
Artificial Intelligence 124 (2000) 139–159

Sketch-based pruning of a solution space within
a formal geometric constraint solver✩

C. Essert-Villard∗, P. Schreck, J.-F. Dufourd
Laboratoire des Sciences de l’Image, de l’Informatique et de la Télédétection (LSIIT, UPRES-A CNRS 7005),

Université Louis-Pasteur de Strasbourg, Boulevard Sebastien-Brant, 67400 Illkirch, France

Received 12 April 2000

Abstract

In CAD systems, formal geometric solvers enable the designer to draw a sketch and to provide
constraints that are compiled into a construction plan by symbolic geometric reasoning. Then the
plan is interpreted in order to generate the required figure. In case there are multiple solutions, they
allow to scan the entire solution space. But when the number of solutions becomes too high, it is very
time-consuming to examine each of them to determine which one is the closest to the user’s will. In
this paper, we introduce a sketch-based heuristic that enables to easily eliminate most of the solutions
and to keep, among a solution space represented by a tree, only one branch, or at the worst a small
subtree of solutions, that has the best likeness with the original sketch. 2000 Elsevier Science B.V.
All rights reserved.

Keywords:Formal geometric constructions; Symbolic constraint solving; Tree pruning; Computer-aided design

1. Introduction

In Computer-Aided Design (CAD), drawing constrained figures and automatically
solving them are subjects that have been studied by many authors [1,3,5,6,15,17,20,22,24],
but that still remain topical. In geometric modeling, constraints bring a precise description
of geometric properties that must be respected by the object. Since I.E. Sutherland’s
Sketchpad [25], various ways of solving constraints have been considered. Two main
classes can be distinguished: numerical approaches and formal methods. The first ones

✩ This research is supported by the PRC-GDR “Algorithms, Languages and Programming”, MENRT-CNRS,
France.
∗ Corresponding author.

E-mail address:essert@dpt-info.u-strasbg.fr (C. Essert-Villard).

0004-3702/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(00)00061-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82081592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


140 C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159

Fig. 1. “15 triangles” configuration: the sketch.

are often chosen, and consist in solving numerically the equation system related to the
dimensions [12,16,17]. A formal resolution of the symbolic constraint system offers the
advantage of efficiently manipulating the defined figure by varying parameters values [1,
5,6,21]. Unfortunately, algebraic tools for formal calculus, e.g., computer algebra systems
[11], are much too general to be efficient for that purpose.

Within our team, we gave priority to a both formal and geometric approach: resolution
tools that we propose are based on classic geometry, more particularly geometric
constructions domain, and on symbolic reasoning, more precisely rule-based systems.
They are specialized enough to be efficient to solve most problems in CAD. Then, in a
first stage, the result of the formal resolution of a constraint system is aconstruction plan
describing, in the right order, the objects to build and the operations to apply so as to obtain
a solution figure. A second stage consists in numerically interpreting this construction plan,
by replacing the parameters with dimensions values. This approach was materialized by a
software called YAMS1 [8,9,18] that associates a formal geometric solver with the 3D
topology-based modellerTopofil[2].

Whatever the approach, numerical or formal, algebraic or geometric, a constraint system
doesn’t usually define a single figure. When an infinite number of figures satisfies the
constraints, the system is said under-constrained. When the set of solutions is finite and
non empty, the system is saidwell-constrained. In the case of a well-constrained system,
the exploration of the solutions space is not as easy as it seems. Indeed, the existence of
polynomial equations whose degree is higher or equal to 2, on an algebraic point of view,
or of multiple intersections, on a geometric point of view, quickly leads to a combinatorial
explosion of the number of solutions. As regards our approach, this increase in the number
of solutions is the result of the existence ofmultifunctionsin the construction plan.

As an example, Fig. 1 shows a sketch made up of fifteen adjacent triangles. The lengths
of all their sides are asked to be equal to a given dimension. This kind of configuration
was studied by Owen [20], and is known to have 2p−2 distinct solutions, wherep is the
number of points. In our case, with 17 points, we obtain 32768 solutions (triangles are
often superposed, because their sides are equal). Some of them are presented in Fig. 2.

In most cases, CAD users only want one solution figure when they design an object.
That’s why an important matter of geometric solvers is identifying the solution that is most
consistent with the user’s expectations, as we can see in [3] and [17]. The most common
response to this problem is the use of heuristics to filter the results. When using a numerical
method, the constrained figure is compared with each of the numerical solutions. This is

1 YAMS: Yet Another Meta Solver.



C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159 141

Fig. 2. Five solutions among 32768 to “15 triangles”.

generally characterized by slow runtimes, and there is often more than one solution left.
Our formal approach allow us to take advantage of the construction program to compare
the sketch with a solution.

Another concern of our team relates to software engineering, and deals with rigorous
description of the models [7], and of their development [2]. That’s why we used algebraic
specifications formalism, and more particularlyOBJ3language, to describe our geometric
universe, and every notion we use. Notice that every notion used was specified usingOBJ3
and submitted to a series of tests. Another specification of analytic geometric universe
thanks to algebraic techniques can be found in [14].

The rest of the paper is organized as follows. Section 2 outlines our formal approach
of constraints solving, and the relating notions. Section 3 exposes our vision of likeness
between figures, and a structuring of the solutions space. Section 4 presents a method to
choose the intended figure amongst many solutions. Section 5 deals with restrictions that
apply to it, and the way to solve particular cases. Section 6 shows some results provided
by our technique, and Section 7 concludes.

