Journal of Combinatorial Theory, Series A 100, 394-398 (2002) doi:10.1006/icta.2002.3299

NOTE

A Result in Dual Ramsey Theory

Lorenz Halbeisen

Department of Pure Mathematics, David Bates Building, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland E-mail: halbeis@gub.ac.uk

and

Pierre Matet

Université de Caen-CNRS, Mathématiques, BP 5186, 14032 Caen Cedex, France E-mail: matet@math.unicaen.fr

Received April 1, 1999

We present a result which is obtained by combining a result of Carlson with the Finitary Dual Ramsey Theorem of Graham-Rothschild. © 2002 Elsevier Science (USA)

Key Words: partition; Dual Ellentuck Theorem; Finitary Dual Ramsey Theorem.

We start by introducing some notation.

We conform to the usual practice of identifying the least infinite ordinal ω with the set of non-negative integers.

Given $\alpha, \beta \leq \omega$, a *partition of* α *into* β *blocks* is an onto function $X : \alpha \to \beta$ such that $\min(X^{-1}(\{n\})) < \min(X^{-1}(\{m\}))$ whenever $n < m < \beta$. Thus, the blocks of X are ordered as their *leaders* (i.e., their least elements).

The *leader function* $\ell : (\alpha)^{\beta} \times \beta \to \alpha$ is defined by $\ell(X, m) := \min(X^{-1})$ $(\{m\})$). Hence, the function $m \mapsto \ell(X, m)$ enumerates the leaders of X in increasing order.

Given $X \in (\alpha)^{\beta}$ and $Y \in (\alpha)^{\gamma}$, where $\alpha, \beta, \gamma \leq \omega$, we let $Y \leq X$ if Y is coarser than X, i.e., each block of Y is a union of blocks of X.

Given $\alpha, \beta, \gamma \leq \omega$ and $X \in (\alpha)^{\beta}$, $(X)^{\gamma} := \{Y \in (\alpha)^{\gamma} : Y \leq X\}$. Given $\alpha, \beta \leq \omega$ and $k < \omega$, $(\alpha)_{k}^{\beta}$ denotes the set of all $X \in (\alpha)^{\beta}$ such that

(a) $X^{-1}(\{n\})$ is finite if $k \leq n < \beta$, and

(b) $\max(X^{-1}(\{n\})) < \ell(X, n+1)$ if $k \le n$ and $n+1 < \beta$.

0097-3165/02 \$35.00 © 2002 Elsevier Science (USA) All rights reserved.

NOTE

Given $\alpha, \beta, \gamma \leq \omega$, $X \in (\alpha)^{\beta}$ and $k, m < \omega$ such that $k \leq \gamma$ and $m \leq \beta$, $(k, m, X)^{\gamma}$ is the set of all $Y \in (X)^{\gamma}$ such that

$$\{\ell(Y,i): i < k\} \subseteq \{\ell(X,j): j < m\}.$$

Note that $(0, m, X)^{\gamma} = (1, m, X)^{\gamma} = (X)^{\gamma}$ for all $m \leq \beta$.

The *amalgamation function* \mathscr{A} is defined as follows: Given $X \in (\omega)^{\omega}$ and $t \in (p)^m$, where $0 < m \le p < \omega$, $\mathscr{A}(t, X)$ is the partition of ω whose blocks are

$$\bigcup_{i \in t^{-1}(\{0\})} X^{-1}(\{i\}), \dots, \bigcup_{i \in t^{-1}(\{m-1\})} X^{-1}(\{i\}), X^{-1}(\{p\}), X^{-1}(\{p+1\}), \dots$$

For $t \in (p)^m$, where $m \leq p < \omega$, let $O_t := \{X \in (\omega)^{\omega} : X \upharpoonright p = t\}$. We topologize $(\omega)^{\omega}$ by taking as basic open sets \emptyset and O_t for $t \in \bigcup_{m \leq p < \omega} (p)^m$.

A function $F : (\omega)^{\omega} \to r$, where $1 \leq r < \omega$, is *clopen* if $F^{-1}(\{i\})$ is a clopen subset of $(\omega)^{\omega}$ for each i < r.

Our starting point is the following immediate consequence of the Dual Ellentuck Theorem [1, Theorem 4.1] of Carlson–Simpson.

