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SUMMARY

Hippo signaling represents a tumor suppressor path-
way that regulates organ size and tumorigenesis
through phosphorylation and inhibition of the tran-
scription coactivator YAP. Here, we show that serum
deprivation dramatically induces YAP Ser127 phos-
phorylation and cytoplasmic retention, independent
of cell-cell contact. Through chemical isolation and
activity profiling, we identified serum-derived sphin-
gosine-1-phosphate (S1P) and lysophosphatidic
acid (LPA) as small molecule activators of YAP. S1P
induces YAP nuclear localization through S1P2 re-
ceptor, Rho GTPase activation, and F-actin polymer-
ization, independent of the core Hippo pathway
kinases. Bioinformatics studies also showed that
S1P stimulation induces YAP target gene expression
in mouse liver and human embryonic stem cells.
These results revealed potent small molecule regula-
tors of YAP and suggest that S1P and LPA might
modulate cell proliferation and tumorigenesis
through YAP activation.

INTRODUCTION

Organ size regulation is a highly orchestrated process involving

multiple signaling networks that respond to physiological cues.

Initially discovered in Drosophila, Hippo signaling is an emerging

tumor suppressor pathway that plays key roles in normal physi-

ology and tumorigenesis through the regulation of cellular prolif-

eration and survival (Harvey et al., 2003; Jia et al., 2003; Panta-

lacci et al., 2003; Tapon et al., 2002; Udan et al., 2003; Wu

et al., 2003). The core components of Hippo signaling are well

conserved in Drosophila and vertebrate, including Ste20-like

kinases MST1/2 (Hippo/Hpo in Drosophila), adaptor protein

SAV1 (Salvador/sav in Drosophila), NDR family kinases Lats1/2

(Warts/Wts in Drosophila), and transcription coactivators YAP

and TAZ (Yorkie/Yki in Drosophila) (Harvey and Tapon, 2007).

The signal transduction involves a core kinase cascade, in which

SAV1 facilitates MST1/2 kinases to phosphorylate and activate
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Lats1/2. Subsequently, Lats1/2 phosphorylate YAP and TAZ at

the consensus HXRXXS motifs, including Ser127 of YAP and

Ser89 of TAZ (Zhao et al., 2007). These phosphorylation events

are inhibitory to the transcription coactivator function of YAP

and TAZ. Phosphorylated YAP and TAZ are sequestered in the

cytoplasm by binding to 14-3-3 protein (Pan, 2010). Inactivation

of the upstream kinases leads to the accumulation of YAP and

TAZ in the nuclei and promotes their binding to other transcrip-

tion factors, including TEA domain transcription factors (TEAD)

to regulate target genes expression (Chan et al., 2009; Goulev

et al., 2008; Ota and Sasaki, 2008; Wu et al., 2008; Zhang

et al., 2008, 2009; Zhao et al., 2008).

Previous work has shown that cell-cell contact can activate

mammalian Hippo signaling, leading to MST1/2 and Lats1/2

kinases-mediated inhibition of YAP and TAZ. Extracellular matrix

(ECM) stiffness canmodulate YAP and TAZ through RhoGTPase

and cytoskeletal rearrangement, independent of the core Hippo

kinases (Dupont et al., 2011; Zhao et al., 2011b). Enhanced

F-actin polymerization induces organ overgrowth in Drosophila

through activation of Yorkie (Fernández et al., 2011; Sansores-

Garcia et al., 2011; Wada et al., 2011). Cellular tight junction

(TJ) protein angiomotin and adherences junction (AJ) protein

a-catenin can directly bind to YAP and modulate its localization

and Ser127 phosphorylation (Chan et al., 2011; Schlegelmilch

et al., 2011; Zhao et al., 2011a). In addition, Fat and Dachsous

have been identified as receptor and ligand regulating

Drosophila Hippo signaling (Bennett and Harvey, 2006; Cho

et al., 2006; Rogulja et al., 2008; Silva et al., 2006; Tyler and

Baker, 2007; Willecke et al., 2006, 2008). However, upstream

signals that affect YAP in mammals require further investigation.
RESULTS

Serum Deprivation Induces YAP Cytoplasmic Retention
To identify regulators of YAP, we utilized an imaging-based YAP

nuclear localization assay that recapitulated cell-cell contact-

mediated YAP regulation: culturing HEK293A cells (an adherent

subclone of HEK293 cells) at low density (�50% confluency)

showed predominant YAP nuclear localization, whereas cul-

turing cells at high density (�100% confluency) led to Hippo

pathway activation and predominant YAP cytoplasmic localiza-

tion (Zhao et al., 2007) (Figusre S1 available online). The
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Figure 1. Serum Factor Induces YAP Nuclear Localization