2. Geometric constraints system solving

Our original approach to formal geometric construction of rigid bodies in the Euclidean
plane was made a reality with the prototype called YAMS. That is a formal 2D geometric
solver associated with the 3D topology-based modellerTopofil [2]. A precise description
of this association can be found in [18] and [9], so we’ll only present here the solver part,
which acts in two stages, a symbolic one and an interpretative one.

2.1. Symbolic resolution

In the first stage, given a dimensioned sketch, the solver associates the geometric
objects with some identifiers, then turns the constraints into formal parameters to form
the geometric constraint system as it is defined below.



142 C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159

Definition 1 (Constraint system). A geometric constraint systemis a tripleS = (U,X,C),
whereU a set of parameters,X is a set of unknowns, andC a set of constraints of the form

C = {p1(U,X), . . . ,pr (U,X)
}
,

where eachpi(U,X) is a predicative term, namely a constraint, whose variables are inX

or inU .

Example 2. An example of dimensioned sketch is shown on the left hand side of Fig. 3.
The first object, made up of two line segments and an arc, is subjected to topological
constraints (incidence and adjacency) deduced from the sketch, and metric constraints
given by the user. As shown on the diagram, there are constraints on the two line segments
lengths, on the oriented angle between these segments, and on the arc’s radius. This arc is
asked to have the same center as the circle that forms the second part of the figure. Finally,
we want the radius of this circle to be half the radius of the arc. The sketch as it is drawn
does not respect the metric constraints, but respects incidence and adjacency constraints.
The right hand side of Fig. 3 shows how YAMS associates identifiers to geometric objects.
By convention,pi , ci , li , ki , and ai are the chosen names for points, circles, lines,
lengths and angles, respectively. The corresponding constraint system is presented on
Table 1.

When the user gives a dimensioned sketch, he actually provides YAMS some numerical
values, for exampledistpp(p1,p2,5), which are abstracted in flight to produce constraints,
such asdistpp(p1,p2, k2) and k2 = initl(5). More precisely, the user provides an

Fig. 3. A sketch with constraints (left hand side) and identifiers association (right hand side).

Table 1
Constraints corresponding to Fig. 4 example

egal_p(p5, p4) angle(p1, p2, p1, p3, a1) onc(p2, c1)

centre(c2, p5) distpp(p1, p2, k2) onl(p3, l2)

centre(c1, p4) distpp(p1, p3, k1) onl(p2, l1)

radius(c2, k4) fixorgpl(p1, l1, p2) onl(p1, l2)

radius(c1, k3) onc(p3, c1) onl(p1, l1)



C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159 143

instanciated systemSu = (∅,X,Cu), whereu is the tuple of the dimensions values,
and YAMS transforms it into a systemS = (U,X,C), where each symbol ofU is the
abstraction of a dimension value, andC is the set of constraints given by the user where
each dimension value is replaced by a symbol inU . It is possible to get back toSu from
S by instanciating symbols inU with values fromu. An advantage of the formal approach
is that changing the values ofu does not affect the solving process. In the same way,
in the particular case where all the constraints are metric constraints, that is involving
dimensions, ifu is the tuple of the values read on the sketch, then the sketch is a solution
of Su.

Then, according to the constraints, YAMS produces definitions of the formy =
g(u1, . . . , us, x1, . . . , xk) that ensure correspondence between functional terms and identi-
fiers. The definitions are brought together forming a generalconstruction plan, which is the
result of the formal phase. This plan indicates how and in what order the geometric objects
must be built to produce the figure. More formally, a planT is the result of a symbolic
resolution of constraint systemS if T is a triangular system, that is composed of defini-
tions of the formxi = g(u1, . . . , us, x1, . . . , xi−1) where 16 i 6 r, r being the number of
variables inT , andS ≡ T , that isS andT have the same solutions. We also say thatT is
a solvedsystem. Using instanciation of parameter symbols inU with values of any tuple
u, we obtainSu ≡ Tu.

Example 3. A construction plan corresponding to the constrained sketch of Example 2,
that is where the parameters values were given by the user, is listed in Fig. 4, on the left. In
order to make this example clearer, we sum up some functional symbols and their profiles
on Table 2.

In addition, YAMS contains some original features that makes resolutions easier. The
solver is able to break the initial geometric constraint system into smaller ones. This
decomposition is a bottom-up process: the subsystems are discovered during the solving
process. The philosophy is to solve subfigures independently and then to glue them together
with a mechanism calledassembling. Decomposition of the geometric constraint system
is based upon the stability under displacements of dimensioned systems. YAMS uses a
collaboration of several local methods, such as knowledge-based systems and Newton–

Table 2
Some functional symbols and their profiles

Symbol Profile Comment

interlc line× circle→ point intersection circle-line

mkcir point× long→ circle circle with known center and radius

lpla point× line× angle→ line line through one point making a
given angle with a known line

medradcir point× point× long→ circle circle passing through two points,
with a known radius

intercc circle× circle→ point intersection circle-circle



144 C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159

Raphson method, coordinated by a multi-agent architecture with a blackboard. Geometric
methods are fulfilled by expert agents which are production-based systems. A step by step
process completes the blackboard with new pieces of knowledge until the problem is solved
or no new deduction can be produced. An important hypothesis to ensure success is that
the geometric constraint system to solve has to be well-constrained (see Section 1), that
is it has a finite non-void set of solutions [9]. Actually, in this work, we don’t deal with
systems that are not well-constrained.

2.2. Interpretative stage

In the second stage, the required dimensions are used as parameters for the numerical
interpretation of the construction plan. Since used functional terms may provide multiple
results, each functional symbol is associated with a numericalmultifunction. For example,
the intersection between a line and a circle, symbolized byinterlc, generally produces two
points, andmedradcirthat builds a circle through two known points, with a known radius,
generally produces two different circles (see Table 2). It is often useful to give a numbering
to the various values produced.

