PTĎ proves F(a⃗, ϵ) = Fϵ(a⃗) and

f (a⃗, bi) =


f (a⃗, b)|h(a⃗, b) : (f (a⃗, b))0 ≠ 0,
fι(a⃗, (f (a⃗, b))1,0)|h(a⃗, b) : (f (a⃗, b))0 = 0, (fι(a⃗, (f (a⃗, b))1,0))0 ≠ 0,
fi(a⃗, (f (a⃗, b))1)|h(a⃗, b) : (f (a⃗, b))0 = 0, (fι(a⃗, (f (a⃗, b))1,0))0 = 0.

Assume that W(a⃗) and a⃗ r Γ . We show that for all words b, f (a⃗, b) r C(b), ∆ and f (a⃗, b) < h(a⃗, b) by induction on b. For
b = ϵ there is nothing to show. That the claim for bi (i ∈ {0, 1}) follows provided the claim holds for b is shown below,
distinguishing the following two cases.

(i) (f (a⃗, b))0 ≠ 0. Then f (a⃗, b) is of the form ⟨i, c⟩, i > 0 and c r B for some B in ∆. As f (a⃗, bi) = f (a⃗, b), also
f (a⃗, bi) r C(bi), ∆ and f (a⃗, bi) < h(a⃗, b) by I.H.

(ii) (f (a⃗, b))0 = 0. By I.H. (f (a⃗, b))1 r C(b). So (f (a⃗, b))1 is of the form w = ⟨w0, ⟨⟨w1, ϵ⟩, w2⟩⟩, and there is a y so that
w0 r A(y) and w1 ≤W y and w2 r B(b, y, w1). As w0 < rk(A) × max(0, a⃗) = t(a⃗), fι(a⃗, (f (a⃗, b))1,0) ≤ f +

ι (a⃗, t(a⃗)) <
h(a⃗, b). In the case (fι(a⃗, (f (a⃗, b))1,0))0 ≠ 0, f (a⃗, bi) < h(a⃗, b), and (f (a⃗, bi))1 r B for some B in ∆.
If (fι(a⃗, (f (a⃗, b))1,0))0 = 0, then w1 ≤ y = fι(a⃗, w0), and

fi(a⃗, (f (a⃗, b))1) = fi(a⃗, ⟨w0, ⟨⟨w1, ϵ⟩, w2⟩⟩) ≤ f +

i (a⃗, ⟨t(a⃗), ⟨⟨f +

ι (a⃗, t(a⃗)), ϵ⟩, rk(B)⟩⟩) < h(a⃗, b).

Thus, f (a⃗, bi) < h(a⃗, b), and (f (a⃗, bi))1 r C(bi). �

7. From a model of PT + (BP) to a model of PETJ

In this section, we show that each model E′
= (VE′ ,WE′ , . . .) of PT+ (BP) has an elementary extension E ≻ E′ that

expands to a model M = (E, R, . . .) of PETJ where each type is simple. Hence, PETJ does not prove more L formulas than
PT+ (BP), and the provably terminating operations of PETJ are still the polytime functions. Recall that E ≻ E′ if VE′ ⊆ VE,
WE′ ⊆ WE and RE�E′

= RE′

for each relation and function symbol R of L. In addition, each sentence A of the language
L(cv : v ∈ VE′) which extends L by constants for each element of VE′ holds in E′ iff it holds in E.

There is a standard method introduced by Feferman in [8] to construct an interpretation for the naming relation and the
types over an applicative structure such as PT+ (BP). Using this method, each model E′

= (WE′ ,VE′) of PT+ (BP) is easily
expanded to a model M = (E′, R, . . .) of PETJ−. As interpretations for the additional constants id, iw, all , dom , inv, int,
un and j, the values of the following closed terms in the model E′ are chosen: id := ϵ, iw := λx.(ϵ, x), all := λx.(0, x),
dom := λx.(1, x), inv := λxy.(00, (x, y)), int := λxy.(01, (x, y)), un := λxy.(10, (x, y)) and j := λxy.(11, (x, y)). Then,
the naming relation R ⊆ Pow(VE′) × VE′ is built by a non-monotone inductive definition over the structure E′, specified
by the L(P) formula R(P, u, v, w) := R0(P, u, v, w) ∨ R1(P, u, v, w) displayed below. The language L(P) extends L by a set
constant P that serves as a placeholder and the elementhood relation s ∈ P. For an ordinal α ∈ ON, the αth stage IE

