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Université de Caen–CNRS, Mathématiques, BP 5186, 14032 Caen Cedex, France

E-mail: matet@math.unicaen.fr

Received April 1, 1999

We present a result which is obtained by combining a result of Carlson with the

Finitary Dual Ramsey Theorem of Graham–Rothschild. # 2002 Elsevier Science (USA)

Key Words: partition; Dual Ellentuck Theorem; Finitary Dual Ramsey

Theorem.
We start by introducing some notation.
We conform to the usual practice of identifying the least infinite ordinal o

with the set of non-negative integers.
Given a; b4o; a partition of a into b blocks is an onto function X : a ! b

such that minðX�1ðfngÞÞominðX�1ðfmgÞÞ whenever nomob: Thus, the
blocks of X are ordered as their leaders (i.e., their least elements).

The leader function ‘ : ðaÞb � b ! a is defined by ‘ðX ;mÞ :¼ minðX�1

ðfmgÞÞ: Hence, the function m/‘ðX ;mÞ enumerates the leaders of X in
increasing order.

Given X 2 ðaÞb and Y 2 ðaÞg; where a; b; g4o; we let Y4X if Y is
coarser than X ; i.e., each block of Y is a union of blocks of X :

Given a; b; g4o and X 2 ðaÞb; ðXÞg :¼ fY 2 ðaÞg : Y4Xg:
Given a; b4o and koo; ðaÞbk denotes the set of all X 2 ðaÞb such

that

(a) X�1ðfngÞ is finite if k4nob; and

(b) maxðX�1ðfngÞÞo‘ðX ; n þ 1Þ if k4n and n þ 1ob:
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Given a; b; g4o; X 2 ðaÞb and k;moo such that k4g and m4b;
ðk;m;XÞg is the set of all Y 2 ðXÞg such that

f‘ðY ; iÞ : iokgDf‘ðX ; jÞ : jomg:

Note that ð0;m;X Þg ¼ ð1;m;XÞg ¼ ðX Þg for all m4b:
The amalgamation function A is defined as follows: Given X 2 ðoÞo and

t 2 ðpÞm; where 0om4poo, Aðt;XÞ is the partition of o whose blocks are

[

i2t�1ðf0gÞ
X�1ðfigÞ; . . . ;

[

i2t�1ðfm�1gÞ
X�1ðfigÞ;X�1ðfpgÞ;X�1ðfp þ 1gÞ; . . . :

For t 2 ðpÞm; where m4poo; let Ot :¼ fX 2 ðoÞo : Xpp ¼ tg: We topolo-
gize ðoÞo by taking as basic open sets | and Ot for t 2

S
m4poo ðpÞm:

A function F : ðoÞo ! r; where 14roo; is clopen if F�1ðfigÞ is a clopen
subset of ðoÞo for each ior:

Our starting point is the following immediate consequence of the Dual
Ellentuck Theorem [1, Theorem 4.1] of Carlson–Simpson.

Proposition 1. Given X 2 ðoÞo and a clopen F : ðoÞo ! r; where

14roo; there is Y 2 ðXÞo such that F is constant on ðY Þo:

Even if every block of X is finite, there may not be any homogeneous Y

having infinitely many finite blocks.

Proposition 2. There is a clopen F : ðoÞo ! 2 with the property that

there is no Y 2 ðoÞo such that F is constant on ðYÞo and Y has infinitely many

finite blocks.

Proof. Define F : ðoÞo ! 2 by stipulating that FðX Þ ¼ 0 if and only if
X�1ðf1gÞ \ ‘ðX ; 3ÞD‘ðX ; 2Þ: Obviously, F is clopen. Now suppose that
there is Y 2 ðoÞo such that Y has infinitely many finite blocks and F is
constant on ðYÞo: Pick Z 2 ðoÞo1 with Z4Y : Then F is constant on ðZÞo;
which is clearly impossible. ]

Carlson established a ‘‘specialized’’ version (Theorem 6.9 of [1], which
follows from Theorem 2 of [2]) of the Dual Ellentuck Theorem that deals
with partitions of o having finitely many infinite blocks. Carlson’s result
immediately implies the following.

Proposition 3. Given koo; X 2 ðoÞok and a clopen F : ðoÞo ! r; where

14roo; there is Y 2 ðoÞok \ ðk; k;X Þo such that F is constant on ðk; k;Y Þo:
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The purpose of this paper is to present the combinatorial result which is
obtained by combining Proposition 3 with the Finitary Dual Ramsey
Theorem of Graham–Rothschild [3]. This last reads as follows.

Proposition 4. Suppose that 14k4moo and 14roo: Then there is

poo such that p5m and the following holds: Given f : ðpÞk ! r; there is

s 2 ðpÞm
such that f is constant on ðsÞk:

We now state our result.