Definition 4 (Numbering). Let g be a multifunction withn arguments and a maximum of
k results. Anumberingof g is a functionG with n+ 1 arguments such that

g(x1, . . . , xn)=
{
G(x1, . . . , xn,1), . . . ,G(x1, . . . , xn, k)

}
,

whereG(x1, . . . , xn, i) andG(x1, . . . , xn, j) are distinct functions ofx1, . . . , xn if i 6= j .

The existence of multifunctions in a construction plan introduces choices in the
interpretation process. Once values are assigned to the parameters, we can consider the
interpretation as the building of a tree labeled with numerical values. The interpretation of
a definition of the formy = g(u1, . . . , us, x1, . . . , xr) produces a branching of degreek if
multifunctiong has a maximum ofk results. At the end, the tree represents the solution
space, and one solution corresponds to the labels of one branch. Note that during the
evaluation, it may happen that a multifunction does not provide any result. In such a case,
the interpretation stops in this branch. It may also happen that the number of the really
produced results is less than the maximum. So we can distinguish the tree of potential
solutions, calledtree of possibilities, and the tree of effective solutions, calledtree of
solutions. Note that even if the tree of solutions is smaller than the tree of possibilities,
it may increase fast and be very wide. Obviously, this tree is not really built, but explored
by backtracking [18].

Example 5. A tree of solutions produced for our example after a parameters assignment is
presented on Fig. 4, at the right of the construction plan. The eight solutions (or branches)
are shown on Fig. 5, and numbered from #1 to #8. Each node corresponds to a result for
an identifier, which is written with the result number in brackets.

Thus, we have the following definition to precisely distinguish the solutions.



C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159 145

Fig. 4. Construction plan corresponding to Fig. 3 and tree of solutions.

Fig. 5. The generated solutions.

Definition 6 (Occurrence of a solution). Let Tu be an instance of a construction plan that
defines the unknownsx1, x2, . . . , xn thanks to the multifunctionsg1, g2, . . . , gn numbered
byG1,G2, . . . ,Gn, with the maximak1, k2, . . . , kn, respectively. A particular solution of
Tu is (G1(u, i1),G2(u, i2), . . . ,Gn(u, in)), where 16 i1 6 k1, . . . ,16 in 6 kn. We say
that(i1, i2, . . . , in) is theoccurrenceof this solution.

It is the usual notion of occurrence for tree nodes. For instance, one can read on Fig. 4
that solution #6 has(1,1,1,1,1,1,1,1,1,2,1,1,2,1,1) as an occurrence.



146 C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159

Actually, the computed construction plan enables to construct all the solutions as well
as other figures which are “false solutions”. The false solutions can quickly be eliminated
thanks to a simple test, as they are not consistent with the constraints.

Example 7. In our example, 4 solutions (numbered 3, 4, 5 and 6) can be eliminated
because the sign of anglea1 is the opposite of what is given in the constraints. Moreover,
among the remaining solutions, we can eliminate #7 and #8 that are identical to #1 and #2
modulo a displacement, in the same way as in YAMS.

But that may be insufficient. In the example presented on Fig. 1, there are 32768 different
solutions for a geometric object made of 15 equilateral triangles figure, but the solution
space can’t be reduced because all of the figures are consistent with the constraints. Other
heuristics are necessary to drastically prune the tree of solutions, eliminating the figures
that doesn’t look like the sketch.

3. Tree of solutions pruning using sketch interpretation

Our purpose is to obtain a single solution figure that bears the best resemblance to the
original drawing. Before explaining the method we use to achieve our aim, let us define
what we mean by saying a figure looks like another.

3.1. Usual criteria of likeness

Similarity is defined by most of the dictionaries as conformity in nature or appearance
between things. Two figures are often said to look like each other if they have some
geometric properties in common, such as relative placing of points, lines and circles, angles
acuteness, and convexity of some parts of the sketch. Conversely, two figures are not similar
if one of the characteristics is satisfied by one and not by the other. This intuitive definition
was proposed in order to eliminate solutions that seemed not “interesting” in the CAD
framework. We only notice that most of these properties comparisons can be held in check
by some simple examples: on Fig. 6 all angles are acute and all points have the same
relative placing so we can’t decide which solution is required; on Figs. 7 and 8 the sketch
has a flaw (convexity or acuteness) with respect to the solution.

Fig. 6. Lack of discrimination criterion.



C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159 147

Fig. 7. Convexity flaw.

Fig. 8. Acuteness flaw.

These intuitive criteria are not satisfactory. In the following section, a better criterion
based on homotopy is proposed. Note that the verification of geometric properties on
a sketch given by the user, calledsemantic verification, has already been used in the
framework of geometric theorem proving [13].

3.2. Homotopy as a notion of likeness

In geometry, several notions of likeness between objects exist, depending on the
considered abstraction degree. We try to define a criterion taking exactly into account our
framework, that is geometric figures which are solutions of constraint systems.

When considering only topological properties, the continuous deformation called
homotopy is an usual likeness concept. Let us recall homotopy definition.

Definition 8 (Homotopy). LetP be a topological space,f0 : [0,1]→ P andf1 : [0,1]→
P be two parametric continuous curves.f0 andf1 are saidhomotopicif there is a function
ϕ : [0,1] × [0,1]→P such thatϕ(x,0)= f0(x), ϕ(x,1)= f1(x), andϕ is continuous.