(A) Serumdeprivation induces YAP cytoplasmic localization. Normal culturemedia (with 10%FBS) in low-density HEK293A cells was replenishedwith serum-free

media (SFM) or fresh media containing 10% FBS for 2 hr. Cells are fixed and immunostained for YAP (green) and nuclei are stained with Hoechst (blue).

(B) Serum deprivation induces YAP Ser127 phosphorylation. Cells were treated with media containing 10% FBS, 2% FBS, 1% FBS, or serum-free medium for

12 hr (SFM O/N), or serum-free media for 2 hr (SFM 2 hr). The total YAP protein level inversely correlates with p-YAP (S127) level, consistent with the previous

reports that YAP phosphorylation primes its degradation.

(C) HEK293A cells cultured at high density (�100%confluency) in normal media (DMEM+10%FBS) exhibit high YAP cytoplasmic localization. After replacing the

media with serum-free DMEM (SFM) for 2 hr, YAP remains predominantly in the cytoplasm. After replacing the media with fresh DMEM + 10% FBS for 2 hr, high

levels of nuclear YAP are observed, indicating that serum factors can override contact-dependent YAP regulation.

(D) Western blot analysis of p-YAP (Ser127) in HEK293A cells cultured at high density. Culture media were replaced with DMEM supplemented with different

concentrations of FBS (lanes 2 to 6). Additional FBSwas added directly in cells withoutmedia change in lanes 7 and 8 (data are represented asmean ± SEM, n = 3).

See also Figures S1, S2, S3, and S4.
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Pearson’s correlation coefficient between YAP-positive area and

cell nuclei was used to quantify YAP nuclear localization (see the

Supplemental Experimental Procedures). During assay optimi-

zation, we serendipitously observed that YAP cytoplasmic reten-

tion and Ser127 phosphorylation could be dramatically induced

by decreasing the concentration of fetal bovine serum (FBS) in

culture medium. This effect was independent of cell-cell contact

and could be induced within 2 hr upon serum deprivation

(Figures 1A and 1B; Figures S2A and S2B). Furthermore, adding

fresh serum to confluent HEK293A cells could induce YAP

Ser127 dephosphorylation and nuclear localization, overriding

cell-cell contact-mediated YAP inhibition (Figures 1C and 1D).

We observed a similar effect in additional cell lines (HaCaT,

NIH 3T3, OVCAR-8, and RT-4) although less dramatic as

HEK293A cells and with sera from multiple species (goat, rabbit,

horse, and human), suggesting that such an effect could be

a conserved signaling event (Figures S2C and S3). Therefore,

we hypothesized that some unknown factor(s) in serum might

be novel ligand(s) regulating YAP. In addition, we found that

MST1/2 and Lats1/2 kinases are dispensable for YAP Ser127

phosphorylation induced by serum deprivation, as siRNA-medi-
956 Chemistry & Biology 19, 955–962, August 24, 2012 ª2012 Elsevi
ated silencing of these upstream regulators does not block the

effects (Figure S4). The total YAP levels inversely correlate with

p-YAP levels, consistent with the previous report that phosphor-

ylation of YAP promotes its degradation (Zhao et al., 2010).

Chemical Isolation, Purification, and Activity-Guided
Profiling of Serum Factors
Serum is a complex mixture of growth factors, nutrients, lipids,

and metabolites. To identify the active serum factor(s), we

utilized an activity-guided isolation methodology employing

the imaging-based YAP translocation assay. Specifically, we re-

placed the cell culture media (10% FBS) of low-density

HEK293A cells with serum-free media (SFM) that had been sup-

plemented with various serum-derived fractions. After 2 hr of

incubation, we examined the YAP subcellular localization status

to test whether any serum-derived sample could restore YAP

nuclear localization.