′,A
α of the

inductive definition over E′ specified by the L(P) formula A(P, u1, . . . , un) is defined as follows:

IE
′,A

α := IE
′,A

<α ∪ {(u1, . . . , un) : A(IE
′,A

<α , u1, . . . , un)}, where IE
′,A

<α :=


β<α

IE
′,A

β ,

and the formula A is evaluated in the structure E′. More precisely, IE
′,A

α is the union of IE
′,A

<α and {w ∈ VE′ : E′
|= ∃x⃗[w =

(x1, . . . , xn)∧A(IE
′,A

<α , x1, . . . , xn)]}. Further, IE
′,A

:=


α∈ON IE
′,A

α . A simple cardinality argument yields that there is a γ ∈ ON

so that IE
′,A

γ = IE
′,A

<γ . It follows that IE
′,A

= IE
′,A

<γ . Also, if (x1, . . . , xn) ∈ IE
′,A, then there is a β so that (x1, . . . , xn) /∈ IE

′,A
<β and

A(IE
′,A

<β , x⃗).
The two disjuncts of R have the forms R0(P, u, v, w) := v = w = 0 ∧ R′

0(P, u) and R1(P, u, v, w) := w = 1 ∧ R′

1(P, u, v).
To keep the definitions readable, we regard s = (x, y) ∧ A(x, y) as a shorthand notation for s = ((s)0, (s)1) ∧ A((s)0, (s)1).
The idea is that a is a name iff (a, 0, 0) ∈ IE

′,R, and that x ∈̇ a iff (a, 0, 0), (a, x, 1) ∈ IE
′,R. R′

0(P, u) is the disjunction of the
clauses

(i) u = ϵ,
(ii) u = (ϵ, x) ∧ W(x),
(iii) u = (0, a) ∧ (a, 0, 0) ∈ P,
(iv) u = (1, a) ∧ (a, 0, 0) ∈ P,
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(v) u = (00, (a, g)) ∧ (a, 0, 0) ∈ P,
(vi) u = (01, (a, b)) ∧ (a, 0, 0) ∈ P ∧ (b, 0, 0) ∈ P,
(vii) u = (10, (a, b)) ∧ (a, 0, 0) ∈ P ∧ (a, 0, 0) ∈ P,
(viii) u = (11, (a, g)) ∧ (a, 0, 0) ∈ P ∧ ∀x[(a, x, 1) ∈ P → (gx, 0, 0) ∈ P],

and R′

1(P, u, v), which contains P only positively, is the disjunction of the clauses

(i) u = ϵ ∧ v = (x, x),
(ii) u = (ϵ, x) ∧ v ≤W x,
(iii) u = (0, a) ∧ ∀y[(a, (v, y), 1) ∈ P],
(iv) u = (1, a) ∧ ∃y[(a, (v, y), 1) ∈ P],
(v) u = (00, (a, g)) ∧ (a, gv, 1) ∈ P,
(vi) u = (01, (a, b)) ∧ (a, v, 1) ∈ P ∧ (b, v, 1) ∈ P,
(vii) u = (10, (a, b)) ∧ [(a, v, 1) ∈ P ∨ (b, v, 1) ∈ P],
(viii) u = (11, (a, g)) ∧ v = (x, y) ∧ (a, x, 1) ∈ P ∧ (gx, y, 1) ∈ P.

The next lemma is immediate by induction on α and is used tacitly in the following.

Lemma 21. For all ordinals α, we have (a, x, 1) ∈ IE
′,R

α iff (a, x, 1) ∈ IE
′,R1

α .

Next, let RE′

:= {(X, a) : (a, 0, 0) ∈ IE
′,R

∧ X = {x : (a, x, 1) ∈ IE
′,R

}} and R′
:= RE′

. Again, we write R′(a) for
∃XR′(X, a) which is equivalent to (a, 0, 0) ∈ IE

′,R, and thus let R′
α(a) := (a, 0, 0) ∈ IE

′,R
α and R′

<α(a) := (a, 0, 0) ∈ IE
′,R

<α .
Further, ext′(a) refers to the collection {x : (a, x, 1) ∈ IE

′,R
}; ext′α(a) and ext′<α(a) are defined accordingly. Finally, x ∈̇

′a is
short for a ∈ R′

∧ x ∈ ext′(a), and a ⊆̇
′ X stands for a ∈ R′

∧ ext′(a) ⊆ X .

Lemma 22. If a ∈ R′
α , then x ∈ ext′(a) implies x ∈ ext′α(a).