An interesting point of this definition is that it makes a bridge between a local notion of
proximity in the Euclidean space and a global one. This aspect seems very interesting
to us since in CAD the sketch can be very far from any solution (see Figs. 6–8). Of
course, this definition is much too general for us because it doesn’t take into consideration
elementary geometry properties of the objects, particularly their type. For example, a circle



148 C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159

is homotopic to a triangle, and this is meaningless for CAD users. So, we have to refine
this characterization in a geometric construction framework.

Let us first make clearer our notion of geometric type. In [9], we described a figure
as a geometric tuple of objects, such as points, lines, circles, etc. The type of such a
figure is then a Cartesian product of simple types, to which we have to add incidence
relationships. For example, the triangleABC of Fig. 8 is typedpoint× point× point×
segment× segment× segmentwith the appropriate incidence constraints. With the help of
a coordinates system, we can define a metric topology, from which a notion of proximity
follows. Now we can give our definition of geometric homotopy.

Definition 9 (Geometric homotopy). Given two figuresf0 and f1 of the same type
τ1 × τ2 × · · · × τn with the same incidence relationships, we say thatf0 and f1 are
geometrically homotopicif there is a continuous transformation

ϕ : [0,1]→ τ1× τ2× · · · × τn
preserving incidence relationships, such thatϕ(0)= f0 andϕ(1)= f1.

Transformationϕ of this definition can be seen as a tuple of continuous transformations
(ϕ1, . . . , ϕn) for the typesτ1, . . . , τn.

Example 10. On Fig. 9, the figure composed of a trianglep1p2p3 and his circumcircleC
is considered as having the typepoint× point× point× segment× segment× segment×
circle. We deform the figure by translatingp3 into p′3, that also deformsC into C′.
The continuous transformations applied on the components are: identity onp1 andp2,

translation
−−−→
p3p′3 onp3, identity on[p1p3], similarities of centersp1 andp2 on [p1p3]

and [p2p3] respectively, and a central homothety whose center is on the perpendicular
bisector of[p1p2] onC.

Note that the previous definition may characterize the interactive geometric deforma-
tions as in Cabri [23]. However, we don’t simply deal with figures: we have to keep in
mind the constraint system given by the user as much as the geometric figures. So we can’t
only consider a single solution, but its position in the entire solution space.

Fig. 9. Geometric homotopy.



C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159 149

3.3. Constrained deformation

If we want to study continuous deformations of a dimensioned figure, not only have we
to define the continuous deformation of a figure, but also of its constraint system. Both
have to be subjected to a continuous deformation, from a particular solution of the system
instanciated by some valuesu to another particular solution of the system instanciated by
some valuesv. Actually, the notion of deformation of a system concerns the entire class of
equivalent systems. Thus, we propose the following formalization.

Definition 11 (Continuous deformation of a constrained system). Let S = (U,X,C) be a
geometric constraint system instanciated intoSu andSv with two tuples of valuesu andv
for U . A continuous deformationfrom Su to Sv is a continuous functionψ : [0,1] → Rs
such that:

(i) ψ(0)= u andψ(1)= v,
(ii) for every systemS′ such asS′ ≡ S, every well-constrained subsystemσ ′ ⊆ S′, and

everyt ∈ [0,1], σ ′ψ(t) has as many solutions asσ ′u.

Recall (Section 2) thatS andS′ are said to be equivalent, denotedS ≡ S′, if they have
exactly the same solutions. Point (ii) of Definition 11 is very strong, because it imposes
that any subsystemσ ′ of the whole systemS (or an equivalent systemS′) keeps the same
number of solutions during the deformation. Indeed, once the parameters are fixed, say to
u, the solution space can be viewed as the class of all systems equivalent toSu. Thus, the
above definition can be regarded as the continuous deformation of a solution space. The
following lemma, directly coming from the definition, will be useful.

Lemma 12. Let S andS′ be two equivalent systems with the same parameters set, andu

andv two instanciations of these parameters. If there is a continuous deformation fromSu
to Sv , then there is a continuous deformation fromS′u to S′v .

This notion is linked with the notion of continuous geometric deformation of a figure
the following way.

Definition 13 (S-homotopy). Let Su and Sv be two different instances of a constraint
systemS, fu a particular solution ofSu, andfv a particular solution ofSv . If the following
conditions are satisfied

(i) there is a continuous deformationψ from Su to Sv ,
(ii) there is a continuous functionϕ : [0,1] → τ1× τ2× · · · × τn such thatϕ(0)= fu

andϕ(1)= fv ,
(iii) ∀t ∈ [0,1], ϕ(t) is a solution ofSψ(t),

then we say that there is a geometric homotopy fromfu to fv with respect to the constraint
systemS, in short anS-homotopy.

In other words, the deformation of the constraint system must not reach any degenerate
case because, if that occurs, we can jump to another solution instead of always following
the same one, and that is not what we want.



150 C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159

Fig. 10. Continuous deformation through a degenerate case.

Example 14. On the top of Fig. 10, the triangleABC given as a sketch has three
constraints: lengthBC equalsk1, distance between linel1= (BC) and pointA equalsk2,
and oriented angle inA equalsa. The two possible solutions,f0 andf1, are presented
bottom left and right on Fig. 10. WhenB and C are known,A can be built as the
intersection between linel2, that is at a distancek2 from l1, and the arc associated to
a. It is possible to deform continuously the first solution by translatingl2, but if we pass
through the degenerate case, as shown in the middle of Fig. 10 (line tangency), then we
can reach the second solution. Thus,f0 andf1 are notS-homotopic. We will explain later
why the solution we would probably like to keep isf1.