We initially observed that the serum-derived activity survived

heat inactivation (60�C, 30 min), treatment that usually inacti-

vates complement factors (Figure S5). In order to refine

the serum, we utilized methanol precipitation followed by
er Ltd All rights reserved
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partitioning of the resulting supernatant against hexanes, to

localize the majority of the activity to an enriched aqueous frac-

tion (Want et al., 2006) (Figure S5). Separation of the active serum

extract by reversed phase high-performance liquid chromatog-

raphy (HPLC) (C18) and subsequent activity profiling led to the

identification of two active regions within the 40% and 60%

CH3CN in H2O steps of the elution gradient (Figure S6). To reveal

the components of these fractions, we first conducted protein

mass spectrometry on the two most active fractions (F029 and

F037) and an inactive fraction (F021) to determine if any proteins

were selectively present in the active fractions. Our analyses re-

vealed the presence of multiple proteins, including apolipopro-

tein (Apo) A1, A2, and E. Interestingly, the number of identifiable

spectra corresponding to ApoA2 was greatest in the active frac-

tions and lowest in the inactive fraction (Table S1).

Lipids Associated with Lipoproteins Are the Active
Components
We tested purified, lipid-stripped human and bovine ApoA2 and

found that the protein itself was inactive. We then tested purified

lipid-bound humanHDL and low-density lipoprotein (LDL), which

contain apolipoproteins (Schonfeld et al., 1978), and found that

both induced YAP nuclear translocation (Figure S7A). Consis-

tently, we also observed that boiling (95�C, 30min) of FBS, which

usually denatures serum protein factors, did not affect the

activity to induce YAP nuclear localization (Figure S5). In addi-

tion, charcoal/Dextran-treated, delipidated FBS lost the activity,

suggesting that serum lipids might be the active component(s)

(Figures S2A and 3B). Taken together, we hypothesized that

the overall serum activity was likely lipid based and the specific

activity observed in F029 and F037 might be derived from free

lipids that coeluted with ApoA2, or residual lipid-bound ApoA2,

resulted from incomplete delipidation during the purification

process.

To confirm the lipid activity, we then extracted fraction F037

and human HDL with butanol and tested the resulting organic

and aqueous partitions. In each of the extractions, the YAP

nuclear translocation activity was present in the organic (lipid

containing) partition, whereas the aqueous partitions (protein)

were inactive (Figure S7). However, attempts to further purify

and profile the lipids in these fractions were not successful

because of the limited amount of active fraction available.

Sphingosine-1-Phosphate Is Located in the Active
Fractions
We attempted to crudely separate different lipids contained

within HDL, F029, and F037, utilizing a modified Bligh and Dyer

extraction system described previously that yielded three parti-

tions (Kimura et al., 2001): (1) fatty acids, neutral lipids, and phos-

pholipids; (2) charged lipids soluble in aqueous solution under

alkaline conditions (such as sphingosine-1-phosphate, S1P);

and (3) substances soluble in an aqueous solution (e.g.,

proteins). In each case, the majority of the activity present in

the parent sample was located in partition b (Figure 2A). Partition

b of the most active fraction (F037) displayed dose-responsive

activity with an approximate EC50 of 1.66 mg/ml (Figure 2B).

These results indicate that lipids soluble under alkaline condi-

tions, such as S1P and sphingolipids, might be the active

factor(s).
Chemistry & Biology 19, 95
Previous reports have also shown that S1P indeed induces the

expression of Cyr61 and CTGF, both direct target genes of YAP

(Chowdhury and Chaqour, 2004; Li et al., 2008; Young et al.,

2009), suggesting that S1P might activate YAP transcriptional

activity. S1P is a well-described signaling lipid bound to HDL,

known to modulate diverse cellular functions, including cell

proliferation, migration, and differentiation (Argraves and Ar-

graves, 2007; Pyne and Pyne, 2010; Spiegel and Milstien,

2003). The serum concentration of S1P ranges from �200 nM

up to low micromolar, with �65% bound to lipoproteins (Murata

et al., 2000). In addition, it is also known that S1P can activate

Rho GTPase, a possible regulator of YAP as described recently

(Dupont et al., 2011). Taken together, we hypothesized that S1P

might be one of many serum factors present in the active frac-

tions that regulate YAP.

We then compared of the extracts to the synthetic D-erythro-

S1P by high-resolution liquid chromatography/mass spectrom-

etry (LC/MS) and confirmed that S1P was present in the active

samples (partition b) and absent in the inactive samples (Figures

2C and 2D). The fragmentation pattern of S1P from F37b also

matched with the synthetic standard (Figure S8).