Proof. By induction on α. Assume that the claim holds for all ordinals below α and let a ∈ R′
α . If x ∈ ext′(a), then

R1(I
E′,R1
<β , a, x, 1) for some β , e.g. there are b, g ∈ WE′ so that B(β, a, b, g, x) holds, where B(β, a, b, g, x)) is

a = (11, (b, g)) ∧ x = ((x)0, (x)1) ∧ (b, (x)0, 1) ∈ IE
′,R

<β ∧ (g(x)0, (x)1, 1) ∈ IE
′,R

<β .

a ∈ R′
α implies b ∈ R′

<α and (∀z ∈ ext′<α(b))(gz ∈ R′
<α). By I.H. (x)0 ∈ ext′<β(b) entails (x)0 ∈ ext′<α(b), which then implies

that g(x)0 ∈ R′
<α . Now (x)1 ∈ ext′<β(g(x)0) and the I.H. yield (x)1 ∈ ext′<α(g(x)0). Therefore B(α). Thus x ∈ ext′α(a). �

Lemma 23. If E′ is a model of PTS, then (E′, R′, id, iw, . . .) is a model of PETJ−.

Proof. We just check the axiom for join. If b ∈ R′ and (∀z ∈ ext′(b))(gz ∈ R′), then R(IE
′,R, (j(b, g), 0, 0)), i.e. j(b, g) ∈ R′

α

for some α. Further, if (x, y) ∈ ext′(j(b, g)), then by Lemma 22, (x, y) ∈ ext′α(j(b, g)). By the definition of R1 and Lemma 22,
this holds iff x ∈ ext′(b) and y ∈ ext′(gx). �

Lemma 24. Each model E′ of PTS has an elementary extension E ≻ E′ so that IR,E<ω = IR,E.

Proof. Let E′ be a model of PTS. Below, we give a set T of formulas that are finitely realizable, i.e. for each finite subset
G ⊆ T , there is a model E0 of PTS and w ∈ WE0 , F ⊆ VE0 , so that for each formula C(P, p) ∈ G, E0 |= C(F ,w). For each
n ∈ N, (Ai(u1, . . . , un) : i ∈ N) is an enumeration of the L(P, p) formulas with free variables u1, . . . , un. Further, s ∈ (P)t
abbreviates (s, t) ∈ P and s ∈ (P)<Wt := (∃x <W t)(s ∈ (P)x). The set T comprises (i) and (ii), for each i ∈ N the formula
(iii) and the formula (iv):

(i) { w ≤W p : w ∈ W} ∪ {W(p) },
(ii) { A : VE′ |= A, A an L(cv : v ∈ VE′) sentence.},
(iii) ∀x[(∃z ≤W p)Ai(x, z) → (∃z ≤W p)(Ai(x, z) ∧ (∀y <W z)¬Ai(x, y))],
(iv) (∀z ≤W p)[(P)0×z = {(a, b, c) : (a, b, c) ∈ (P)<W0×z ∨ R((P)<W0×z, a, b, c)}].

Since T is finitely realizable, compactness provides amodel E = (VE,WE) of PTS andw ∈ WE,F ⊆ VE so that E |= C(F ,w)
for each C(P, p) ∈ T . By (i) we have thatw is non-standard, (ii) forces thatE is an elementary extension ofE′, (iii) tells us that
each non-empty subclass of {w : w ≤ w} which is L-definable with parameters from VE ∪ {F } has a <-minimal element,
and (iv) entails that for each word b ∈ WE of length n ∈ N, IE,R

n = (F )0×b, and so IE,R
n ⊆ (F )0×c for each non-standard word

c ≤W w.
It remains to show that IE,R

<ω = IE,R. First, assume that R1(IE,R
<ω , a, x, 1). Since R1(P, u, v, w) contains P only positively,

R1((F )<W0×b, a, x, 1) holds in particular for each non-standardword b. There is no shortest non-standardword. By (ii), there
is a shortest word b0 so that R1((F )<W0×b0 , a, x, 1). So b0 ∈ W and R1((F )<W0×b0 , a, x, 1), thus (a, x, 1) ∈ (F )0×b0 ⊆ IE,R

<ω .
Secondly, if R0(IE,R

<ω , a, 0, 0), then we do a case distinction on the clauses of R′

0. We just consider the case where
a = j(a′, g), 0, 0) for some a′, g ∈ WE. Then X with

∅ ≠ X := {b ∈ WE : (∀x ∈̇ a′)(gx, 0, 0) ∈ (F )<W0×b} ⊆ {b ≤ w : b /∈ W}

has a ≤-minimal element which is in W. So (a, 0, 0) ∈ IE,R
<ω . �
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For the rest of this section, E denotes a model of PT+ (BP) with IR,E<ω = IR,E. We let R := RE and T := {X : ∃xR(X, x)}.
It remains to show that each type in T is simple.