Since the symbolic resolution of a systemS consists in building a triangular solved
systemT (see [9]) which is equivalent toS, the degenerate cases ofS are the degenerate
cases ofT , and conversely. Given that, in our case,T is a set of definitions of the form
xi = g(u1, . . . , us, x1, . . . , xi−1), whereg is a multifunction, such a degenerate case occurs
wheng doesn’t produce the maximum number of solutions, because of particular values of
the parameters. For example, multifunctioninterlc (see Table 2) building the intersection
between a line and a circle usually produces two solutions, but in the degenerate case where
the circle is tangent to the line, there’s only one solution (Fig. 10). This leads us to give a
numbering for multifunctions values which is compatible with the continuous deformation
of the geometric constraint systems, and which we define as continuous numbering, this
definition applying naturally to a construction plan.

Definition 15 (Continuous numbering). Letg be a multifunction andG a numbering such
that

g(x1, . . . , xn)=
{
G(x1, . . . , xn,1), . . . ,G(x1, . . . , xn, k)

}
.

ThenG is a continuous numberingif G is continuous on any domain containing no
degenerate case.



C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159 151

In all the following, it will be supposed that all the considered multifunctions are
continuously numbered. Now that we defined clearly our vision of likeness and numbering,
we are able to do the link between these notions, by expounding the following theorem.

Theorem 16. Let S be a constraint system, and two instanciationsu and v of the
parameters such that there exists a continuous deformation fromSu to Sv and a triangular
system solvingS. When T denotes this triangular system, two figuresfu and fv ,
respectively solutions ofSu and Sv , are S-homotopic if and only if they have the same
occurrence(i1, . . . , in) in Tu andTv respectively.

We do not prove this theorem here, let’s simply say that the proof is mainly made
of continuity arguments. The above theorem is true whatever the symbolic solutionT

of S, even if the occurrence is depending onT . More precisely, we have the following
corollary.

Corollary 17. Under the hypotheses of Theorem16, two figuresfu andfv , respectively
solutions ofSu and Sv , are S-homotopic if and only if, for every triangular systemT
symbolically solvingS, they have the same occurrence inTu and Tv , respectively. In
addition,fu being a fixed solution ofSu, there is at most a uniquefv solution ofSv such
thatfu andfv are S-homotopic.

3.4. Practical numbering

It is worth determining which geometric properties characterize the discrimination
between the values of a multifunction. Following the example ofinterlc, let us consider
the anglea between the given line and the line that passes through the center of the circle
and one intersection in that order (see top left of Fig. 11). Notice that lines and angles are
oriented. In the degenerate case,a is a right angle. Wheninterlc produces two solutions,
they are discriminated by the acuteness or not ofa, that allows us to produce a continuous
numbering forinterlc. For instance, solution number 1 will be obtained whena is acute,
and solution number 2 whena is obtuse. Then, for every multifunction we currently use in
our solver, we described such a geometric characteristic (see Fig. 11 for illustrations):
• interlc: builds the intersectioni between a linel1 and a circlec. Let a be the angle

betweenl1 and the linel2 that connects the centerp of c and i. There are at most
two solutions for this multifunction. For one solutiona is acute, for the other onea
is obtuse. There is a degenerate solution whenc is tangent tol1, and thena is a right
angle.
• intercc: builds the intersectioni between two circlesc1 andc2. The two solutions are

differentiated by the relative placing of three points (clockwise or counterclockwise):
the centersp1 andp2 of the circles, andi. The degenerate solution occurs whenc1

andc2 are tangent:p1, p2, andi are collinear.
• mkcir4: builds a circlec2 tangent to a given circlec1. One solution is located inside
c1, the other one is outsidec1. The degenerate case is reached whenc1 has a radius
equal to zero.



152 C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159

Fig. 11. Geometric characteristics of multifunctions.

• medradcir: builds a circlec through two pointsp1 andp2, knowing the radiusk.
Like intercc, the relative placing of three points (clockwise or counterclockwise) is
different for the two solutions. In this case, the three points arep1,p2, and the centerp
of c. Whenk = 1

2p1p2,p becomes the middle of[p1p2], the three points are collinear,
and there is only one possible solution.
• bisectdd: builds the bisectorl3 of two linesl1 andl2. The anglea betweenl1 andl3 is

either acute or obtuse. Whenl1 andl3 are parallel, we have a degenerate case.
• linev: builds a vertical linel at a given distancek from a pointp. The latter is either

at the left or at the right ofl. If k = 0, then there is only one possibility forl, and it
passes throughp.
• lineh: builds a horizontal linel at a given distancek from a pointp. The latter is

either above or belowl. If k = 0, then there is only one possibility forl, and it passes
throughp.
• ldl: builds a linel2 parallel to another linel1, at a given distancek from it. The angle
a betweenl1 and−−→p1p2, wherep1 ∈ l1 andp2 ∈ l2, is negative or positive. Ifk = 0,
thenl1= l2.

In each case, moving from a solution to the other consists in a continuous deforma-
tion passing throughout an intermediate figure where the value associated with the char-
acteristic property reaches an extremum. All of the geometric properties defined above
are preserved through a continuous deformation, so they allow us to define a continuous
numbering.



C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159 153

4. Freezing of a branch

In order to find the solution that the designer expects, we put forward the hypothesis
that the constraints he gave with the sketch reflect his expectations. More precisely, using
Theorem 16 notation, we assume first that there is an instanceu of the parameters such that
the sketchfu is a solution ofSu, and secondly that there is a continuous deformation from
Su to Sv wherev are the dimensions values initially given in the constraints. In this section
we explain how to fulfill the former condition in the case of metric constraints. The latter
is a strong condition, but it seems to be usually achieved. For now, we will not consider
peculiar cases, that will be discussed in the next section. That leads us to a simple way of
finding the required solution, by applying Theorem 16 the following way.