S1P, Dihydro-S1P, and Lysophosphatidic Acid
Activates YAP
To confirm that S1P dose-dependently induces YAP nuclear

localization, we tested a purified and synthetic D-erythro form

of S1P, dihydro-S1P (dhS1P), and lysophosphatidic acid (LPA),

lipids that activate related receptors (Choi et al., 2010; Rosen

and Goetzl, 2005). As shown in Figure 3A and Figures S9 and

S10, all three compounds induced YAP nuclear localization

with S1P being the most potent ligand (S1P: EC50 = 17 nM;

dhS1P: EC50 = 146 nM; LPA: EC50 = 316 nM). Another related

lipid, ceramide-1-phosphate (C1P) is inactive (Figure S9).

Sphingosine-1-phosphate also potently induces YAP Ser127

dephosphorylation and activates YAP transcriptional activity as

assessed by qRT-PCR of YAP direct target gene expression

(CTGF and Cyr61) (Figures 3B and 3C). Taken together, these

data indicate that serum-derived S1P and related lipids (dhS1P

and LPA) are endogenous lipid compounds that induce YAP

dephosphorylation, nuclear localization, and activation. We

focused our further studies on S1P as it is the most potent

compound identified.

S1P Induces YAP Target Gene Expression
Previously, a panel of �70 genes were identified as YAP target

genes and have been successfully used as molecular signatures

to predict YAP activation status (Cordenonsi et al., 2011; Dupont

et al., 2011). To probe whether S1P stimulation can activate YAP

signature gene expression, we carried out a bioinformatics anal-

ysis of published microarray profiling data deposited in the Gene

Expression Omnibus (GEO). We found that the YAP signature

gene panel is significantly (p < 0.0001) activated in mouse liver

samples isolated from S1P lyase (SPL)-deficient mice

(GSE18745), which have marked accumulation of S1P in plasma

and liver (Bektas et al., 2010). The YAP target genes are also

significantly (p < 0.0002) induced in human embryonic stem cells

(ESCs) treated with S1P (GSE7896) (Avery et al., 2008), suggest-

ing that S1P indeed activates YAP transcriptional activity (Fig-

ure S11). YAP has been shown to regulate hepatocyte
5–962, August 24, 2012 ª2012 Elsevier Ltd All rights reserved 957



Figure 2. Chemical Isolation and Activity Profiling Lead to the Identification of Serum-Derived Factors that Regulate YAP

(A) Human HDL, Fraction 029, and Fraction 037 (F029 and F037) from FBS purification were further purified by extraction and lipid partitioning methods to give

three partitions (partitions a, b, and c). The YAP nuclear localization restoring activity is evaluated in low-density, serum-deprived HEK293A cells at a sample

concentration of 50 mg/ml (bar graph). Themean number of cells per field in the imaging analysis for those samples is shown in red squares. (Data are represented

as mean ± SEM, n = 3).

(B) Dose-response curves for partitions a (gray), b (blue), and c (green) of Fraction 037 (intact F037, red). Curves with circles represent the YAP nuclear localization

(YNL) activity, and the squares represent the mean cell number per field (MCPF) (data are represented as mean ± SEM, n = 3).

(C) Positive mode electrospray ionization (ESI) spectrum of synthetic D-erythro-S1P and proposed structures for the observed ions.

(D) Representative extracted ion chromatograms for themost abundant S1P-derived ion (m/z: 264.26–264.27) for synthetic D-erythro-S1P (top panel, gray) and in

descending order: partitions a (HDLa, red) and b (HDLb, dark green) of human HDL; partitions a (F029a, pink) and b (F029b, purple) of Fraction 029 from FBS; and

partitions a (F037a, green) and b (F037b, blue) of Fraction 037 from FBS.

See also Figures S5, S6, S7, and S8 and Table S1.
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proliferation and embryonic stem cell self-renewal (Lian et al.,

2010; Zhou et al., 2009). It would be interesting to further study

whether YAP contributes to the effects of S1P in these systems.