Since {(a, x, 1) : (a, x, 1) ∈ IE,R
} = IE,R1 = IE,R1

<ω , (a, x, 1) ∈ IE,R
n can be expressed by a positive formula En(a, x), where

E0(u, v) := R′

1(∅, u, v) and En+1(u, v) := R′

1({(b, y) : En(b, y)}, u, v). As the extension of each type X ∈ T is now of the
form X = {x : En(a, x)}, it suffices to show that for each name a, there is a wordw so that X = {x : En(a, x)} = {x : Ew

n (a, x)},
which entails that X is simple. Since En is positive, we then also have X = {x : En(a, x)} = {x : Ev

n (a, x)} for each word
v > w. To flatten the notation, we set En(u, v, w) := Ew

n (u, v).
If a name a is obtained using atmost n-times join, then a ∈ Jn. More precisely, the setsJn (n ∈ N) are inductively defined

below. Note that


n∈N Jn = R.

(i) id ∈ J0 and iwa ∈ J0 for each a ∈ WE.
(ii) If a, b ∈ Jn and x ∈ VE, then all a, dom a, inv(a, x), int(a, b), un(a, b) ∈ Jn.
(iii) If a ∈ Jn, then a ∈ Jn+1. And if b ∈ Jn and j(b, g) ∈ R, then j(b, g) ∈ Jn+1.

There is an element bdo ∈ VE, so that for each a ∈ J0, bdo a is a bound for the type named a. Thereto, we choose bdo such
that the following equations hold in E.

(i) bdo id = ϵ and bdo (iwa) = 0 × a.
(ii) bdo (all a) = bdo (dom a) = bdo (inv(a, x)) = bdo a.
(iii) bdo (int(a, b)) = bdo (un(a, b)) = max(bdo a, bdo b), where max ∈ VE is such that for all x, y ∈ 0 × WE, max(x, y)

returns y if x < y, and x otherwise

Lemma 25. If a ∈ J0 ∩ Rn, then a =̇ {x : En(a, x)} = {x : En(a, x, bdo a)}. In particular, the extension of each type in J0 is
simple, which implies that (E, R) is a model of PET.

Proof. By induction on n. If e.g. un(a, b) ∈ Rn+1 and c := bdo (un(a, b))), then by definition of En+1, En+1(un(a, b), x, c) iff
En(a, x, c) ∨ En(b, x, c). The I.H. yields that En(a, x) iff En(a, x, bdo a) iff En(a, x, c). The same holds for b. The claim follows
as En+1 is positive. �

If a ∈ Rn is simple and g ∈ (a → J0), then {bdo (gx) : x ∈̇ a} ⊆ WE is simple, and, due to Lemma 6, bounded by a
word b. Hence, j(a, g) =̇ {(x, y) : x ∈̇ a ∧ En(gx, y, b)} is simple as well. However, as the bound of the type j(a, g) cannot
be computed, the above trick only works if g ∈ (a → J0). Therefore, we assign to each name a a name bd a ∈ J0 of
a set of names of bounds. That is, bd a ⊆̇ J0, and for each b ∈̇ bd a, either b = iww or b names a set of names of bounds.
The support of a name iww is given by supp(iww) := {w}, and if z is a name of Z and Z is a set of names of bounds, then
supp(z) := supp(Z) :=


{supp(x) : x ∈ Z}. The name bd a will be such that supp(bd a) ⊆ WE and, in addition,

supp(a) ≤ v ∈ W implies a =̇ {x : En(a, x, v)}. This procedure is detailed below. Thereby, we let bd ∈ WE be such
that the following equations hold.

(i) bd id = inv(id, λx.(x, iwϵ)), i.e. a name of the type {iwϵ}.
(ii) bd (iwa) = inv(id, λx.(x, iwa)), i.e. a name of the type {iwa}.
(iii) bd (all a) = bd (dom a) = bd (inv(a, x)) = bd a.
(iv) bd (int(a, b)) = bd (un(a, b)) = un(bd a, bd b).
(v) bd (j(a, g)) is the name of the type {bd (gx) : x ∈̇ a} ∪ {bd a} given by

un(dom (int(inv(id(λx.(bd (g(x)1), (x)0)), inv(a, λx.(x)0)))), inv(id, λx.bd a)).