We first point out the fact that, as we said in Section 2, the sketch can be seen as a
particular solution of the constraint systemSu instanciated by the tupleu of the values
read on the sketch. Then, we suppose that there is a continuous deformation betweenSu
andSv , if Sv is the instanciation of the system by the tuplev of the given dimensions. Thus,
if we can find a solution ofSv having the same occurrence than the sketch, then we can
say that it is the intended solution. Even if it appears to be strange, we try to rediscover the
sketch by the mean of the construction plan.

Practically talking, we take advantage of our formal solving approach by operating the
following way. In a first stage, we apply the interpretationIu to the triangular solved form
Tu of the constraint systemSu with the sketch parameters. At each fork (multifunction)
of the tree of solutions produced byIu, we can decide which branch to follow by com-
paring, as explained in Section 3.4, the geometric properties of the results of the multi-
function with the data read on the sketch. The aim is that the computed version, that is the
chosen branch, has to be nearly identical to the effective sketch. That way, we can store
the occurrence of this branch of the tree of solutions. This operation is calledfreezingof
a branch.

In a second stage, for some fixed parametersv, the figure will be found by an
interpretationIv of the triangular solved formTv of the constraint systemSv , simply
following the branch that was frozen during the previous step and whose occurrence was
stored. We can restart this interpretation with as many other parameters as we want without
doing the freezing again.

An example of a result provided by this method can be seen on Fig. 12. It shows the
single solution found by using the freezing of a branch on the constrained sketch given on
Fig. 1.

One of the advantages of this method is its speed, because no unnecessary comparisons
are executed. Indeed, instead of geometrically comparing all the objects of the figure with

Fig. 12. The required solution of the sketch given on Fig. 1.



154 C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159

each other, we only compare, at each junction of the tree, the objects that are brought
into play in the concerned multifunction. Since the treatment is made as the interpretation
goes along, this method reduces significantly the processing time in comparison with a
systematic method.

Example 18. In the example presented on Figs. 1 and 12, it takes more than 1 minute to
calculate all possible solutions, whereas our method gives an instantaneous good answer.

Finally, as we said previously, the geometric criteria on multifunctions are dependent
on lines orientation. For example, withinterlc, if we change the line’s orientation, the
acuteness of the angle is inverted, and the solutions swap. So, in order to ensure numbering
preservation, we must check that all lines in the sketch are given with the same orientation
as the ones that will be computed. We have to compare the angle between each line and
theOx axis on the sketch with what it should be, as the sketch is considered as the result
of an interpretation.

For example, let’s consider a linel1 described in the construction plan by a definition
containing the functionlpla that draws the line through one pointp, making an angle
α with another linel2. We calculate, using the sketch’s dimensions, what should be
the orientation ofl1, knowing the previously calculated orientation ofl2. Then, we
compare this theoretical orientation with the effective one. If they are opposite, we change
the sketch’s data by reversing the line. On a formal point of view, the construction is
unchanged. Only the numerical representation of the sketch is corrected.

5. Discussion

The method we exposed in previous section works fine when all constraints are metric.
But another type of constraints is also used in YAMS: Boolean constraints. As examples,
we can cite tangency, or equality of objects. In the case of Boolean constraints, some
information is missing to find the intended solution. Actually, unlike metric constraints that
don’t affect topology, these constraints are not always respected on the sketch, as shown
on Figs. 13 and 14: on the sketch, the circle is actually not tangent to the line contrary to
the constraints given by the user.

We notice that this kind of problem can come down to degenerate cases question. Indeed,
tangency can be seen as a distance between a circle and a line which would be void, that is a
limit case. In these situations, two general approaches can be considered, those correcting
the sketch to fit the previous conditions, and those producing several branches giving a
small subtree to explore.

The first approach has not yet been studied, but it may consist in interpreting the
construction plan with the data read on the sketch by correcting within itself the
inconsistent objects as they go along. For example, on Fig. 13, the sketch could be modified
in such a way that the circle becomes tangent to the line. Among the two possible circles
given by the construction plan, we choose the one that is closest to the circle on the initial
sketch, in the sense of Euclidean distance over the coordinates.



C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159 155

Fig. 13. Tangency problem: the sketch.

Fig. 14. Two possibilities for tangency.

The second approach consists in making a maximum freezing, that means keeping all
the possible solutions if it is not possible to decide. The result is afrozen subtreethat can
be explored thanks to some tools provided by the software. These tools may be of different
kinds. Let us enumerate some possibilities:
• Automatic tools to prune and/or classify the branches of the remaining subtree.

Classical geometric heuristics can be used such as comparisons of certain properties
of the sketch and of the solutions. However, we take advantage of the construction
plan to find out which objects are linked, and to compare their relative positions. This
way, we think that these criteria are more pertinent. In our example above, the two
possibilities for circlec1 can be sorted using the position (left or right) of the circle in
the sketch.
• Algorithmic tools to make faster the complete or the partial exploration of the

solution space. Amongst these tools, which are well known in other domains, we
have experimented a hash table, in the same way as functional languages like OBJ3,
an intelligent backtracking, and some permutations of the construction plan to reduce
the complexity [10]. We plan to use some heuristics coming from the SAT-problem
[4,19].
• User friendly interface: we think that the user can have uncertain ideas and his/her

wishes—expressed thanks to the sketch and the constraints—can be contradictory.
So, we propose a user interface to explore the solution space using the construction
plan. Let us detail these tools.