S1P Induces YAP Nuclear Localization through S1P2

Receptor
S1P signals through a family of GPCRs, including S1P1–5 (Rosen

and Goetzl, 2005). To probe which receptor(s) mediates YAP

regulation, we carried out qRT-PCR mRNA expression profiling

of the S1P receptors in HEK293A andHaCaT cells, two cell types

that respond to S1P stimulation. We found that S1P2 is the most

abundant receptor expressed in both cell lines (Figure S12). S1P2

antagonist JTE-013 has also been shown to block CTGF and

Cyr61 expression, whereas S1P1 antagonist VPC4416 does not

(Kim et al., 2011; Li et al., 2008). Similarly, siRNA-mediated

silencing of S1P2, but not S1P3, blocks S1P-mediated YAP target
958 Chemistry & Biology 19, 955–962, August 24, 2012 ª2012 Elsevi
gene expression, suggesting that S1P2 is the receptor respon-

sible for the effects (Figure S13). S1P2 is known to couple to

the G12/13-family of G proteins, leading to the activation of Rho

GTPases, stress fiber formation, and cytoskeletal reorganization

(Rosen and Goetzl, 2005). We found that Rho GTPase inhibitor

(C3, 3 mg/ml) and ROCK inhibitor (Y-227632, 10 mM) can both

block YAP nuclear localization induced by S1P (Figure S14A),

suggesting that Rho GTPase-mediated pathway is required for

the regulation of YAP. Rho GTPase activation induces F-actin

polymerization and stress fiber formation. Consistent with this

notion, we found that serum deprivation disrupted F-actin stress

fiber in cells, accompanied by YAP cytoplasmic retention

(Figures 4A and 4B). S1P (300 nM) restored YAP nuclear localiza-

tion and F-actin polymerization (Figure 4C). Furthermore, F-actin

inhibitor (latrunculin A, 100 nM) can block S1P and LPA-induced

YAP nuclear localization (Figures 4D and 4E), suggesting that
er Ltd All rights reserved
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Figure 3. Sphingosine-1-Phosphate Is a

Small Molecule Ligand Regulating YAP

(A) SyntheticS1P inducesYAPnuclear localization.

Curve with circles (red) represents the YAP nuclear

localization (YNL) activity, and the open squares

represent the mean cell number per field (MCPF).

(Data are represented as mean ± SEM, n = 3).

(B) S1P induces YAP Ser127 dephosphorylation

independent of cell-cell contact. HEK293A cells

were cultured at low density (50% confluency, left)

and high density (100% confluency, right). Culture

medium was replaced with media containing

10% of charcoal/Dextran-treated FBS (DC-FBS),

CD293 synthetic media, or serum-free media

(SFM). Cells were treated with 300 nM of S1P (+) or

vehicle control (�) for 2 hr.

(C) S1P induces YAP target genes (CTGF and

Cyr61) expression. qRT-PCR analysis of CTGF

(green) and Cyr61 (blue) in HEK293A cells with

normal culture medium (no medium change),

or replenished with serum-free media (SFM)

supplemented with vehicle control, or S1P at

various doses). (Data are represented as mean ±

SEM, n = 3).

See also Figures S9, S10, and S11.
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S1P and LPA regulate YAP through F-actin polymerization-

mediated process. Previously, extracellular matrix (ECM) and

mechanical force have also been shown to regulate YAP through

Rho GTPase (Dupont et al., 2011). F-actin has also been

shown to regulate Hippo-YAP signaling. For example, induction

of extra F-actin formation by loss of Capping proteins induces

Drosophila imaginal discs overgrowth through activation of

Yorkie (Fernández et al., 2011; Sansores-Garcia et al., 2011).

These reports and our results suggest that F-actin polymeriza-

tion is a conserved signaling node that integrates signaling

inputs, including mechanical forces, cytoskeletal reorganization,

and serum/plasma lipids signaling, to regulate YAP activity.

DISCUSSION

Hippo signaling is an emerging pathway involved in tissue

homeostasis and tumorigenesis through regulation of YAP, an

important factor regulating stem and progenitor cell fate, cell

proliferation, survival, and transformation. In the last decade,

genetic studies have revealed components and the signaling
Chemistry & Biology 19, 955–962, August 24, 2012
mechanisms of Hippo pathway inmultiple

species and suggested that deregulation

of Hippo pathway is involved in many

diseases. Therefore, chemical probes

might provide additional tools to study

this important signaling in development

and diseases and to further explore

the therapeutic applications of modu-

lating Hippo signaling. To date, several

synthetic chemical compounds have

been identified to modulate YAP translo-

cation or YAP-TEAD binding through

high-throughput screens; however, their

potency and specificity of modulating
YAP need further improvement (Bao et al., 2011; Liu-Chittenden