We say that lv(X) := 0 iff X ⊆ R ∧ (∀x ∈ X)((x)0 = ϵ) (i.e. X contains only names of the form iww). lv(a) = n is short
for ∃X[R(X, a) ∧ lv(X) = n], and lv(X) = n+1 iff X ⊆ R ∧ (∀x ∈ X)(lv(x) ≤ n) ∧ (∃x ∈ X)(lv(x) = n). Note that if
lv(X) = n+1 and x ∈ X , then x names an initial segment of words, or lv(x) ≤ n.

Lemma 26. If a ∈ Rn, then bd a ∈ J0 and bd a ⊆̇ J0 and lv(a) ≤ n.

Proof. By induction on n. We just consider the case where a = j(b, g) ∈ Rn+1. Then, for each x ∈̇ b, gx ∈ Rn. Therefore
{bd (gx) : x ∈ b} ⊆ J0 and lv(bd (gx)) ≤ n by I.H. Now the claim follows by the definition of bd a and lv(a). �

Definition 27. For a ∈ Jm, let Xa,0 =̇ bd a. For 0 ≤ i ≤ m,

(i) Ya,i := {x ∈ Xa,i : (x)0 = ϵ},
(ii) If i < m, Xa,i+1 := {y ∈̇ x : x ∈ Xa,i ∧ (x)0 > ϵ},
(iii) Ya :=


0≤i≤m{(x)1 : x ∈ Ya,i}.

As the next lemma entails, Xa,i contains only names, and, thus, (x)0 > ϵ iff (x)0 ≠ ϵ for each x ∈ Xa,i, so that
Xa,i+1 = {y ∈̇ x : x ∈ (Xa,i−Ya,i)}.

Lemma 28. If a ∈ Jm ∩ Rn, then for 0 ≤ i ≤ m, lv(Xa,i) ≤ m − i, Xa,i ⊆ J0 and {(y)1 : y ∈ Ya,i} ⊆ WE, Ya ⊆ WE.

Proof. By main induction onm and side induction on n. �
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Lemma 29. For all names a, b ∈ Jm ∩ Rn and w ∈ WE and g ∈ VE, the following holds:

(i) Yid = {iwϵ} and Yiww = {iww},
(ii) Yall a = Ydom a = Yinv(a,g) = Ya,
(iii) Yint(a,b) = Yun(a,b) = Ya ∪ Yb,
(iv) Yj(a,g) = Ya ∪


x ∈̇ a Ygx.

Proof. By main induction on m and side induction on n. (i)–(iii) are immediate. For (iv), note that by definition of Xj(a,g),0,
Xj(a,g),0 = Xa,0 ∪


x ∈̇ a Xgx,0. Further, if Xj(a,g),i = Xa,i ∪


x ∈̇ a Xgx,i, then Yj(a,g),i = Ya,i ∪


x ∈̇ a Ygx,i and Xj(a,g),i+1 =

Xa,i+1 ∪


x ∈̇ a Xgx,i, since
y ∈̇ z : z ∈


x ∈̇ a

Xgx,i ∧ (z)0 > ϵ


=


x ∈̇ a


y ∈̇ z : z ∈ Xgx,i ∧ (z)0 > ϵ


.

If follows that for 0 ≤ i ≤ m+1, Yj(a,g),i = Ya,i ∪


x ∈̇ a Ygx,i. Therefore,

Yj(a,g) =


0≤i≤m+1

{(y)1 : y ∈ Ya,i} ∪


0≤i≤m+1


(y)1 : y ∈


x ∈̇ a

Ygx,i



=


0≤i≤m+1

{(y)1 : y ∈ Ya,i} ∪


x ∈̇ a


0≤i≤m+1

{(y)1 : y ∈ Ygx,i}.

The claim follows. �

Lemma 30. If a ∈ Rn and Ya ≤ w ∈ WE, then a =̇ {x : En(a, x, w)}.

Proof. By induction on n. If a ∈ R0, then either a = id, in which case there is nothing to show, or a = iww. In this
case, Ya = {w}, and since (a)1 = w, iww =̇ {x : E0(a, x)} = {x : E0(a, x, w)}. If e.g. a = j(b, g) ∈ Rn+1, then a =̇

{(y, z) : En(b, y) ∧ En(gy, z)}, so by I.H. a =̇ {(y, z) : En(b, y, w) ∧ En(gy, z, wy)}, for a word w ≥ Yb and words wy ≥ Ygy
(y ∈̇ b). Since En is positive, we also have a =̇ {(y, z) : En(b, y, v) ∧ En(gy, z, v)}, provided v ≥ Yb ∪


y ∈̇ b Ygy. The claim

follows by the definition of En+1. �

Lemma 31. For each a ∈ Rn, a names a simple type.