A first class of exploration tools is inspired bydebug toolsprovided by most of the
development systems in software engineering. This is possible because our approach is
formal and we have a construction plan. So it is easy to do a step by step evaluation,
allowing the user to choose, at each fork, a value among the available results. This simple
mechanism can be enhanced with several kinds of breakpoint tools. Moreover, it is possible



156 C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159

to offer the opportunity to freeze a part of a tree of solutions between two breakpoints, and
then to skip this part that has become a big step.

We also intend to implement a second class of exploration tools, that is based on the
idea of amagnetic grid. It allows a more intuitive approach of the selection problem. On
the basis of a solution that doesn’t fit the user’s expectations, he can drag the misplaced
element of the figure until one of the positions allowed by the tree of solutions.

6. Results

In order to illustrate our method, we expose here a quite representative example. The
sketch on Fig. 15, showing a lever, comes with 106 constraints including 2 tangency
constraints,tgcl(c1, l1) andtgcl(c3, l2) (see Table 3). Note that to lighten the figure, we
avoided to represent the constraints by arrows, as we did in the previous examples.

Using these constraints, that we cannot explain in detail in such a paper, the solver
produces a construction plan, containing 252 definitions. As among these definitions, 29
have an arity of 2, the tree of possibilities of this constraint system has 229= 536870912
branches. Actually, some branches lead to an interpretation failure, and others can be
eliminated with a simple constraints verification, so the tree of solutions provided by the
interpretation stage only has 160 branches.

Fig. 15. Sketch of the lever.

Fig. 16. Solutions for the lever.



C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159 157

Table 3
Constraints of the lever

angarc(p28, p3, p25, a18) angarc(p26, p24, p2, a17) centre(c6, p31)

centre(c4, p29) centre(c3, p28) centre(c2, p27)

radius(c5, k31) radius(c6, k30) radius(c4, k29)

centre(c5, p30) centre(c1, p26) radius(c2, k28)

radius(c3, k27) radius(c1, k26) angle(p13, p16, p13, p11, a16)

angle(p17, p16, p17, p18, a14) angle(p15, p16, p15, p12, a13) angle(p18, p17, p18, p19, a12)

angle(p10, p12, p10, p9, a10) angle(p19, p18, p19, p20, a9) angle(p20, p21, p20, p19, a8)

angle(p21, p20, p21, p22, a6) angle(p8, p9, p8, p7, a5) angle(p22, p21, p22, p23, a4)

angle(p16, p17, p16, p15, a15) angle(p12, p15, p12, p10, a11) angle(p9, p10, p9, p8, a7)

angle(p17, p14, p4, p3, a2) angle(p17, p14, p1, p2, a1) angle(p5, p6, p22, p23,a3)

distpp(p11, p13, k25) distpp(p13, p14, k24) distpp(p15, p16, k20)

distpp(p13, p16, k23) distpp(p16, p17, k22) distpp(p18, p17, k21)

distpp(p12, p15, k19) distpp(p19, p18, k18) distpp(p19, p20, k17)

distpp(p12, p10, k16) distpp(p9, p8, k12) distpp(p5, p8, k8)

distpp(p21, p20, k15) distpp(p9, p10, k14) distpp(p21, p22, k13)

distpp(p23, p22, k11) distpp(p7, p8, k10) distpp(p5, p6, k9)

distpp(p7, p5, k7) distpp(p1, p22, k6) distpp(p1, p23, k5)

distpp(p14, p4, k3) distpp(p4, p3, k2) distpp(p1, p2, k1)

distpp(p23, p4, k4) fixorgpl(p13, l10, p16) onc(p7, c5)

onc(p1, c6) onc(p6, c6) onc(p5, c5)

onc(p4, c4) onc(p23, c4) onc(p3, c3)

onc(p25, c2) onc(p24, c2) onc(p24, c1)

onc(p25, c3) onc(p2, c1) onl(p21, l16)

onl(p23, l17) onl(p22, l17) onl(p22, l16)

onl(p21, l15) onl(p20, l15) onl(p20, l14)

onl(p19, l13) onl(p18, l13) onl(p18, l12)

onl(p17, l10) onl(p16, l10) onl(p16, l11)

onl(p15, l9) onl(p14, l10) onl(p13, l10)

onl(p12, l9) onl(p12, l7) onl(p11, l8)

onl(p10, l6) onl(p9, l6) onl(p9, l5)

onl(p8, l4) onl(p7, l4) onl(p6, l3)

onl(p4, l2) onl(p3, l2) onl(p2, l1)

onl(p19, l14) onl(p17, l12) onl(p15, l11)

onl(p13, l8) onl(p10, l7) onl(p8, l5)

onl(p5, l3) onl(p1, l1) tgcl(c1, l1)

tgcl(c3, l2)



158 C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159

Our method allows to prune significantly the tree of solutions, providing a four-branched
subtree. The remaining solutions can be seen on Fig. 16. Among the four figures, the
part that remains unchanged corresponds to the metric constraints, and the uncertain part
corresponds to the two tangency constraints. It is not possible to have only one solution
since the tangency constraints are not respected on the sketch. To prune the subtree, we
have implemented other heuristics such as relative placing of circles and lines. With these
heuristics, we found the intended solution, that is the bottom-left part of Fig. 16.

7. Conclusion

In this paper, we exposed our formal approach of geometric constructions, that yields a
construction plan from a dimensioned sketch. Then, we defined a notion of likeness coming
from the topological homotopy notion calledS-homotopy. This allows us to define in some
way what is the structuring of the solution space of a constraint system. We also proposed
a method to selectonesolution amongst many, byfreezinga branch of the tree of solutions
with the help of the sketch.

This method works fine while all constraints are metric, as we shown on some simple
examples. However, as the limits of our method were clearly identified, we studied some
tools to explore the tree of solutions, and to help the user to find the intended solution.