et al., 2012). In this report, we have identified S1P and related

serum lipids as chemical factors regulating YAP nuclear localiza-

tion and activation. To our knowledge, the results establish a new

signaling mechanism by which serum lipid factors activate YAP

through GPCRs and Rho GTPases. S1P and LPA are known to

induce proliferation, migration, and metastasis of certain cancer

cells, and their levels are elevated in patientswith several types of

cancers (Pyne and Pyne, 2010; Xu et al., 1998). The S1P biosyn-

thetic enzyme, sphingosine kinase 1 is also known as an onco-

gene (Pchejetski et al., 2011; Pyne and Pyne, 2010). Our results

suggest that YAP could be a downstream factor mediating

such biological activity and that small molecule ligands, such

as S1P, LPA, or S1P/LPA receptor modulators, could be useful

chemical tools to dissect Hippo signaling.

SIGNIFICANCE

Despite efforts to identify upstream signals that regulate

YAP nuclear localization and activity, the endogenous small
ª2012 Elsevier Ltd All rights reserved 959
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Figure 4. Phospholipids Induce YAP Nuclear Localization through F-actin Polymerization

S1P restores the stress fiber and F-actin polymerization together with YAP nuclear translocation in SFM. HEK293A cells are cultured at low density in normal

medium (A), SFM with vehicle control (B), and SFM with S1P (C). Immunofluorescent staining of F-actin stress fibers (red), YAP (green), and nuclei (blue) were

shown. F-actin inhibitor Latrunculin A (LA, 100 nM) blocks S1P-induced (D) and LPA-induced (E) YAP nuclear localization (n = 3, mean ± SEM).

See also Figures S12, S13, and S14.

Chemistry & Biology

Serum-Derived Lipids Activates YAP
molecules that regulate YAP are still elusive in mammals.

Here, we report the discovery of serum lipids as potent

activators of YAP, providing insights to the regulation of

Hippo signaling and chemical tools to perturb YAP activity.

We also demonstrated that chemical isolation, activity-

guided profiling, and high-throughput screen are powerful

tools to identify biologically active endogenous ligands

that regulate cell signaling. Further studies on the S1P and

LPA-regulated YAP activation might reveal novel physiolog-

ical and pathological roles of these bioactive lipids.
EXPERIMENTAL PROCEDURES

Activity Profiling of Serum Fractions and Synthetic Lipids

For all experiments, cells were cultured and plated in Dulbecco’s modified

Eagle’s medium (DMEM) + 10% FBS in 384-well plates and allowed to attach

overnight. Plating density was either 5 3 104 cells/ml for low density (�50%

confluency) or 23 105 cells/ml for high density (�100% confluency). Attached

cells were washed five times with serum-free DMEM (SFM) at volumes

equivalent to the initial plating volume. Serum, serum-derived fractions, or

purified lipids were then added back and incubated for 2 hr. Untreated serum

was diluted in DMEM; lyophilized fractions were dissolved in DMEM + 3%

DMSO; and lipid extracts were first dissolved in methanol and dried under
960 Chemistry & Biology 19, 955–962, August 24, 2012 ª2012 Elsevi
N2 (g) to create a thin film, dissolved in 4 mg/ml fatty acid-free (FAF) BSA,

and diluted into DMEM. All purified lipids were initially dissolved in solvents

in accordance with the manufacturer’s instructions, dried to make thin films,

dissolved in 4 mg/ml FAF BSA, and diluted in DMEM.

Immunofluorescence Staining

Cells were fixed in 4%paraformaldehyde at room temperature for 15min, prior

to permeabilization with 0.1% Triton X-100. Blocking and primary antibody

(anti-YAP, mouse monoclonal antibody [M01] from Abgent, San Diego, CA,

USA) incubation was combined in one step by adding antibody prepared in

5% bovine serum albumin (BSA) solution (Sigma-Aldrich). After 2 hr incuba-

tion, cells were then washed with PBS and incubated in Alexa Fluor 488

donkey anti-mouse IgG and Hoechst 33342 nucleus dye (Invitrogen, Carlsbad,

CA, USA) for 1 hr, followed by image acquisition by high-throughput confocal

microscopy (Opera High Content Screening System, Waltham, MA, USA).

Nine images/well were captured using a 10 3 PlanApo/0.3 NA objective at

a resolution of �0.65 mm/pixels.

Additional methods are described in the Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes fourteen figures, one table, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.chembiol.2012.07.005.
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