PROPOSITION 1. Given $X \in (\omega)^{\omega}$ and a clopen $F: (\omega)^{\omega} \to r$, where $1 \leq r < \omega$, there is $Y \in (X)^{\omega}$ such that F is constant on $(Y)^{\omega}$.

Even if every block of X is finite, there may not be any homogeneous Y having infinitely many finite blocks.

PROPOSITION 2. There is a clopen $F: (\omega)^{\omega} \to 2$ with the property that there is no $Y \in (\omega)^{\omega}$ such that F is constant on $(Y)^{\omega}$ and Y has infinitely many finite blocks.

Proof. Define $F:(\omega)^{\omega} \to 2$ by stipulating that F(X) = 0 if and only if $X^{-1}(\{1\}) \cap \ell(X,3) \subseteq \ell(X,2)$. Obviously, F is clopen. Now suppose that there is $Y \in (\omega)^{\omega}$ such that Y has infinitely many finite blocks and F is constant on $(Y)^{\omega}$. Pick $Z \in (\omega)_1^{\omega}$ with $Z \leq Y$. Then F is constant on $(Z)^{\omega}$, which is clearly impossible.

Carlson established a "specialized" version (Theorem 6.9 of [1], which follows from Theorem 2 of [2]) of the Dual Ellentuck Theorem that deals with partitions of ω having finitely many infinite blocks. Carlson's result immediately implies the following.

PROPOSITION 3. Given $k < \omega$, $X \in (\omega)_k^{\omega}$ and a clopen $F : (\omega)^{\omega} \to r$, where $1 \leq r < \omega$, there is $Y \in (\omega)_k^{\omega} \cap (k, k, X)^{\omega}$ such that F is constant on $(k, k, Y)^{\omega}$.

The purpose of this paper is to present the combinatorial result which is obtained by combining Proposition 3 with the Finitary Dual Ramsey Theorem of Graham–Rothschild [3]. This last reads as follows.

PROPOSITION 4. Suppose that $1 \le k \le m < \omega$ and $1 \le r < \omega$. Then there is $p < \omega$ such that $p \ge m$ and the following holds: Given $f : (p)^k \to r$, there is $s \in (p)^m$ such that f is constant on $(s)^k$.

We now state our result.

THEOREM. Given $1 < k < m < \omega$, $X \in (\omega)_k^{\omega}$ and a clopen $F : (\omega)^{\omega} \to r$, where $1 \le r < \omega$, there is $Y \in (\omega)_m^{\omega} \cap (X)^{\omega}$ such that F is constant on $(k, m, Y)^{\omega}$.

Proof. Using Proposition 4, select $p \ge m$ so that every $f:(p)^k \to r$ is constant on $(s)^k$ for some $s \in (p)^m$. First we define $g: \bigcup_{i \le p-k} (k-1+i)^{k-1} \to r$ and $Y_0, Y_1, \ldots, Y_{p-k}$ so that

(0) $Y_0 \in (\omega)_k^{\omega} \cap (k, k, X)^{\omega}$ and F takes the constant value g(u) on $(k, k, \mathscr{A}(u, Y_0))^{\omega}$, where u is the unique element of $(k-1)^{k-1}$ (hence, $\mathscr{A}(u, Y_0) = Y_0$).

(1) $Y_1 \in (\omega)_{k+1}^{\omega} \cap (k+1, k+1, Y_0)^{\omega}$ and F takes the constant value g(t) on $(k, k, \mathscr{A}(t, Y_1))^{\omega}$ for every $t \in (k)^{k-1}$.

(2) $Y_2 \in (\omega)_{k+2}^{\omega} \cap (k+2, k+2, Y_1)^{\omega}$ and F takes the constant value g(t) on $(k, k, \mathscr{A}(t, Y_2))^{\omega}$ for every $t \in (k+1)^{k-1}$.

(p-k) $Y_{p-k} \in (\omega)_p^{\omega} \cap (p, p, Y_{p-k-1})^{\omega}$ and *F* takes the constant value g(t) on $(k, k, \mathscr{A}(t, Y_{p-k}))^{\omega}$ for every $t \in (p-1)^{k-1}$.