In previous papers [9], we exposed that a symbolic solving has many advantages. Here
we showed that it is also useful for solutions selection or exploration. Various debugging
tools will soon be implemented, and we plan to develop an intuitive graphic interface to
deal with them.

Further work is needed to analyze more in detail the structuring of solutions space. For
example, in the case of articulated systems animation, one of the problems is the crossing
of dead points. This problem is linked with some degenerate cases, and with the transition
from one branch to another in the tree of solutions.

References

[1] B. Aldefeld, H. Malberg, H. Richter, K. Voss, Rule-based variational geometry in Computer-Aided Design,
in: D.T. Pham (Ed.), Artificial Intelligence in Design, Springer, Berlin, 1991, pp. 27–46.

[2] Y. Bertrand, J.F. Dufourd, Algebraic specification of a 3D-modeller based on hypermaps, Computer
Vision—GMIP 56 (1) (1994) 29–60.

[3] W. Bouma, I. Fudos, C. Hoffmann, J. Cai, R. Paige, Geometric constraint solver, Computer-Aided
Design 27 (6) (1995) 487–501.

[4] L. Brisoux-Devendeville, C. Essert-Villard, P. Schreck, Exploration of a solution space structured by finite
constraints, in: Proc. 14th European Conference on Artificial Intelligence (ECAI-2000), Workshop on
Modelling and Solving Problems with Constraints, Berlin, 2000, pp. F: 1–18.

[5] B. Brüderlin, Using Prolog for constructing geometric objects defined by constraints, in: Proc. EURO-
CAL’85, Lecture Notes in Computer Science, Vol. 204, Springer, Berlin, 1985, pp. 448–459.

[6] B. Brüderlin, Automatizing geometric proofs and constructions, in: Proc. Computational Geometry’88,
Lecture Notes in Computer Science, Vol. 333, Springer, Berlin, 1988, pp. 232–252.

[7] J.-F. Dufourd, Algebras and formal specifications in geometric modelling, The Visual Computer 13 (1997)
131–154.



C. Essert-Villard et al. / Artificial Intelligence 124 (2000) 139–159 159

[8] J.-F. Dufourd, P. Mathis, P. Schreck, Formal resolution of geometric constraint systems by assembling, in:
Proc. ACM-SIGGRAPH Solid Modelling Conference, Atlanta, GA, ACM Press, New York, 1997, pp. 271–
284.

[9] J.-F. Dufourd, P. Mathis, P. Schreck, Geometric construction by assembling solved subfigures, Artificial
Intelligence 99 (1998) 73–119.

[10] C. Essert, P. Schreck, J.-F. Dufourd, Interprétation d’un programme avec multifonctions géométriques, in:
Proc. 6èmes Journées de l’AFIG, Dunkerque, France, 1998, pp. 223–232.

[11] L.W. Ericson, C.-K. Yap, The design of Linetool, a geometric editor, in: Proc. Computational Geometry ’88,
Lecture Notes in Computer Science, Vol. 333, Springer, Berlin, 1988, pp. 83–92.

[12] J.X. Ge, S.C. Chou, X.S. Gao, Geometric constraint satisfaction using optimization methods, Computer-
Aided Design 31 (1999) 867–879.

[13] H. Gelernter, J.R. Hansen, D.W. Loveland, Empirical explorations of the geometry theorem proving
machine, in: E.A. Feigenbaum, J. Feldman (Eds.), Computers and Thought, MacGraw Hill, New York,
1963, pp. 134–152.

[14] J.A. Goguen, Modular algebraic specification of some basic geometrical constructions, Artificial Intelli-
gence 37 (1988) 123–153.

[15] G.A. Kramer, A geometric constraint engine, Artificial Intelligence 58 (1992) 327–360.
[16] V.C. Lin, D.C. Gossard, R.A. Light, Variational geometry in CAD, ACM Computer Graphics (SIG-

GRAPH’81) 15 (3) (1981) 171–175.
[17] H. Lamure, D. Michelucci, Solving constraints by homotopy, in: Proc. ACM-SIGGRAPH Solid Modelling

Conference, ACM Press, New York, 1995, pp. 134–145.
[18] P. Mathis, Un système de résolution de contraintes par assemblage en modélisation géométrique, Ph.D.

Thesis, Université de Strasbourg, 1997.
[19] B. Mazure, L. Saïs, E. Grégoire, Boosting complete techniques thanks to local search methods, Ann. Math.

Artificial Intelligence 22 (1998) 319–331.
[20] J. Owen, Algebraic solution for geometry from dimensional constraints, in: Proc. 1st ACM Symposium of

Solid Modelling and CAD/CAM Applications, ACM Press, New York, 1991, pp. 397–407.
[21] P. Schreck, Implantation d’un système à base de connaissances pour les constructions géométriques, Revue

d’Intelligence Artificielle 8 (3) (1994) 223–247.
[22] J.M. Scandura, J.H. Durnin, W.H. Wulfeck II, Higher order rule characterization of heuristics for compass

and straight edge constructions in geometry, Artificial Intelligence 5 (1974) 149–183.
[23] H. Schumann, D. Green, Discovering Geometry with a Computer using Cabri Geometre, Chartwell-Bratt,

1994.
[24] G. Sunde, A CAD system with declarative specification of shape, in: P.J.W. ten Hagen, T. Tomiyama (Eds.),

Intelligent CAD Systems I—Theoretical and Methodological Aspects, EurographicSeminars, Springer,
Berlin, 1987, pp. 90–104.

[25] I.E. Sutherland, Sketchpad: A man-machine graphical communication system, in: Proc. IFIP Spring Joint
Computer Conference, 1963, pp. 329–336.