Proof. If remains to show that Ya is simple. Since Ya ⊆ WE and E is a model of PT+ (BP), Ya is bounded, and the claim
follows by Lemma 30. We show by induction on 0 ≤ i ≤ n that there are L formulas Bi(u) and words wi so that
Xa,i = {x : Bi(x)} = {x : Bwi

i (x)}. Thus, Xa,i and Ya,i are simple, which implies that Ya is simple. Since Xa,0 ∈ J0,
B0(u) := En(bd a, x) and w0 := bdo (bd a) is a valid choice by Lemma 25, the definition of bd and Definition 27. So assume
that Xa,i = {x : Bwi

i (x)}. As Xa,i ⊆ J0, {bdo x : x ∈ Xa,i} ⊆ WE is simple and thus bounded by some wi+1 ∈ WE. We may
assume that wi ≤W wi+1. Then, Xa,i+1 is

{x : ∃z[Bwi+1
i (z) ∧ ϵ < (z)0 ∧ En(z, x, wi+1)]} = {x : ∃z[Bi(z) ∧ ϵ < (z)0 ∧ En(z, x)]}.

Hence, Bi+1(u) := ∃z[B(z) ∧ ϵ < (z)0 ∧ En(z, x)] and wi+1 do the job. �

Theorem 32. Let E′ be a model of PT+ (BP). Then, there is an elementary extension E ≻ E′ so that there is an expansion (E, R)
which is a model of PETJ whose types are exactly the simple classes of E.

Since PT0 and PT+ (BP) have the same provably terminating operations, we also have the following.

Corollary 33. The theories PT0, PT
Ď
S+ I, PT+ (BP) and PETJ all have the same provably terminating operations on words.

8. Concluding remarks

First, we have presented the theory PTS which is PT with the somewhat technical induction schema (Σb
W-I) replaced by

induction on notation for simple formulas. Then, we have introduced the boundedness principle (BP) which asserts that for
each simple class X , X ⊆ W → (∃w ∈ W)(X ≤ w). We argued that each instance of (BP) is provable in the auxiliary theory
PTĎS+ I that extends PT by the assertion that exp /∈ (W → W) and an induction principle claiming that if X ⊆ W is simple
and Y = {y : (∃x ∈ X↓)A(x, y)} for some positive and W-free formula A(u, v), then Prog@(Y ) → W ⊆ Y . A translation in
the style of a realizability interpretation enabled us to verify that the provably total operations of PTĎS+ I and PT coincide.

In a second step we employed a non-monotone inductive definition over a structure for PT+ (BP) to define a naming
relationwhich enabled us to expand amodel of PT+ (BP) to amodel of PETJ−. Then, we proved that eachmodel of PT+ (BP)
has an elementary extension above which the inductive definition closes off already at stage ω. The corresponding model
M was readily seen to be a model of PET, as the extension of each type constructed without the use of join is simple. In fact,
given a name b of such a type X , we could compute a word w so that X = {x : Aw(x)} for some A(u, v) ∈ S(v). A further



D. Probst / Annals of Pure and Applied Logic 162 (2011) 934–947 947

argument was required to see that M also satisfies the join principle. Although we could not compute for each name b a
word w so that b =̇ {x : Aw(x)} for some A(u, v) ∈ S(v), we were able to prove the existence of such words. For a name
b of a type built using join, we have computed a name of a set bd b of names of bounds so that all names x in the transitive
closure of the type bd b are in J0. As the bounding principle (BP) provides a simple definition of a type j(a, f ) under the
premise that fx is a name in J0 for each x ∈̇ a, an iterative application of (BP) allowed us to find a simple definition of the
type j(a, f ).

In Spescha and Strahm [15], a realizability interpretation is performed to show that the provably terminating operations
of PETJi are the polytime functions on words. In their proof, a word w realizing the formula R(b) corresponds in essence
to a word w so that b =̇ {x : Aw(x)} for some A(u, v) ∈ S(v). However, in order to compute such a word, they had to
change to intuitionistic logic. Whether a realizability interpretation is also possible for PETJ with classical logic is still an
open question.
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