Theorem. Given 1okomoo; X 2 ðoÞok and a clopen F : ðoÞo !
r; where 14roo; there is Y 2 ðoÞom \ ðXÞo such that F is constant on

ðk;m;YÞo:

Proof. Using Proposition 4, select p5m so that every f : ðpÞk ! r is
constant on ðsÞk for some s 2 ðpÞm: First we define g :

S
i4p�k ðk � 1 þ

iÞk�1 ! r and Y0;Y1; . . . ;Yp�k so that

(0) Y0 2 ðoÞok \ ðk; k;XÞo and F takes the constant value gðuÞ on
ðk; k;Aðu;Y0ÞÞo; where u is the unique element of ðk � 1Þk�1 (hence,
Aðu;Y0Þ ¼ Y0).

(1) Y1 2 ðoÞokþ1 \ ðk þ 1; k þ 1;Y0Þo and F takes the constant value
gðtÞ on ðk; k;Aðt;Y1ÞÞo for every t 2 ðkÞk�1:

(2) Y2 2 ðoÞokþ2 \ ðk þ 2; k þ 2;Y1Þo and F takes the constant value
gðtÞ on ðk; k;Aðt;Y2ÞÞo for every t 2 ðk þ 1Þk�1:

..

.

ðp � kÞ Yp�k 2 ðoÞop \ ðp; p;Yp�k�1Þo and F takes the constant value
gðtÞ on ðk; k;Aðt;Yp�kÞÞo for every t 2 ðp � 1Þk�1.

For example, to define Y3 and gpðk þ 2Þk�1; proceed as follows. Let t0;
t1; . . . ; tq be an enumeration of the elements of ðk þ 2Þk�1: Applying
Proposition 3 repeatedly, define Tj; Zj and cj for j4q so that

(i) Tj 2 ðoÞok :
(ii) If j ¼ 0; Tj 2 ðk; k;Aðtj;Y2ÞÞo and Zj 2 ðk þ 3; k þ 3;Y2Þo:
(iii) If j > 0; Tj 2 ðk; k;Aðtj;Zj�1ÞÞo and Zj 2 ðk þ 3; k þ 3;Zj�1Þo:
(iv) F takes the constant value cj on ðk; k;TjÞo:
(v) Aðtj ;ZjÞ ¼ Tj:

Then set Y3 ¼ Zq and gðtjÞ ¼ cj for every j4q:
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Define f : ðpÞk ! r by f ðwÞ ¼ gðwp‘ðw; k � 1ÞÞ: Set W ¼ Yp�k: Ob-
viously, W 2 ðoÞop \ ðX Þo: Moreover, F takes the constant value f ðwÞ on
ðk; k;Aðwp‘ðw; k � 1Þ;WÞo for every w 2 ðpÞk: Let s 2 ðpÞm be such that f

is constant on ðsÞk: Then Y ¼ Aðs;WÞ is as desired. ]

The referee pointed out that the theorem and similar results can be
derived from Theorems 10 and 11 of [2].

The theorem is optimal in the following sense:

Proposition 5. Suppose that 1okomoo: Then there is F : ðoÞo ! 2
such that F�1ðf0gÞ is open and there is no Y 2 ðoÞom with the property that F

is constant on ðk;m;Y Þo:

Proof. Let FðYÞ ¼ 0 exactly when Y ðmÞJ ‘ðY ;m þ 1Þ: ]

The theorem has the following finitary version, which is proved by
arguing as for 3.2 in [1].

Proposition 6. Suppose that n4q4moo; 14k4m; n4k and

14roo: Then there is poo such that p5m and the following holds: Given

f : ðpÞk ! r; there is s 2 ðpÞm
q such that f is constant on ðn; q; sÞk:

Proof. Assume that for every p5m there is fp : ðpÞk ! r such that for
every s 2 ðpÞm

q ; fp is not constant on ðn; q; sÞk: Define F : ðoÞo ! r by
stipulating that FðTÞ ¼ f‘ðT ;kÞðTp‘ðT ; kÞÞ: Using the theorem (for 1onoq)
or Proposition 3 (otherwise), we find Y 2 ðoÞoq such that F is constant on
ðn; q;YÞo: Set p ¼ ‘ðY ;mÞ and s ¼ Ypm: Then p5m and s 2 ðpÞm

q :
Moreover, fp is constant on ðn; q; sÞk: Contradiction! ]

When n 2 f0; 1g and q 2 fm � 1;mg; Proposition 6 reduces to the
Finitary Dual Ramsey Theorem. When n ¼ k and q 2 fm � 1;mg; it
reduces to the n-Parameter Set Theorem of Graham–Rothschild [3], which
generalizes the Finitary Dual Ramsey Theorem.
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