For example, to define Y_3 and $g \upharpoonright (k+2)^{k-1}$, proceed as follows. Let t_0 , t_1, \ldots, t_q be an enumeration of the elements of $(k+2)^{k-1}$. Applying Proposition 3 repeatedly, define T_j , Z_j and c_j for $j \le q$ so that

- (i) $T_i \in (\omega)_k^{\omega}$.
- (ii) If j = 0, $T_j \in (k, k, \mathscr{A}(t_j, Y_2))^{\omega}$ and $Z_j \in (k + 3, k + 3, Y_2)^{\omega}$.
- (iii) If j > 0, $T_j \in (k, k, \mathscr{A}(t_j, Z_{j-1}))^{\omega}$ and $Z_j \in (k+3, k+3, Z_{j-1})^{\omega}$.
- (iv) F takes the constant value c_i on $(k, k, T_i)^{\omega}$.
- (v) $\mathscr{A}(t_j, Z_j) = T_j$.

Then set $Y_3 = Z_q$ and $g(t_j) = c_j$ for every $j \leq q$.

NOTE

Define $f:(p)^k \to r$ by $f(w) = g(w \upharpoonright \ell(w, k-1))$. Set $W = Y_{p-k}$. Obviously, $W \in (\omega)_p^{\omega} \cap (X)^{\omega}$. Moreover, F takes the constant value f(w) on $(k, k, \mathscr{A}(w \upharpoonright \ell(w, k-1), W)^{\omega}$ for every $w \in (p)^k$. Let $s \in (p)^m$ be such that f is constant on $(s)^k$. Then $Y = \mathscr{A}(s, W)$ is as desired.

The referee pointed out that the theorem and similar results can be derived from Theorems 10 and 11 of [2].

The theorem is optimal in the following sense:

PROPOSITION 5. Suppose that $1 < k < m < \omega$. Then there is $F : (\omega)^{\omega} \to 2$ such that $F^{-1}(\{0\})$ is open and there is no $Y \in (\omega)_m^{\omega}$ with the property that F is constant on $(k, m, Y)^{\omega}$.

Proof. Let F(Y) = 0 exactly when $Y(m) \notin \ell(Y, m+1)$.

The theorem has the following finitary version, which is proved by arguing as for 3.2 in [1].

PROPOSITION 6. Suppose that $n \leq q \leq m < \omega$, $1 \leq k \leq m$, $n \leq k$ and $1 \leq r < \omega$. Then there is $p < \omega$ such that $p \geq m$ and the following holds: Given $f: (p)^k \to r$, there is $s \in (p)^m_a$ such that f is constant on $(n, q, s)^k$.

Proof. Assume that for every $p \ge m$ there is $f_p : (p)^k \to r$ such that for every $s \in (p)_q^m$, f_p is not constant on $(n, q, s)^k$. Define $F : (\omega)^{\omega} \to r$ by stipulating that $F(T) = f_{\ell(T,k)}(T \upharpoonright \ell(T,k))$. Using the theorem (for 1 < n < q) or Proposition 3 (otherwise), we find $Y \in (\omega)_q^{\omega}$ such that F is constant on $(n, q, Y)^{\omega}$. Set $p = \ell(Y, m)$ and $s = Y \upharpoonright m$. Then $p \ge m$ and $s \in (p)_q^m$. Moreover, f_p is constant on $(n, q, s)^k$. Contradiction!

When $n \in \{0, 1\}$ and $q \in \{m - 1, m\}$, Proposition 6 reduces to the Finitary Dual Ramsey Theorem. When n = k and $q \in \{m - 1, m\}$, it reduces to the *n*-Parameter Set Theorem of Graham–Rothschild [3], which generalizes the Finitary Dual Ramsey Theorem.

ACKNOWLEDGMENTS

The authors thank the referee for helpful comments and L. Halbeisen thanks the *Swiss* National Science Foundation for supporting him.

REFERENCES

 T. J. Carlson and S. G. Simpson, A dual form of Ramsey's theorem, *Adv. in Math.* 53 (1984), 265–290.

NOTE

- 2. T. J. Carlson, Some unifying principles in Ramsey theory, *Discrete Math.* 68 (1988), 117–169.
- 3. R. L. Graham and B. L. Rothschild, Ramsey's theorem for *n*-parameter sets, *Trans. Amer. Math. Soc.* **159** (1971), 257–292.